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Abstract

We propose a theoretical model of non-normal thermodynamic system (i.e. at negative
absolute temperature), through the application (and consequent instantaneous inversion) of a
magnetic field to a crystal.

1 Two energy level system

1.1 Positive absolute temperature

Let us consider a system Σ of N particelle in cui l’energia di singola particella può assumere solo due
valori distinti:particles in which the energy of a single particle can assume only two distinct values:
ε = 0, E > 0.

We denote with nj (j = 0, 1) the occupation number of the j -th level. The number of particles
present there follows:

n′

j = gjnj

being gj the degree of degeneration. Without loss of generality, assume gj = 1(absence of degeneracy).
The internal energy of the system is

U = n1E (1)

while the occupation numbers are constrained by the relationship

n0 + n1 = N (2)

If W is the thermodynamic weight, the entropy is

S = kB lnW, kB = Boltzmann constant (3)

Recall that W is the number of ways in which we can distribute the N particles in the two levels
ε = 0, E.

W =
N !

n0!n1!
(4)

By defining:
n = n1 − n0 (5)

the (4) is written:

lnW =
N !

(

ln N−n
2

)

!
(

ln N+n
2

)

!
(6)

We recall Stirling’s formula:

k ≫ 1 =⇒ k! ≃ kke−k
√
2πk

(

1 +
1

12k
+ ...

)

for which

N ≫ 1 =⇒ ln (N !) ≃ ln

[

NNe−N
√
2πN

(

1 +
1

12N
+ ...

)]

= N lnN −N

=⇒ ln

[(

N ± n

2

)

!

]

≃ N ± n

2
ln

(

N ± n

2

)

− N ± n

2

1



So the (6) becomes:

lnW ≃ N lnN − N − n

2
ln

N − n

2
− N + n

2
ln

N + n

2

In that order of approximation, the entropy is

S = kB

(

N lnN − N − n

2
ln

N − n

2
− N + n

2
ln

N + n

2

)

(7)

At thermodynamic equilibrium
1

T
=

∂S

∂U
=

∂S

∂n

∂n

∂U
(8)

Turns out

U = n1E = (n+ n0)E =⇒ n (U) =
U

E
− n0 =⇒

∂n

∂U
=

1

E

which replaced in the (8):
1

T
=

1

E

∂S

∂n
(9)

From (7):
∂S

∂n
=

kB
2

ln

(

n0

n1

)

Finally, replacing the latter in (9):
1

T
=

kB
2E

ln

(

n0

n1

)

(10)

It follows

T > 0 =⇒ ln

(

n0

n1

)

> 0 =⇒ n0 > n1 (11)

That is, for any thermodynamic equilibrium temperature T , the ground level is more populated than
the excited level. This is because absolute temperature is always non-negative. This conclusion is
generalized to a multi-level (even infinite) system.

We discuss the behavior of the various quantities as a function of temperature. From (10):

n0 = n1e
2E

kBT =⇒
n0+n1=N

n1e
2E

kBT + n1 = N

from which

n1 (T ) = N
e
−

E

kBT

e
E

kBT + e
−

E

kBT

(12)

n0 (T ) = N − n1 (T ) = N
e

E

kBT

e
E

kBT + e
−

E

kBT

n (T ) = n1 (T )− n0 (T ) = −N tanh

(

E

kBT

)

U (T ) = n1 (T )E = NE
e
−

E

kBT

e
E

kBT + e
−

E

kBT
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It follows

lim
T→0+

U (T ) = 0, lim
T→+∞

U (T ) =
NE

2

lim
T→0+

n1 (T ) = lim
T→0+

U (T )

E
= 0, lim

T→+∞

n1 (T ) = lim
T→+∞

U (T )

E
=

N

2

For T = 0 the internal energy is zero, and only the fundamental level is populated. In the opposite
limit (T → +∞), the two levels are equally populated:

lim
T→+∞

n0 (T ) = N − lim
T→+∞

n1 (T ) =
N

2
(13)

This can be seen directly from (10):

1

T
=

kB
2E

ln

(

n0

n1

)

=⇒ n0 = n1 ⇐⇒ T → +∞

In fig. 1 the trend of individual populations.
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Figure 1: Trend of n0 (T ) , n1 (T ).

