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Collision Entropy Estimation in a One-Line Formula
Alessandro Gecchele

Abstract: We address the unsolved question of how best to estimate the collision entropy, also called 1

quadratic or second order Rényi entropy. Integer-order Rényi entropies are synthetic indices useful 2

for the characterization of probability distributions. In recent decades, numerous studies have been 3

conducted to arrive at their valid estimates starting from experimental data, so to derive suitable 4

classification methods for the underlying processes, but optimal solutions have not been reached yet. 5

Limited to the estimation of collision entropy, a one-line formula is presented here. The results of 6

some specific Monte Carlo experiments give evidence of the validity of this estimator even for the 7

very low densities of the data spread in high-dimensional sample spaces. The method strengths are 8

unbiased consistency, generality and minimum computational cost. 9

Keywords: Rényi entropies; collision entropy estimation; collision entropy rate estimation 10

• For the "plug-in" method of estimation of Rényi entropies, it has been long known in 11

folklore that the use of empirical frequencies, instead of the output of a true probability 12

estimator, lead to a heavy entropy underestimation. 13

• Limited to the case of Poisson distributions, [1] developed a biased-reduced method 14

for the estimation of integer order Rényi entropies. 15

• [2] recalled the result found by Grassberger, highlighting difficulties in generalizing it 16

to non-integer orders. 17

• [3] developed a biased-corrected estimator for the estimation of integer-order power 18

sums of discrete distributions, with nearly optimal performance (in terms of sample- 19

size versus accuracy). It is not specified whether the method is valid for any kind of 20

discrete process or it has limitations. 21

• [4] presents the bias corrected estimator in formula 2) without specifying to which 22

discrete stochastic process (DSP) it can be applied. In [? ] Grassberger says that 23

formula 2) can be demonstrated valid for distributions obtained with realizations of 24

Possonian processes. 25

• Some follow-up works (Skorski & others) improved the analysis made in [? ], and 26

noted the link to "birthday paradox" and collision-counting. 27

• Can we directly link U-statistics results [? ] with Poissonian estimator formula [? ]? 28

• Can we directly link Poissonian [? ] and non-parametric estimators [? ] 29

• Can we validate bias-corrected Renyi entropy estimators under Markov chains 30

(theoretically, empirically)? 31

• Can we validate bias-corrected Renyi entropy estimators under other processes that 32

have known theoretical entropies? 33

• Who referred first to the estimation method ∑n
i=1

fi
L

fi−1
L−1 for the second power sum? 34

Maybe Friedman? https://en.wikipedia.org/wiki/Index_of_coincidence 35

• Where applicable, I ask to use the same notation used by Rényi in its milestone work 36

[? ]. 37

• Estimators are part of the field of Physics (Statistical Physics, precisely) because 38

their study starts form empirical data coming from processes obtained with physical 39

elements (e.g.: the throw of a loaded die is a physical process). Some properties 40

observed during experiments are part of Laws of Nature; Laws of nature can only be 41

postulated and mathematically described, not demonstrated. 42

• Long term goal: to give to any user (researcher, data scientist, student, etc.) the best 43

instrument to classify, with a low degree of ambiguity, discrete state processes. This 44
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reduces to the production of the best estimation methods for η′
1 and η′

2 (and maybe 45

η′
3, for applications that need more detailed state points). From this practical point 46

of view, the extension of research to the complete family of Rényi entropies is not 47

necessary. 48

• For a given estimated entropy measure, it is also necessary to give the confidence 49

interval expressed in the same unit of specific entropy (or the measures of the ellipse 50

located around each state point, observing things in two dimensions). 51

• Has anybody arrived to produce and to describe the confidence interval diagram, for 52

retrieving the variability of the entropy measure for a given data density? 53

• Limited to the case of order two, to improve formula (9) [? ] proposing a better 54

estimator for the second-order Rényi entropy (called collision entropy), demonstrating 55

its validity for 1) regular processes, 2) max entropy IID processes, and 3) Markovian 56

processes. This new collision entropy estimator implicitly confirms the validity of the 57

bias-corrected estimator of the second order power sum ([? ], formula (8)), at least for 58

the cases of the three aforementioned types of processes. How can we say that these 59

estimators are valid for data coming form any process? 60

1. Introduction 61

The information theory indices belonging to the parametric family of Rényi entropies 62

are able to express, each with a different weight, the information content of a discrete 63

probability distribution (DPD) [5]. Typical members of this family are, for example, Shannon 64

entropy, collision entropy and min-entropy. These indices can also be used to classify the 65

output of experimental processes studied in any branch of the applied sciences, provided their 66

reduction to pseudostationary discrete-state processes and then in the form of DPDs. Since 67

usually, during the experiments, only brief realizations can be obtained from the process 68

under investigation, and since the realizations give rise to relative frequency distributions 69

