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I. THEORY

In flat Minkowski background the Lagrangian is

S =
1

2

∫
dxdt

[
ϕ̇2 − (ϕ′)2 −m2

(
ϕ2 − g

2
ϕ4 +

g2

3
ϕ6
)]

. (1)

The Hamiltonian of the theory is

H =

∫
dx

1

2

[
ϕ̇2 + (ϕ′)2 +m2

(
ϕ2 − g

2
ϕ4 +

g2

3
ϕ6
)]

. (2)

The equation of motion is therefore

ϕ̈− ϕ′′ +m2
(
ϕ− gϕ3 + g2ϕ5

)
= 0 (3)

to which the oscillon solution is

ϕ(t, x) = ϵ

√
8

3g
cos

(
2πt

τ

)
sech(mxϵ) (4)

with period τ = 2π
m
√
1−ϵ2

.

II. QUANTIZATION PROCEDURE

To quantize the periodic field we shall proceed as Dashen et al. in their quantization of the

breather doublet solution of the Sine-Gordon model.

The derivation is done in detail in Dashen et al. paper and is summarized by Rajaraman in

”Solitons and Instantons in Qunatum Field Theory”.

Let us define Q̃(E) ≡ Tr
(

1
E−H

)
and G(T ) ≡ Tr[exp(−iHT/ℏ)] =∫

D[ϕ(x, t)]exp
{

i
ℏS[ϕ(x, t)]

}
as in Rajaraman.

We then use the Stationary Phase Approximation to pick out periodic classical solutions ϕcl(x, t)

from G(T ) as described in Rajaraman chapter 6 ”Functional integrals and the WKB method” to get
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the allowed quantized energy states analogous to deriving Bohr-Sommerfeld quantization condition

in Quantum Mechanics.

A necessary ingredient in quantizing a periodic quantum field are the stability angles νi where

i labels different solutions to equation (5). They are obtained by solving the following stability

equation: [
− ∂2

∂t2
+∇2 −

(
∂2U

∂ϕ2

)∣∣∣∣
ϕcl

]
ξ(x, t) = 0. (5)

Since ϕcl is periodic the solutions to equation (5) will also be periodic. The stability angle is then

given by

ξi(x, t+ τ) = eiνiξi(x, t) (6)

Since the energy will in general diverge we must introduce counter terms to the field Lagrangian

in order to renormalize the energy (mass) spectrum.

The energy is shown to be given by expression

E = Ecl[ϕcl] + Ect[ϕcl] +
∑
i,pi

(pi +
1

2
)ℏ
∂νi
∂τ

, where pi = 0, 1, 2, ...,∞, (7)

where the following quantization imposing conditions must be satisfied:

W{pi}(E) = 2mπℏ (8)

W{pi}(E) = Scl[ϕcl] + Sct[ϕcl] + Eτ [ϕcl]−
∞∑

i,pi=0

(pi +
1

2
)ℏνi (9)

III. IDENTIFYING ALL THE PIECES - CLASSICAL ENERGY AND ACTION

The classical energy of the oscillon field is

Ecl[ϕcl] =

∫
dx

1

2

[
ϕ̇2 + (ϕ′)2 +m2

(
ϕ2 − g

2
ϕ4 +

g2

3
ϕ6
)]

=
8mϵ

1215g

[
−360ϵ2 cos4(mt

√
1− ϵ2) + 512ϵ4 cos6(mt

√
1− ϵ2) + 135

(
3− ϵ2 + 2ϵ2 cos(2mt

√
1− ϵ2)

)]
=

8m

3g
ϵ− 8m

27g

(
3− 6 cos(2mt) + 8 cos4(mt)

)
ϵ3 +O(ϵ5) (10)

or in terms of period, if we expand out only the epsilon in the spatial part of the field and only
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then tau in the first term we get

Ecl[ϕcl] =

∫
dx

1

2

[
ϕ̇2 + (ϕ′)2 +m2

(
ϕ2 − g

2
ϕ4 +

g2

3
ϕ6
)]