We study the behavior of entropy. From the (7):

lim
T→+∞

S (T ) = lim
T→+∞

kB

[

N lnN − N − n (T )

2
ln

N − n (T )

2
− N + n (T )

2
ln

N + n (T )

2

]

But limT→+∞ n (T ) = −N limT→+∞ tanh
(

E
kBT

)

= 0

lim
T→+∞

S (T ) = kBN ln 2 (14)

n the opposite limit limT→0+ n (T ) = −N limT→0+ tanh
(

E
kBT

)

= −N

lim
T→0+

S (T ) = 0 (15)

in accordance with the Nernst theorem (third law of thermodynamics). In fig. 2 we report the graph
of this quantity.
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Figure 2: Trend of the dimensionless entropy normalized on the number of particles.

1.2 Negative absolute temperature

Formally, nothing prevents us from considering T < 0. From the(10):

T < 0 ⇐⇒ n1 > n0 (16)

In other words, the excited level is more populated than the fundamental level if and only if the
absolute temperature of “thermodynamic equilibrium” is negative. The quotation marks suggest
caution, since we should first prove the existence of thermodynamic states of equilibrium with T<0.
However, the following exists

Definition 1 The inequality n1 > n0 expresses a population inversion.

Definition 2 A thermodynamic system at T < 0 is said to be non–normal.

Concerning the existence of thermodynamic states of equilibrium at T < 0, we begin by observ-
ing that making a thermodynamic system non-normal means ≪bringing≫ a macroscopic number of
particles into the excited level ε = E. Operationally this has an energy cost. The corresponding
thermodynamic state is metastable: the system tends to repopulate the fundamental level with the
consequent emission of energy (partly thermal energy which is transferred to the environment or to
any body in non-normal thermal contact with the system). So the body at T > 0 in contact with
the one at T < 0 heats up. It follows that a body at T < 0 is “hotter” than a body at T > 0.

To mathematically verify what has just been asserted, let us study the behavior of the internal
energy function U (T ) for T ∈ (−∞,+∞). After executing the change of variable x = E

kBT
, we define

the dimensionless quantity:

f (x) =
U (T )

NE
=

e−x

ex + e−x
, ∀x ∈ (−∞,+∞) (17)

It turns out:

lim
x→+∞

f (x) = 0+ =⇒ lim
T→0+

U (T )

NE
= 0+ =⇒ U

(

0+
)

= 0+

lim
x→−∞

f (x) = 1 =⇒ lim
T→0−

U (T )

NE
= 1 =⇒ U

(

0−
)

= 1
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for which T = 0 s a discontinuity point of the first kind for U (T ). The discontinuity jump is −1.
Furthermore

f (0) =
1

2
=⇒ lim

T→±∞

U (T )

NE
=

1

2

In fig. 3 we report the complete graph. In fig. 4 we report the entropy graph.
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Figure 3: Trend of the dimensionless energy normalized on the number of particles.
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Figure 4: Trend of the dimensionless entropy normalized on the number of particles, extended to
negative temperatures.

From this it follows that while the internal energy U (T ) is monotonically increasing in (−∞, 0)∪
(0,+∞), the entropy S (T ) is monotonically decreasing in (−∞, 0) and monotonically increasing in
(0,+∞). Note that for energy we have excluded the temperature T = 0 since there the function
is not defined. The physically interesting aspect is that the thermodynamic states at T < 0 are
characterized by a higher energy and this corroborates the previous arguments. Entropy, on the
other hand, is invariant under the transformation T → −T . What changes is the monotonicity: for
T < 0 as T increases, the entropy decreases instead of increasing. Furthermore, since the states
at T < 0 have a greater internal energy, the region of negative temperatures is found ≪above≫ the
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temperature T = +∞. In other words, we cannot represent the states at T < 0 in a line graph.
From the asymptotic behavior of the functions U (T ) , S (T ) we see that the temperatures T = −∞
and T = +∞ are thermodynamically identical. In symbols:

T = 0+, ...,+∞ ≡ −∞, ..., 0−

Consider two identical systems Σ,Σ∗ with N particles and two levels. S is at temperature T1 > 0,
while Σ∗ is at temperature −T1. At the instant t0 = 0 they are brought into thermal contact. The
two systems will reach an equilibrium state with temperature T2 > T1.

2 Magnetic moment of an electric charge. Magnetomechan-

ical parallelism

2.1 Orbital angular momentum and magnetic moment

The interaction potential energy of a dipole magnetic moment µ subjected to an induction magnetic
field B, is:

V = −µ ·B (18)

The magnetic moment is expressed through the magnetization M (x) (magnetic moment density)
[1]:

µ =

∫

R3

M (x) d3x

As a special case, consider a point charge q moving in a uniform and constant magnetic field B0:

B0 = rotA

where A (x) is the vector potential. It turns out:

A =
1

2
B0 ∧ x (19)

If v (t) is the velocity of the charge located at r (t), the current density is (CGS units of Gauss):

j (x) = q
v

c
δ(3) (x− r)

where δ(3) (x− r) is the three-dimensional Dirac delta. The interaction potential energy is

V = −
∫

R3

j (x) · A (x) d3x = − q

2c

∫

R3

v · (H0 ∧ x) δ(3) (x− r) d3x

= − q

2c
v · (H0 ∧ r)

For the invariance of the mixed product under cyclic permutation:

V = − q

2mc
L ·B0 (20)

being L = mr ∧ v the angular momentum of the charge q of mass m. From the (18):

µ =
q

2mc
L (21)

So any charged particle that follows a curvilinear trajectory (i.e. L 6= 0) has a magnetic dipole
moment. It follows that the vectors µ, L are proportional, and the proportionality factor does not
depend on the characteristics of the motion. In particular, if q > 0 the vectors µ, L are parallel
and in agreement. If q < 0, they are parallel and discordant (or antiparallel). The proportionality
between the aforementioned vectors expresses the magneto-mechanical parallelism [2].

6



2.2 Electron spin and magnetic moment

Let us ask ourselves: does (21) retain its validity for the spin angular momentum of subatomic
particles? The answer is affirmative provided that the proportionality factor is modified. In the case
of the electron (q = −e):

µ = −gs
e

2mec
S (22)

where: S is the spin angular momentum of the electron; gs is a dimensionless term known as the
Landè factor. The classic analogy suggests gs = 1.Experimentally, however, is gs ≃ 2.0023. In
Dirac’s quantum-relativistic framework, is gs = 2 (spin is a typical quantum-relativistic effect). The
difference between the theoretical value 2 and the experimental one can be explained through the
interaction of the electronic charge with the radiation field emitted by the electron itself (in the
framework of quantum electrodynamics). Assuming gs = 2:

µ = − e

mec
S (23)

As is known, the electron has spin 1/2 and recalling the known commutation relation of the corre-
sponding Hermitian operators [4]:

[

Ŝ2, Ŝz

]

= 0 (24)

for which these observables have in common a set of simultaneous eigenstates:

Ŝ2 |s,ms〉 = ℏ
2s (s+ 1) |s,ms〉

Ŝz |s,ms〉 = ℏms |s,ms〉 , ms = −s,−s+ 1, ..., s− 2, s

For what has been said it is s = 1/2, therefore in compact notation as regards the component Sz