(RFDs) and not to DPDs, then these indices, being based on probabilities, have to be 70

estimated through the elaboration of the few available data. In this regard, the methods for 71

the estimation of Rényi entropies are of two kinds: 1) those that first aim to estimate 72

the probability distribution from the relative frequencies and then plug the estimated 73

probabilities into the formulas of the entropies and 2) those that circumvent the still-open 74

problem of the estimation of the probabilities and aim to estimate the entropy indices 75

through the application of other elaborations to the data. Despite the numerous studies 76

carried out in the last decades (e.g., [1], [6], [7], [8], [9], [10], [11],[12], [13], [14], [2],[15], 77

[16], [17], [18], [19], [20], [21], [22], [23], [? ], [24], [25], [26], [4],[27], [28], [29], [30], [31], 78

[32], [33]), optimal estimators have not been found yet. Moreover, this persistent lack of 79

satisfactory solutions for the estimation of the indices belonging to the Rényi family (and 80

for the estimation of their more rapidly converging derived quantities called Rényi entropy 81

rates) has prompted, as a side effect, the proliferation of other similar indices conceived in 82

many different ways (e.g. [34], [35], [36]), but all having the same purpose of classifying 83

data with a nonparametric approach. An overview of this peculiar situation can be found 84

in [37], where Ribeiro et al. collected and described a "galaxy" of at least thirty indices 85

somehow functionally equivalent to those of the family initially proposed by Rényi (and 86

to their rates). In this context, the search for the best estimators of the original indices 87

seems most appropriate. In this regard, Skorski ([38], [39]) rightly pointed out that the 88

estimation of those integer-order Rényi entropies that have a parameter value greater than 89

one reduces to the estimation of the power sums of a DPD. Our work just starts from this 90

latter consideration and limits its investigation only to the case of the estimation of the 91

second power sum, which, in turn, allows the collision entropy to be estimated. 92
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2. Theoretical Methods 93

2.1. Transforming a Discrete-State Stochastic Process into a DPD 94

Consider a discrete-state stochastic process (DSPq) x−∞, . . . , xi−1, xi, xi+1, . . . , x∞ whose 95

values belong to an alphabet Aq containing q ordered symbols. Let Ω(q, d) be a d-dimensional 96

discrete sample space resulting from the Cartesian product d times of Aq. 97

Ω(q, d) = Aq × Aq × ... × Aq︸ ︷︷ ︸
d times

, (1)

and let n = qd be the cardinality of the sample space Ω(q, d). Each elementary event ek, 98

with k ∈ {1, 2, ..., n}, is uniquely identified by a vector with d coordinates (x1k, x2k, ..., xdk), 99

with x1k, x2k, ..., xdk ∈ Aq. According to the procedure indicated by Shannon in [40] at 100

pages 5 and 6, the infinite sequence of samples constituting the DSPq can be transformed 101

into occurrences #(ek) of the elementary events of Ω(q, d) by progressively considering all 102

the d-grams taken from the samples as if they were the vector coordinates of the events and 103

counting the number of times that each vector appears in the sequence. Then, according 104

to the frequentist definition of probability, the final resulting DPD is expressible in set theory 105

notation as 106

p(Ω(q, d))DSPq =
{

p(ek)DSPq =
#(ek)DSPq

∑n
k=1 #(ek)DSPq

∣∣∣ ek ∈ Ω(q, d)
}

. (2)

In the following, in the absence of ambiguity, p(Ω(q, d))DSPq —that is, a DPD obtained by 107

elaborating the data of a DSPq— will be indicated with the bold symbol p and one of its 108

elements with pk. 109

2.2. Integer-Order Rényi α-Entropies as Synthetic Indices for the Characterization of DPDs 110

In general, a DPD can be characterized by some indices, each of which can quantify 111

the presence rate of a particular feature in the distribution. The parametric family of integer- 112

order Rényi α-entropies is composed of synthetic indices suitable for the characterization of 113

DPDs from the point of view of their informative content [5]. They are defined as 114

α = 1 H1(p) ≜ −
n

∑
k=1

pklog pk

α ∈ N+ α ̸= 1 Hα(p) ≜
1

1 − α
log
( n

∑
k=1

pα
k

)
0 ≤ Hα(p) ≤ log n

α −→ ∞ H∞(p) ≜ −log max{p}.

