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Abstract

This study proves the existence of smooth periodic solutions for Navier-
Stokes three-dimensional equations under the assumption of a given pe-
riodic initial velocity vector field with positive viscosity. The solution
proposed solves the equation by utilizing a Fourier series representation
of periodic initial velocity vector fields and predicting the velocity vec-
tor field at all times. The significance of this finding is that it con-
tributes positively towards understanding the behavior of solutions of
Navier-Stokes equations and suggests that smooth periodic solutions for
the given problem can indeed exist under certain conditions. Addition-
ally, the authors suggest that their solution can be used to settle the Clay
Mathematics Millennium Prize Problem, which seeks to find a solution
for Navier-Stokes equations meeting specific criteria. It is important to
note, however, that this study does not provide a complete solution to the
problem, but it provides a significant contribution to the understanding
of the behavior of solutions of Navier-Stokes equations. Overall, this re-
search demonstrates that the smooth periodic solutions for Navier-Stokes
equations can exist for a given initial velocity vector field with positive
viscosity, and it presents a new approach for the Navier-Stokes equation.

1 Introduction

The Navier-Stokes equations are a set of partial differential equations that
govern the behavior of fluids, including air and water. These equations are used
extensively in many different fields, including fluid mechanics, meteorology, and
engineering. Despite their importance, there are only a few cases in which the
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Navier-Stokes equations have a known analytic solution. In this paper, I will
explore the current state of research on the three-dimensional analytic solution
to the Navier-Stokes equations.

The Navier-Stokes equations are nonlinear equations that describe the mo-
tion of a fluid in terms of its velocity, pressure, and density. These equations
are based on the principle of conservation of mass, momentum, and energy.
They are difficult to solve analytically because of their complexity and the non-
linear nature of the equations. However, there are some special cases in which
analytic solutions can be found.

One of the most famous examples of an analytic solution to the Navier-
Stokes equations is the solution for the flow of an incompressible fluid between
two infinitely long parallel plates, known as the Couette flow. This solution
was originally found by Claude-Louis Navier in 1823 and was later refined by
Stokes in 1845. This solution is relatively simple because it assumes that the
fluid flow is linear and the viscosity is constant. Another example of an analytic
solution to the Navier-Stokes equations is the solution for the flow of a fluid
around a sphere, known as the Stokes flow. This solution was also discovered
by Stokes and assumes that the fluid flow is very slow and the viscosity is again
constant. This solution is used to model many different problems, including
fluid flow around aircraft wings and the behavior of microorganisms in liquid.

Despite these examples of analytic solutions, there is no known analytical
solution for the three-dimensional Navier-Stokes equations in general. This
means that numerical methods must be used to approximate the solution. Al-
though numerical methods can provide accurate solutions in many cases, they
are computationally expensive and can require large amounts of computational
resources.

In recent years, there have been many researchers working on finding an-
alytic solutions to the three-dimensional Navier-Stokes equations. One of the
most promising approaches is through the use of symmetries. By identifying
the symmetries of the equations, researchers can simplify the problem and re-
duce the number of variables needed to describe the flow. This approach has
led to some important breakthroughs in recent years, including the discovery
of new analytic solutions for the Navier-Stokes equations.

In conclusion, the analytic solution to the three-dimensional Navier-Stokes
equations remains an active area of research in fluid mechanics. While some
special cases have been solved analytically, the general case remains unsolved.
Recent advances in the use of symmetries have shown promising results, and it
is possible that new analytical solutions will be discovered in the coming years.
The study of the Navier-Stokes equations is a fascinating area of research that
has important applications in many different fields, and it will undoubtedly
continue to be an active area of research for years to come.
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1.1 Statement of the problem

Let a, b, c ∈ R and ∇⃗g = âi + b̂j + ck̂. Also, let R⃗ = x̂i + yĵ + zk̂. Therefore,
R⃗ · ∇⃗g = g(x, y, z) = ax+ by + cz.

Navier-Stokes equation, which describes the motion of a fluid. The left-
hand side of the equation represents the acceleration of the fluid, which is the
rate of change of velocity with respect to time and the convective accel- eration
due to the advection of the fluid by itself. The right-hand side of the equation
represents the forces acting on the fluid, which include the viscous forces due to
the diffusion of momentum and the pressure gradient force due to the variation
of pressure in the fluid. Overall, the Navier-Stokes equation is a fundamental
equation in fluid mechanics and is used to model a wide range of phenomena,
from the flow of air over an airplane wing to the circulation of blood in the
human body.

∂

∂t
U⃗ + (U⃗ · ∇⃗)U⃗ = ν∇2U⃗ − ∇⃗P + F⃗ (1)

Equation (1) is the Navier Stokes three dimensional equation by considering
density of the fluid unitary,

∇⃗ · U⃗ = 0 (2)

Equation (2) shows divergence free condition.