=

=
8ϵ

3gmτ2

[
m2τ2 cos2

(
2πt

τ

)
+ 4π2 sin2

(
2πt

τ

)]
− 8mϵ3

27g
cos2

(
2πt

τ

)[
1 + 4 cos

(
4πt

τ

)]
+

4096mϵ5

1215g
cos6

(
2πt

τ

)
=

8mϵ

3g

[
cos2

(
2πt

τ

)
+
(
1− ϵ2

)
sin2

(
2πt

τ

)]
− 8mϵ3

27g
cos2

(
2πt

τ

)[
1 + 4 cos

(
4πt

τ

)]
+

4096mϵ5

1215g
cos6

(
2πt

τ

)
=

8mϵ

3g

[
1− ϵ2 sin2

(
2πt

τ

)]
− 8mϵ3

27g
cos2

(
2πt

τ

)[
1 + 4 cos

(
4πt

τ

)]
+

4096mϵ5

1215g
cos6

(
2πt

τ

)
=

8m

3g
ϵ− 8mϵ3

3g
sin2

(
2πt

τ

)
− 8m

27g
cos2

(
2πt

τ

)[
1 + 4 cos

(
4πt

τ

)]
ϵ3 +O(ϵ5)

=
8m

3g
ϵ− 8mϵ3

27g

(
6− 2 cos

(
4πt

τ

)
+ cos

(
8πt

τ

))
(11)

The expression is time dependent because our solution to the equation of motion is only ap-

proximate.

The classical action over one period is

Scl[ϕcl] =
1

2

∫ τ

0
dt

∫ ∞

−∞
dx

[
ϕ̇2 − (ϕ′)2 −m2

(
ϕ2 − g

2
ϕ4 +

g2

3
ϕ6
)]

=

=
4ϵ

3gmτ

(
4π2 −m2τ2

)
+

4mτϵ3

9g
− 256mτϵ5

243g
=

= −8mτϵ3

9g
− 256mτϵ5

243g
(12)

We can check that Ecl = −dScl
dτ and get the part that is not time dependent. The results are

consistent up to time dependence of equation (11), so

Ecl = −dScl
dτ

=
8mϵ

3g
− 16mϵ3

9g
. (13)

Note that we will treat τ and ϵ as independent in future analysis, and therefore no relation

connecting them will be used. For example, the relevant expression for classical action that we

shall use will be the second line of (12), where the identity τ = 2π
m
√
1−ϵ2

had not yet been employed.

IV. STABILITY ANGLES

The stability equation is the same taking ϕ = ϕcl + ξ and expanding equation of motion in ξ to

first order.

Now we need to solve the stability equation to get stability angles.
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Assuming ξ(t, x) is separable we can write ξ = ξT (t)ξX(x). Then the stability equation up to

the third order in ϵ keeping period non-expanded is

[
−∂2t + ∂2x −m2(1− 3gϕ2cl + 5g2ϕ4cl

]
ξ(t, x) = 0[

−∂2t + ∂2x −m2(1− 8 cos2(2πt/τ)sech2(mxϵ)ϵ2
]
ξ(t, x) = 0[

−∂2t + ∂2x −m2(1− 8 cos2(2πt/τ)ϵ2
]
ξT ξX = 0

. (14)

The x dependence only comes into the equation at the 4th order in ϵ therefore we are essentially

solving a wave equation with an oscillating spatially flat potential. After calculating the mass

spectrum up to ϵ3 order, higher order contributions shall also be considered in order to include the

x dependence into stability equation.

We get two ODEs after using the method of variable separation:

d2

dx2
ξX + C2ξX = 0 (15)

d2

dt2
ξT +m2

(
1 +

C2

m2
− 8ϵ2 cos2

(
2πt

τ

))
ξT = 0. (16)

Following the theory of Mathieu functions in Abramowitz et al.’s ”Handbook of Mathematical

Functions” the Mathieu equation is of form y′′ + (a− 2q cos 2z)y = 0 or in our case

d2ξT
dt2

+

(
m2 + C2 − 4ϵ2m2

[
1 + cos

(
2
2πt

τ

)])
ξT = ξ̈T +

([
C2 +m2 − 4ϵ2m2

]
− 4ϵ2m2 cos

(
2
2πt

τ

))
ξT = 0

d2ξT
dz2

([
C2 +m2 − 4ϵ2m2

] τ2
4π2

− τ2

π2
ϵ2m2 cos

(
2
2πt

τ

))
ξT = 0 (17)

Hence we can identify

a =
(C2 +m2 − 4m2ϵ2)τ2

4π2

q =
m2ϵ2τ2

2π2

z =
2πt

τ

(18)

We can write a general analytic solution in terms of Mathieu functions, the Mathieu cosine

function Ce[a, q, z] and the Mathieu sine function Se[a, q, z].