(3)

The corresponding specific integer-order Rényi α-entropies of the DPD p are then defined as 115

α = 1 η1(p) ≜
H1(p)
log n

= −
n

∑
k=1

pklogn pk

α ∈ N+ α ̸= 1 ηα(p) ≜
Hα(p)
log n

=
1

1 − α
logn

( n

∑
k=1

pα
k

)
0 ≤ ηα(p) ≤ 1

α −→ ∞ η∞(p) ≜
H∞(p)
log n

= −logn max{p}.

(4)

Once the value of a specific entropy is known, it is always possible to retrieve the value of the 116

corresponding plain entropy, expressed in a particular base b and for a particular cardinality 117

n, using the following conversion formula: 118

Hα(p, b, n) ≜ ηα(p) logb n. (5)
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Specific entropies are preferable to plain entropies because: 119

1. they are the result of a min-max normalization, that is obtained using the minimum and 120

the maximum possible values of plain entropies (respectively 0 and log n); 121

2. they are formally independent from the number of ordered symbols q chosen for the 122

quantization of the range of the output values of the process and independent from the 123

cardinality of the sample space n; for this reason, they allow the comparison of values 124

obtained from different distributions, even generated using different sample spaces; 125

3. they allow the doubt on the choice of the base for the logarithm present in the formula of 126

entropies (2 or e or 10) to be removed, thanks to the use of a variable base, depending 127

on the cardinality of the considered sample space (n); 128

2.3. Rényi Entropy Rates 129

Unlike Rényi entropies, whose utility is mainly related to the classification of DPDs, 130

Rényi entropy rates are important theoretical quantities useful for the characterization of 131

DSPqs [41], [42]; they are defined as 132

H′
α(DSPq) ≜ lim

d→∞

1
d

Hα(p(Ω(q, d))DSPq) 0 ≤ H′
α(DSPq) ≤ log q. (6)

Moreover, it is known that, for strongly stationary DSPq, any Rényi entropy rate converges 133

to the same limit of a sequence of Cesaro means of conditional entropies: 134

H′
α(DSPq) = lim

d→∞
Hα(p(Ad)|p(A1 × A2 × · · · × Ad−1)). (7)

and, as conditional Rényi entropies preserve the chain rule [43], [44], [45], they can also be 135

calculated as 136

H′
α(DSPq) = lim

d→∞

[
Hα(p(Ω(q, d))DSPq)− Hα(p(Ω(q, d − 1))DSPq)

]
. (8)

2.4. Specific Rényi Entropy Rate 137

Similarly to Formula (4), specific Rényi entropy rate is defined by the following min-max 138

normalization: 139

η′
α(DSPq) =

H′
α(DSPq)

log q
=

= lim
d→∞

[
Hα(p(Ω(q, d))DSPq)− Hα(p(Ω(q, d − 1))DSPq)

]
log q

=

= lim
d→∞

[
d ηα(p(Ω(q, d))DSPq)− (d − 1) ηα(p(Ω(q, d − 1))DSPq)

]
,

(9)

with 0 ≤ η′
α(DSPq) ≤ 1. 140

2.5. Relationship between Specific Rényi Entropy Rate and Specific Rényi Entropy 141

In summary, the following relationship subsists: 142

η′
α(DSPq) = lim

d→∞
ηα(p(Ω(q, d))DSPq) (10)

This means that, varying d, the specific Rényi entropy tends to the same value of the specific 143

Rényi entropy rate, with the important difference being that the rate of convergence of the 144

specific Rényi entropy rate is much faster than the rate of convergence of the specific Rényi 145

entropy. For this reason, when possible, using the specific Rényi entropy rate is preferable to 146

using the specific Rényi entropy. 147
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3. Empirical Methods 148