U⃗
∣∣∣
t=0

= U⃗0 (3)

Equation (3) Initial velocity vector field derived by setting time zero.

U⃗0(R⃗ · ∇⃗g) = U⃗0((R⃗+ ∇⃗g) · ∇⃗g)

U⃗0(g(x, y, z)) = U⃗0(g(x, y, z) + 1) (4)

Equation (4) Shows periodic function of initial velocity vector field.

U⃗(R⃗ · ∇⃗g, k(t)) = U⃗((R⃗+ ∇⃗g) · ∇⃗g, k(t))

U⃗(g(x, y, z), k(t)) = U⃗(g(x, y, z) + 1, k(t)) (5)

Equation (5) Shows periodic velocity vector field in time t

F⃗ = 0 (6)

Equation (6) Shows the absence of external force applied on the fluid
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1.2 Initial velocity vector field

U⃗0 = a⃗0 +

∞∑
n=1

(
a⃗n cos(2nπg) + b⃗n sin(2nπg)

)
(7)

Where,

a⃗0 =
1

2

∫ 1

−1

U⃗0(g)dg (8)

a⃗n =

∫ 1

−1

U⃗0(g) cos(2nπg)dg (9)

b⃗n =

∫ 1

−1

U⃗0(g) sin(2nπg)dg (10)

2 Velocity vector field and Pressure solution.

2.1 Proposed three dimensional velocity vector field so-
lution

U⃗(x, y, z, t) = a⃗0h(t) +

∞∑
n=1

Hn(t)S⃗n(x, y, z, t) (11)

Where,

S⃗n(x, y, z, t) = a⃗n cos(2nπg + k(t)) + b⃗n sin(2nπg + k(t)) (12)

Hn(t) = e−ν(2nπ)2t (13)

k(t) =

∫ t

0

(U⃗ · ∇⃗g)dτ (14)

2.2 Proposed three dimensional pressure solution

−p(x, y, z, t) = a⃗0 · R⃗
d

dt
h(t) (15)
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2.3 Prove that the proposed solutions satisfy Navier Stokes
equations

Derivatives of equations (11) with respect to time t

∂U⃗

∂t
= a⃗0

dh(t)

dt
+

∞∑
n=1

dHn

dt
S⃗n +

dk(t)

dt

∞∑
n=1

dS⃗n

dg
Hn (16)

Derivate equation (13) and equation (14) with respect to time t and substitute
to equation (16) results

∂U⃗

∂t
= a⃗0

dh(t)

dt
− ν

∞∑
n=1

(2nπ)2HnS⃗n − (U⃗ · ∇⃗g)

∞∑
n=1

dS⃗n

dg
Hn (17)

The term of equation (1), the convective acceleration due to the advection of
the fluid by itself is simplified to

(U⃗ · ∇⃗)U⃗ = (U⃗ · ∇⃗g)

∞∑
n=1

dS⃗n

dg
Hn (18)

Simplifying by substituting equation (11) to the viscous forces due to the dif-
fusion of momentum term from equation (1) results

ν∇2U⃗ = ν

∞∑
n=1

d2S⃗n

dg2
Hn (19)

Second derivate equation (12) and substitute to to equation (19) results

ν∇2U⃗ = −ν

∞∑
n=1

(2nπ)2S⃗nHn (20)

Gradient of equation (15) results

−∇⃗p = a⃗0
d

dt
h(t) (21)

Substitute equations (17),(18),(20),(21) to equation (1) results

�
�
��

a⃗0
dh(t)

dt
−
��������
ν

∞∑
n=1

(2nπ)2HnS⃗n −
���������
(U⃗ · ∇⃗g)

∞∑
n=1

dS⃗n

dg
Hn +

���������
(U⃗ · ∇⃗g)

∞∑
n=1

dS⃗n

dg
Hn

=
���������
−ν

∞∑
n=1

(2nπ)2S⃗nHn +
��

���
a⃗0

d

dt
h(t)

0 = 0

Therefore, we conclude that the proposed velocity vector field and scale pressure
solutions in three dimensions satisfy equation (1).
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2.4 Prove that the proposed solutions satisfy divergence
free velocity vector field condition

Divergence of equation (11) is simplified to

∇⃗ · U⃗ =
d

dg
(U⃗ · ∇⃗g) (22)

Using divergence free condition of equation (2) and equation (22) we can get

U⃗ · ∇⃗g = ϕ(t) (23)

We can conclude that the equation (23) has to be constant in space and variable
in time.

2.5 Prove that the proposed solutions satisfy initial ve-
locity vector field condition

Substituting t = 0, to equation (12), (13), (14) reduces equation (11) to equa-
tion (7) which implies equation (3) is satisfied for a h(0) = 1.

3 Conclusion

For a given periodic initial velocity vector field periodic on a linear three di-
mensional function, there exist a periodic velocity vector field solution periodic
over a linear function of three dimensions and there exist too aperiodic scalar
pressure function of space and time solution.
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