ξT (t) = A1Ce

[
(C2 +m2 − 4m2ϵ2)τ2

4π2
,
m2ϵ2τ2

2π2
,
2πt

τ

]
+A2Se

[
(C2 +m2 − 4m2ϵ2)τ2

4π2
,
m2ϵ2τ2

2π2
,
2πt

τ

]
(19)
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We shall use notation Sea,q(z) and Cea,q(z) and introduce the Mathieu cosine and sine function

derivatives with respect to z. These function are called Mathieu cosine or sine prime functions.

They will be denoted as Se′a,q(z) and Ce′a,q(z).

Using Floquet’s Theorem (Bloch Theorem) which states that periodic solutions must exist

for wave-like differential equations with periodic potential, there exist solutions to the Mathieu

equation of form

Fµ(z) = eiµzP (z), (20)

where µ depends on a and q, and P (z) is a periodic function with the same period as the potential

in the Mathieu equation - namely π. µ is called the characteristic exponent. We can therefore

write the general solution to a Mathieu equation in terms of periodic solutions rather than just

any Mathieu functions as

y = AFµ(z) +BFµ(−z) (21)

We can see that upon transformation t→ t+ τ ,

F (z) → Fµ

(
2π(t+ τ)

τ

)
= eiµ

2π(t+τ)
τ P

(
2π(t+ τ)

τ

)
= e2πiµeiµzP (z) = e2πiµF (z) (22)

The way to extract stability angles from stability equation is

ξi(x, t+ τ) = eiνiξi(x, t) (23)

Since ξT is an explicit solution to the Mathieu equation we can set ξT = y with an appropriate

identification of a, q, z and get the stability angles

ν = 2πµ. (24)

To solve for µ consider a solution for our fixed a and q to the same Mathieu equation with

boundary conditions

y1(0) = 1; y′1(0) = 0. (25)

For such solutions we can see that

cos(πµ)− y1(π) = 0 (26)
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Solving Mathieu equation with boundary conditions gives an analytic solution

y1(z) =
Ce′a,q(0)Sea,q(z)− Cea,q(z)Se

′
a,q(0)

Ce′a,q(0)Sea,q(0)− Cea,q(0)Se
′
a,q(0)

(27)

with the same variables a, q and z as before.

Hence

µ = ±arccos y1(π)

π
+ 2k; k ∈ Z (28)

and so all possible candidates for stability angles are

νi = ±2 arccos y1(π) + 4πi; i ∈ Z ≡

≡ ν±i = ±2 arccos

(
Ce′a,q(0)Sea,q(π)− Cea,q(π)Se

′
a,q(0)

Ce′a,q(0)Sea,q(0)− Cea,q(0)Se
′
a,q(0)

)
+ 4πi; i ∈ Z (29)

Any solution for characteristic exponent µ will have the discrete term 2k because of the peri-

odicity of cosine and sine. These do not correspond to distinct stability angles so we do not need

to take them into account. The first two positive angles (as we only need to sum over positive

stability angles (See Dashen et al.) are

ν1 = 2arccosy1(π)

ν2 = −2arccosy1(π) + 4π (30)

However, the angle ν2 is just a result corresponding to the complex conjugate case of the

exponential, hence not a separate stability angle (same as Dashen et al. treatment). Therefore the

only stability angle is ν1. Otherwise we would always get cancellation between these two solutions

as one is a complex conjugate pair of the complex phase in eiν . Also note that our stability angles

must be real in order to have stable, non-decaying solutions to the stability equation.

As in Rajaraman and Dashen we are only interested in the basic oscillon state so set for all

i, p1 = 0. We have a continuous set of stability angles depending on the value of continuous

parameter C which comes into solutions as a separation constant, assuming that we can indeed

treat τ and ϵ as independent and that ϵ is a fixed small parameter.