3.1. Transforming a Realization into a Distribution of Relative Frequencies 149

For the practical cases, the theoretical procedure described in § 2.1 can be adapted 150

according to the following procedure already presented with greater generality in [46] and 151

in [47]: consider the N samples x1, x2, . . . , xd, xd+1, . . . , xN of a realization rq extracted from 152

a DSPq. Each d-gram composed of d adjacent samples of rq is interpreted as the occurrence 153

of the elementary event of a d-dimensional sample space Ω(q, d) having just those values 154

as vector components. For example, the first two d-grams taken from rq, (x1, x2, ..., xd) 155

and (x2, x3, ..., xd+1) identify the first occurrences of two elementary events. The count 156

of the occurrences of the events is performed for all the d-grams progressively identified 157

in the sequence of the samples of rq. Finally, the absolute frequency of every elementary 158

event #(ek) is divided by the total number of occurrences (L = ∑n
k=1 #(ek)rq = N − d + 1), 159

yielding its relative frequency f (ek)rq . The final resulting RFD is expressible in set theory 160

notation as 161

f (Ω(q, d))rq =
{

f (ek)rq =
#(ek)rq

∑n
k=1 #(ek)rq

∣∣∣ ek ∈ Ω(q, d)
}

(11)

In the following, in the absence of ambiguity, an RFD f (Ω(q, d))rq resulting from the 162

insertion of the data of a realization in a sample space will be simply indicated with the 163

bold symbol f and fk indicates one of its elements. 164

3.2. Estimating the Second Power Sum of a DPD 165

Preliminarily, the αth-power sum of a DPD p and the αth-power sum of a RFD f are 166

defined as 167

Sα(p) ≜
n

∑
k=1

pα
k , Sα( f ) ≜

n

∑
k=1

f α
k

1
nα−1 ≤ Sα(·) ≤ 1 (12)

Limited to the power sums of Poissonian distributions, Grassberger in 1988 [1], Formula (8), 168

and subsequently Schürmann in 2004 [2], Formula (6), reported the theoretically demon- 169

strable, unique unbiased estimator, repeated in Formula (13): 170

Ŝα(p)Poisson =
〈 n

∑
k=1

p̂α
k

〉
rq
=

n

∑
k=1

〈 1
Lα

#(ek)rq !
(#(ek)rq − α)!

〉
rq

p̂α
k := 0 for #(ek)rq < α,

(13)

where
〈
·
〉

rq
is the mean over the infinite number of realizations that can be taken from 171

the underlying process. For the specific case of the estimation of the second power sum, 172

Formula (13) becomes: 173

Ŝ2(p)Poisson =
n

∑
k=1

〈 [#(ek)rq − 1]#(ek)rq

L2

〉
rq
=
〈 n

∑
k=1

f 2
k − 1

L

〉
rq
=
〈
S2( f )− 1

L
〉

rq
. (14)

As far as we know, the scientific literature does not indicate whether the result of Formula 174

(14) can also be valid for distributions different from Poissonians. So, from now on we 175

proceed assuming provisionally that this hypothesis is true, and we leave the decision concerning 176

its acceptance or rejection to the phase of the interpretation of the results of the Monte Carlo 177

experiments described in section 5. The hypothesis can be resumed as: 178

∀ DSPq Ŝ2(p)DSPq
=
〈

max
{

S2( f )− 1
L

,
1
n

}〉
rq

(15)

where the lower limit 1
n is necessary because, when the cardinality of the sample space 179

becomes high and the data density becomes too rarefied, the only possible estimate of the 180

probability distribution results in the uniform distribution. 181
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3.3. Estimating the Specific Collision Entropy of a DSPq 182

Collision entropy is the particularization of Formula (3) for α = 2, and it is defined as 183

H2(p) ≜ −log
( n

∑
k=1

p2
k

)
= −log S2(p) 0 ≤ H2(p) ≤ log n (16)

Inserting Formula (16) into Formula (4), the specific collision entropy is defined as 184

η2(p) ≜ −H2(p)
log n

= −lognS2(p) 0 ≤ η2(p) ≤ 1. (17)

In the steps of Formulas (13) and (14), the displacements of the symbol that indicates the 185

average over different realizations ⟨·⟩rq
from the outside to the inside of the symbol of 186

summation ∑ and vice versa are mathematically indisputable. But the application of the 187

logarithm to the second power sum for arriving at the estimation of the collision entropy 188

does not allow these shifts anymore. In fact, although the two possible expressions for the 189

evaluation of the mean over the realizations give similar results in the presence of RFDs (i.e. 190

−
〈
lognS2( f )