Ŝz |↑〉 =
ℏ

2
|↑〉

Ŝz |↓〉 = −ℏ

2
|↓〉

where

|↑〉 ≡
∣

∣

∣

∣

s =
1

2
,ms =

1

2

〉

spin up (25)

|↓〉 ≡
∣

∣

∣

∣

s =
1

2
,ms = −1

2

〉

spin down

From (23) µ̂z = − e
mec

Ŝz, for which spin up/down are eigenstates of µz with eigenvalues

− eℏ

mec
, |↑〉 (26)

eℏ

mec
, |↓〉

We define the Bohr magneton

µB =
eℏ

2mec
(27)

which identifies the eigenvalues of µz. It follows that if the electron is in the spin up state, the
magnetic moment is −µB and vice versa. Stated another way, the Bohr magneton expresses the
quantization of the magnetic moment due to the spin. The (23) is rewritten:

µ = −gs
µB

ℏ
S (28)
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2.3 Spin and magnetic moment of atomic nuclei

The spin angular momentum of a nucleus is denoted by I. The corresponding Hermitian operator
obeys the usual commutation relations:

[

Î2, Îz

]

= 0 (29)

So

Î2 |I, Iz〉 = ℏ
2I (I + 1) |I, Iz〉 (30)

Îz |s, Iz〉 = ℏIz |I, Iz〉 , Iz = −I,−I + 1, ..., I − 2, I

The simplest nucleus is that of the hydrogen atom, which is made up of a single proton, therefore
I = 1/2. The magnetic dipole moment follows:

µ = gI
2

2mpc
I (31)

being gI the Landè factor for the proton. This factor can only be calculated experimentally: gI ≃ 5.58.
Thus, the eigenvalues of the magnetic moment correspond to the up/down nuclear spin states

gI
eℏ

4mec
, |↑〉 (32)

− gI
eℏ

4mec
, |↓〉

We define the nuclear magneton:

µN =
eℏ

2mpc
≃ µB

1836
(33)

which identifies the eigenvalues of µz. It follows that if the proton is in the spin up state, the magnetic
moment is +µN and vice versa. With this position, the magnetic moment of the proton is written:

µ = gI
µN

ℏ
I (34)

Let us now consider a generic spin 1/2 nucleus. The magnetic moment is again expressed with
the (34) obviously with a different value of gI . We apply a static and uniform magnetic field B0 in
the direction of the z -axis: B0 = (0, 0, B0). Assuming the nucleus at rest, its Hamiltonian reduces
to the potential energy term describing the dipole-magnetic field interaction:

H = −µ ·B0 = −µzB0 (35)

Taking into account the (34) the corresponding Hamiltonian operator is written:

Ĥ = −ω0Îz (36)

having introduced the pulsation

ω0 = gI
µN

~
B0 (37)

From (36)
[

Ĥ, Îz

]

= 0 so the spin up/down states are energy eigenstates:

Ĥ |↑〉 = −~ω0

2
|↑〉 (38)

Ĥ |↓〉 = +
~ω0

2
|↓〉

Classically the vector µ is parallel and agrees to the vector (0, 0, Iz); so the corresponding quantum
state is the fundamental level −~ω0

2
. Since we are dealing with potential energy, we are free to choose

its zero. Placing it in the fundamental level, we obtain the two-level diagram of fig. 5.
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Figure 5: Energy levels of a single nuclear spin.

3 Paramagnetic system of nuclear spins of a crystal

Consider the ions/nuclei of a crystal lattice. In the Born-Oppenheimer approximation, the nuclei
are assumed to be stationary at the nodes of the lattice. In the particular case of spin 1/2 nuclei,
we have a system of N ≫ 1 spin 1/2 of those examined in the previous number, which in turn can
be represented by the system studied in section 1. In the case under examination, the inversion of
population is achieved by ≪instantaneously≫ rotating the magnet that generates the field B0 [5]. In
the new magnetic field configuration, the fundamental level becomes the first excited level, which is
more populated, and as established in § 1.2 results in T < 0. Being a metastable state, the system
tends to return to temperatures T > 0. This will release a certain amount of heat to the grating.
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