The only stability angle is given by

cos
ν

2
=

Ce′a,q(0)Sea,q(π)− Cea,q(π)Se
′
a,q(0)

Ce′a,q(0)Sea,q(0)− Cea,q(0)Se
′
a,q(0)

=

=
Cea,q(π)

Cea,q(0)
, (31)

since Ce′a,q(0) = 0.
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Therefore we find a simple formula for Mathieu characteristic exponent which we re-expressed

as the stability angle. The formula for characteristic exponent is

cos(µπ) =
Cea,q(π)

Cea,q(0)
(32)

which should be correct for all real characteristic exponents for any a, q.

Mathieu Cosine function can be expanded around q = 0 using a well known formula

Ce[aµ(q), q, z] = cos(µz) +
1

4

(
cos((µ− 2)z)

µ− 1
− cos((µ+ 2)z)

µ+ 1

)
q + ... (33)

where µ is the characteristic exponent, and aµ(q) is the characteristic value, or parameter a,

which can in general be uniquely determined from µ and q. So the knowledge of a and q determines

µ, and similarly knowing µ and q we can determine a. We can therefore use this expression to

verify our derived result for characteristic exponent directly from a known expansion and see that

they in fact agree.

cos(µπ) =
cos(µπ) + 1

4

(
cos((µ−2)π)

µ−1 − cos((µ+2)π)
µ+1

)
m2τ2ϵ2

2π2

1 + 1
4

(
1

µ−1 − 1
µ+1

)
m2τ2ϵ2

2π2

cos(µπ)

µ− 1
− cos(µπ)

µ+ 1
=

cos((µ− 2)π)

µ− 1
− cos((µ+ 2)π)

µ+ 1

0 = 0 (34)

For small q we can use the identity given by Abramowitz and Stegun 20.3.15 which is

a = µ2 +
q2

2 (µ2 − 1)
+

(
5µ2 + 7

)
q4

32 (µ2 − 1)3 (µ2 − 4)
+ ... (35)

Using terms up to q2, and solving the quartic equation for µ gives two solutions +1, −1 and

±
(
τ
√
C2+m2

2π − m2τϵ2

π
√
C2+m2

)
. Taking the positive solution we have the expression for the stability

angles up to order ϵ2:

ν = τ
√
C2 +m2 − 2m2τϵ2√

C2 +m2
(36)

We get the same result as we would taking q → 0 and expanding
√
a for characteristic exponent.

We could impose periodic boundary conditions on the stability equation which would give as in

the Sine-Gordon case

LCn = 2nπ, (37)
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with L the box size. When taking L → ∞ the sum over all stability angles becomes an integral

over all values of C.

This integral will have a quadratically and a logarithmically divergent term.

V. SUMMING THE STABILITY ANGLES

Let us insert the expression for ϵ in terms of τ into the equation for stability angles and action.

When expanding in terms of ϵ the insertion does not matter since τ is of order 1. Solving for ϵ

from the identity for τ there are two solutions. However, since we have to square epsilon, it does

not matter which one we take as they are + and - the same expression.

The stability angle is then

ν = τ
√
C2 +m2 −

2
(
m2τ2 − 4π2

)
τ
√
C2 +m2

=
2π

√
C2 +m2

m
+

(
C2 − 3m2

)
πϵ2

m
√
C2 +m2

(38)

Its derivative with respect to the period is

dν

dτ
=
√
C2 +m2 −

2
(
m2τ2 + 4π2

)
τ2
√
C2 +m2

(39)

The sum over all stability angles is now an integral over all values of C. Since the integral will

diverge we can introduce a cut-off which we later take to infinity.

d

dτ

∑
ν =

∫ ∞

−∞

dν

dτ
dC →

→
∫ Λ

−Λ

dν

dτ
dC (40)

This gives:∫ Λ

−Λ

dν

dτ
dC =

∫ Λ

−Λ

[√
C2 +m2 −

2
(
m2τ2 + 4π2

)
τ2
√
C2 +m2

]
dC

= Λ
√

Λ2 +m2 − 16π2

τ2
ln

(
Λ +

√
Λ2 +m2

m

)
−m2

[
arcsinh

Λ

m
+ 2ln

(
Λ +

√
Λ2 +m2

m

)]
(41)