〉
rq
≃ −logn⟨S2( f )⟩rq

), in general they differ remarkably when the logarithm 191

is applied to the estimate of the second power sum of probabilities: 192

−
〈

lognmax
{

S2( f )− 1
L

,
1
n

}〉
rq︸ ︷︷ ︸

Mean of Logs of 2-Power Sum (MLS2)

̸= −logn

〈
max

{
S2( f )− 1

L
,

1
n

}〉
rq︸ ︷︷ ︸

Log of Mean of 2-Power Sum (LMS2)

. (18)

Consequently, the estimation of the specific collision entropy is performed averaging the 193

previous two possible expressions: 194

η̂2(p)DSPq =
̂−lognS2(p) =

MLS2 + LMS2

2
. (19)

This is also the main result of this paper. The estimation of plain collision entropy can be 195

obtained by inserting Formula (19) into Formula (5). 196

3.4. Estimating the Specific Collision Entropy Rate of a DSPq 197

From Formula (9) and Formula (19), it can be inferred that 198

η̂′
2(p(Ω(q, d))DSPq) =

[
d η̂2(p(Ω(q, d))DSPq)− (d − 1) η̂2(p(Ω(q, d − 1))DSPq)

]
(20)

and 199

η̂′
2(DSPq) = min

{
η̂′

2(p(Ω(q, d))DSPq)
∣∣∣ 1 ≤ d < ∞

}
. (21)

3.5. Method of Validation of Entropy Estimators 200

Monte Carlo simulations are the most correct experiments for observing the average 201

effect of the application of an entropy estimator to every realization extracted from a process 202

under examination. The protocol for the validation of the estimators of entropy and entropy 203

rate consists of the following steps: 204

1. choice of a convenient DSPq, 205

2. choice of the number of realizations R, 206

3. choice of the length N of each realization, 207

4. transformation of the samples of any realization in a RFD according to § 3.1, 208

5. extraction of the estimated indices according to Formulas (19) and (20), 209

6. production of the diagrams, 210

7. and evaluation of the performances of the estimator. 211

6



4. Materials: Choice of Convenient DSPqs Suitable for the Experiments 212

For the validation of the previous estimation formulas three completely different 213

types of processes were used: two types, located at the opposite extreme borders of the 214

entropy scale, are regular processes and independent, identically distributed (IID) processes 215

exhibiting maximum entropy; the third type, located in between, is composed of simple 216

processes with minimal memory, such as stationary, irreducible, and aperiodic Markov 217

processes. All these types of processes have the fundamental characteristic of having 218

known theoretical values of entropy. 219

1. Regular Processes. The first important sanity check for entropy estimators involves 220

the use of a completely regular process, that consists of an infinitely repeating brief 221

symbolic sequence. Once the initial sequence is known, no additional information 222

is brought by the following samples, and the evolution of the process becomes com- 223

pletely determined. So, for these processes we have 224

∀ d ≥ 2 η′
2(Regular) = 0. (22)

Then, even for short realizations of this kind of processes, any good estimator of the 225

specific Rényi entropy rate has to rapidly fall to zero during the progressive increment 226

of the dimension of the sample space. 227

2. Markov Processes. According to [41], when the DSPq is a stationary, irreducible, and 228

aperiodic Markov process, it is possible to calculate the theoretical value of its specific 229

Rényi entropy rate. In fact, given the transition matrix pqq and the unique stationary dis- 230

tribution µ∗
q obtained as the scaled (with rule ∑ µ∗

i = 1) right eigenvector associated 231

to eigenvalue λ = 1 of the equation 232∣∣∣∣∣∣∣∣
p11 p12 · p1q
p21 p22 · p2q
· · · ·

pq1 pq2 · pqq

∣∣∣∣∣∣∣∣
T ∣∣∣∣∣∣∣∣

µ1
·
·

µq

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
µ1
·
·

µq

∣∣∣∣∣∣∣∣
then 233

η′
2(Markov) ≜ lim

d→∞

1
d

H2(p(Ω(q, d))Markov)

log q
= −

q

∑
i=1

µ∗
i logq

(
q

∑
j=1

p2
ij

)
. (23)

3. Maximum Entropy IID Processes. A third sanity check for entropy estimators involves 234

the use of memoryless IID processes with maximum entropy, because: 235

• with these processes, the distance between the entropy of the relative frequencies 236

and the actual theoretical entropy of the process is the maximum possible (i.e., 237

using these processes, the estimator is tested in the most severe conditions, 238

obliging it to generate the greatest possible correction); 239

• the theoretical value for the specific entropy of the processes generated is a priori 240

known and results in being constant, regardless of the choice of the dimension of 241

the considered sample space because the outcome of each throw is independent 242

from the past history. 243

• having an L-shaped one-dimensional distribution, with one probability bigger 244

than the others, which remain equiprobable, the calculation of their theoretical 245

entropy is trivial; 246

• they are easily reproducible by, for example, simulating the rolls of a loaded die 247

on which a particular preeminence of the occurrence of a side is initially imposed; 248

the general formula is: 249

η′
2(MaxEnt) ≜ η2(p(q, d))MaxEnt

∣∣
∀ d = −logq

(
p2

main +
(1 − pmain)

2

q − 1

)∣∣∣
d=1

. (24)
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5. Results and Discussion 250

As part of this research, countless Monte Carlo experiments were conducted to val- 251

idate the novel specific collision entropy estimator η̂2(p) obtained in Formula (19) and, 252

consequently, to verify the plausibility of the hypothesis proposed for the estimation of the 253

second power sum of any DSPq described by Formula (15). Here, only some of the most 254

significant results are reported. Each figure presented in this section contains two diagrams 255

that show, for an established number of realizations and for an established length of each 256

realization, the trend of the estimated specific collision entropy and the trend of the estimated 257

specific collision entropy rate, calculated as the dimension of the sample space varies. 258

5.1. Experiments with Realizations Coming from Completely Regular Processes 259

For the experiment whose results are reported in Figure 1 the input parameters are: 260

• DSPq = Regular process obtained repeating the ordered numerical sequence of the 261

values associated with the six faces of a die (q = 6). 262

• N = 250 and R = 1, because every realization is identical. 263

Figure 1. Trend of η2 (upper diagram) and trend of η′
2 (lower diagram) for a realization

composed of 250 samples taken from a regular process.
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The upper diagram of Figure 1 shows that, in general, the theoretical specific collision 264

entropy η2(p) decreases only asymptotically to zero and does not reach a minimum value 265

in the dimensional range 1 ≤ d ≤ 20. For this reason, this quantity is not indicated for 266

the procedure of process classification. Instead, the lower diagram shows that the specific 267

collision entropy rate η′
2(p) rapidly decreases to the minimum value of zero, overlapping 268

the theoretical trend for d > 2. This example shows that, as a first necessary prerequisite, any 269

entropy rate estimator has to exhibit this behavior when dealing with regular processes to 270

be able to be considered suitable for the classification of processes. 271

5.2. Experiments with Realizations Coming from Processes Presenting Some Sort of Regularity 272

Consider a Markov process with six possible states (alphabet Aq = {1, 2, 3, 4, 5, 6} and 273

q = 6); let the associated transition matrix p66 and stationary distribution µ∗
6 be 274

p66 =

∣∣∣∣∣∣∣∣∣∣∣∣

0.04 0.80 0.04 0.04 0.04 0.04
0.04 0.04 0.80 0.04 0.04 0.04
0.04 0.04 0.04 0.80 0.04 0.04
0.04 0.04 0.04 0.04 0.80 0.04
0.04 0.04 0.04 0.04 0.04 0.80
0.80 0.04 0.04 0.04 0.04 0.04

∣∣∣∣∣∣∣∣∣∣∣∣
µ∗

6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
6

1
6

1
6

1
6

1
6

1
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For this process, the theoretical value of specific collision entropy rate η′
2(p) results: 275

∀d ≥ 2 η′
2(p) =

H′
2(p)

log q
= −1

6
6

log(0.82 + 5 · 0.042)

log 6
≃ 0.242 .

The upper diagram of Figure 2 shows that, in general, for processes whose samples have a 276

dependence from the past, the trend of the estimated specific collision entropy, calculated using 277

Formula (19), presents, at the beginning, a decrease, which depends on the progressive 278

reduction of the topological ambiguity encountered during the detection of recurrences 279

hidden in the data when the dimension of the sample space is increased. The curve 280

subsequently rises due to the reduction of the density of the occurrences in the sample 281

space. This corresponds to a reduction in the reliability of the information supplied by 282

the relative frequencies; as a consequence, the uncertainty contained in the probability 283

estimates grows, and the entropy increases accordingly. This ability to ramp up the curve 284

when the estimate is no longer reliable is the second necessary prerequisite for an estimator. 285

The observation of the diagrams of Figure 2 allows also to infer that RFDs cannot be used in 286

place of DPDs because they intrinsically lack this capability. In fact, the use of the RFDs in 287

the estimator gives poor results because their mean specific collision entropy seamlessly 288

decreases even when the density of the data is actually no longer sufficient for producing 289

any kind of estimation. In the middle of the curve, the minimum value of the specific 290

collision entropy represents the best possible compromise between the request to observe 291

in ever greater detail the regularities contained in the data and the limitations imposed 292

by the shortness of the data. From Figure 2 it is also possible to establish a third necessary 293

prerequisite that an entropy estimator must fulfill: in fact its output has always to be greater 294

or equal than the corresponding theoretical value, because otherwise the estimator would 295

erroneously signal the presence of an excessive amount of regularities in the process, thus 296

violating the fundamental precaution principle required by all those situations in which 297

statistical fluctuations are present. In a sentence: an estimator that expresses values of entropy 298

higher than the correct theoretical ones is preferable to an estimator that expresses lower values. 299

Moreover, when the trend of the estimated specific collision entropy is compared with the trend 300

of the estimated specific collision entropy rate, it becomes clear once again that this second 301

index produces an impressively more rapid convergence towards the theoretical value 302

(blue line) than the first one. 303
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Figure 2. Trends of η2 (upper diagram) and η′
2 (lower diagram) for 300 realizations,

each composed of 500 samples taken from the Markovian process previously described by the
transition matrix p66 and the stationary distribution µ∗

6.

In the lower diagram of Figure 2 it is possible to see that the adherence of η̂′
2(p) to 304

η′
2(p) persists up to dimension d = 11, and in this case the data density results: 305

δmin(Markov, R = 300, N = 500) =
L
n
=

N − d + 1
qd =

490
611 = 1.35 · 10−6

5.3. Experiments with Realizations Coming from Maximum Entropy Memoryless IID Processes 306

For the experiment whose results are reported in Figure 3, the input parameters are: 307

• DSPq = process generated by tossing a loaded die (q = 6) with 50% of the outcomes 308

equal to “1”; 309

• Upper diagram: R = 2000 and N = 250; 310

• Lower diagram: R = 500 and N = 1000. 311

From Formula (24) it results that 312

η′
2(MaxEnt50%) = η2(MaxEnt50%) = −log6(0.52 +

0.52

5
) = −log6 0.3 ≃ 0.672.

10



Figure 3. Trends of η2 for the realizations of a process generated by tossing a loaded die with 50%
of the outcomes equal to “1”. Upper diagram: 2000 realizations, each 250 samples long;

lower diagram: 500 realizations, each 1000 samples long.

Both diagrams of Figure 3 show that: 313

• the proposed estimator satisfies the aforementioned third prerequisite of never falling 314

below the theoretical line, even in the heaviest test conditions, represented by the 315

elaboration of data coming from a maximum entropy IID process; 316

• when using RFDs to estimate specific collision entropy, there is only a slight difference 317

between the two possible ways of averaging the logarithm of the second power sum 318

(dotted and dashed lines in orange); on the contrary, there is a remarkable difference 319

between the two possible ways of averaging the estimates of the logarithm of the 320

second power sum (dotted and dashed lines in grey) as indicated in Formula (18); 321

• when the data density in the sample space becomes insufficient for a reliable estimate of 322

the entropy, its value rises toward the value corresponding to the uniform distribution. 323

11



In the upper diagram of Figure 3 it is possible to see that considering 250 samples per 324

realization the adherence of η̂2(p) to η2(p) persists up to dimension 6; for this dimension 325

the data density in the sample space results: 326

δmin(MaxEnt 50%, R = 2000, N = 250) =
L
n
=

N − d + 1
qd =

245
66 = 5.25 · 10−3

and the statistical fluctuations are considerable because of the shortness of the realizations. 327

In the lower diagram of Figure 3 it is possible to see that considering 1000 samples per 328

realization the adherence of η̂2(p) to η2(p) persists up to dimension 9 (three dimensions 329

more than the other situation); for this dimension the data density in the sample space 330

results: 331

δmin(MaxEnt 50%, R = 500, N = 1000) =
L
n
=

N − d + 1
qd =

992
69 = 9.84 · 10−5

and the statistical fluctuations are reduced because of the greater number of samples of each 332

realization. From the comparison of the two diagrams, it can be seen that the increment in 333

the availability of the data improves all the performance indicators of the estimator, and 334

this fact proves its consistency even in the most severe test conditions represented by this 335

kind of processes. In general, to obtain an adequate horizontal trend of η̂′
2 for at least two 336

consecutive dimensions, it is necessary to rely on a sufficiently large number of samples 337

per realization N or, alternatively, on a sufficiently high number of realizations R. The total 338

number of aggregated samples (i.e., R x N) necessary for a good result of the estimation 339

depends on the effective degree of irregularity of the signal. In fact, for completely regular 340

processes with an alphabet composed of q symbols, even only 5 q samples are sufficient for 341

a correct estimate. Vice versa, for almost random processes, at least 1, 000, 000 aggregated 342

samples seem to be necessary. 343

Finally, concerning the hypothesis made at the beginning about the possibility of estimating 344

the second power sum of the DPDs coming from any kind of DSPq using Formula (15), the 345

evidences that emerged from the results of the experiments made for the validation of the 346

estimator have not provided any counterexample that may exclude its validity. For this 347

reason, the following statistics postulate is proposed: 348

349

Postulate. Given a sample space Ω(q, d) with cardinality n = qd, and given a set of relative 350

frequency distributions { f (Ω(q, d))rq}, each composed of L occurrences, resulting from the trans- 351

formation of R short realizations rq taken from the underlying discrete stochastic process DSPq, to 352

which an unknown discrete probability distribution p(Ω(q, d)) is associated, then the unbiased and 353

consistent estimator of the second power sum of p(Ω(q, d)) is inferred as 354

∀ DSPq Ŝ2(p(Ω(q, d)))DSPq = lim
R→∞

〈
max

{
S2( f (Ω(q, d))rq)−

1
L

,
1
n

}〉
rq

.

6. Conclusions 355

Figures 2 and 3 show that the proposed specific collision entropy rate estimator η̂′
2 allows 356

a very prolonged and consistent stay of its output, exactly at the values expected by the 357

theory. This highly desirable and very rare feature, the simplicity of its formula and its 358

complete usability with any discrete stationary process make this estimator a valid tool, 359

suitable for measuring the degree of irregularity in experimental data from the perspective 360

given by the collision entropy. Possible future research directions include: 361

• the evaluation of the admissibility of this estimator by comparing it to other similar 362

collision entropy estimators and by using the same kind of processes for the tests; 363

• the characterization of the variability of the values returned by the estimator η̂′
2 as the 364

number of aggregated samples and the irregularity of the processes vary; 365

• further studies on the methods of estimation in presence of the logarithm operator. 366
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Abbreviations 369

The following abbreviations are used in this manuscript: 370

Aq alphabet composed of q ordered symbols
Ω(q, d) Sample space resulting from the Cartesian product d times of the alphabet Aq
n = qd cardinality of the sample space Ω(q, d)
DSPq Discrete-state stochastic process whose samples belong to an alphabet Aq
rq Realization of a DSPq
N Number of samples of rq
L = N − d + 1 Number of occurrences inserted in the events of Ω(q, d)
RFD Relative frequency distribution
DPD Discrete probability distribution
f (Ω(q, d))rq RFD obtained from a realization rq of a DSPq whose d-grams are inserted in Ω(q, d)
p(Ω(q, d))DSPq DPD obtained from a DSPq whose d-grams are inserted in Ω(q, d)
p̂(Ω(q, d))DSPq Estimate of the DPD obtainable from a DSPq whose d-grams are inserted in Ω(q, d)
S2( f ) Second power sum of an RFD
S2(p) Second power sum of a DPD
Ŝ2(p) Estimate of the second power sum of a DPD
H2( f ) Collision entropy of an RFD
H2(p) Collision entropy of a DPD
Ĥ2(p) Estimated collision entropy of a DPD
η2( f ) Specific collision entropy of an RFD
η2(p) Specific collision entropy of a DPD
η̂2(p) Estimated specific collision entropy of a DPD
η′

2( f ) Specific collision entropy rate of an RFD
η′

2(p) Specific collision entropy rate of a DPD
η̂′

2(p) Estimated specific collision entropy rate of a DPD

371
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