Now notice that

arcsinh
Λ

m
= ln

(
Λ +

√
Λ2 +m2

m

)
. (42)
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Hence ∫ Λ

−Λ

dν

dτ
dC = Λ

√
Λ2 +m2 − 16π2 + 3m2τ2

τ2
ln

(
Λ +

√
Λ2 +m2

m

)
, (43)

and

1

2

d

dτ

∑
ν = lim

Λ→∞

[
1

2
Λ
√

Λ2 +m2 −
(
8π2

τ2
+

3m2

2

)
ln

(
Λ +

√
Λ2 +m2

m

)]
. (44)

Or without the derivative:

1

2

∑
ν = lim

Λ→∞

[
1

2
Λ
√
Λ2 +m2τ +

(
8π2

τ
− 3m2τ

2

)
ln

(
Λ +

√
Λ2 +m2

m

)]
. (45)

Integrating without any epsilon - tau substitutions, with periodic BC

1

2

∑
n

ν =
∑
n

[
τ

2

√
C2
n +m2 − m2τϵ2√

C2
n +m2

]

→ E0τ −
L

2π

∫ ∞

−∞
dC

[
m2τϵ2√
C2 +m2

]
= E0τ −

L

2π
lim
Λ→∞

∫ Λ

−Λ
dC

[
m2τϵ2√
C2 +m2

]
= E0τ −

Lm2τϵ2

π
ln

(
Λ +

√
Λ2 +m2

m

)
(46)

VI. RENORMALISATION

In order to get the energy

E = − d

dτ

[
Scl + Sct −

1

2

∑
i

νi

]
, (47)

we must introduce counter terms and cancel the divergences from the sum of stability angles. The

quadratically divergent piece is exactly the vacuum energy of the theory so will vanish. The more

problematic is the logarithmically divergent piece.

Due to the field strength renormalisation which normally comes into the two-point function, we

can use the standard trick and replace ϕ = Z1/2ϕr in the Lagrangian and write the bear mass m0

and g0 instead of the physical mass and coupling constant. Then we can introduce the standard:

δZ = Z − 1

δm = Zm2
0 −m2

δg = Z2m2
0g0 −m2g. (48)
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Inserting this into Lagrangian:

L =
1

2
(∂µϕ)

2 − 1

2
m2

0ϕ
2 +

1

4
m2

0g0ϕ
4 (49)

We do not need to worry about ϕ6 term since when we insert the counter terms into the WKB

energy equation, terms will have to be evaluated at the classical field solution. And since we are

only solving up to order less than O(ϵ4), we can leave the ϕ6 term out.

L =
1

2
(∂µϕ)

2 − 1

2
m2

0ϕ
2 +

1

4
m2

0g0ϕ
4 =

=
1

2
Z (∂µϕr)

2 − 1

2
Zm2

0ϕ
2
r +

1

4
Z2m2

0g0ϕ
4
r =

=
1

2
(∂µϕr)

2 − 1

2
m2ϕ2r +

1

4
m2gϕ4r +

+
1

2
δZ (∂µϕr)

2 − 1

2
δmϕ

2
r +

1

4
δgϕ

4
r (50)

We can proceed exactly as in Peskin chapter 10.2 where he find counter terms for the standard

ϕ4 theory. We only need to make suitable identification of parameters between our Lagrangian and

the standard phi to the 4 Lagrangian.

The identification is:

ϕ4 = oscillon

λ = −6m2g

δλ = −6δg (51)

Then by analyzing 2 -¿ 2 scattering we can find the counter terms.

The renormalisation conditions are the usual ones as in Peskin pp. 325.

Now

iM = 6im2g +
(
6im2g

)2
[iV (s) + iV (t) + iV (u] + 6iδg, (52)

where

iV (p2) =
i

2

∫
d2k

(2π)2
1

k2 −m2

i

(k + p)2 −m2
. (53)

The renormalisation condition demands that the amplitude equals 6im2g at s = 4m2 and

t = u = 0.
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Therefore

δg = 6m4g2
[
V (4m2) + 2V (0)

]
(54)

Computing this integral gives after writing l = k + xp, Wick rotating and writing ∆ = m2 −

x(1− x)p2:

V (p2) =
i

2

∫ 1

0
dx

∫
d2l

(2π)2
1

[l2 + x(1− x)p2 −m2]2

= −1

2

∫ 1

0
dx

∫
d2lE
(2π)2

1[
l2E +∆

]2
= − 1

4π

∫ 1

0
dx

∫ ∞

0

lEdlE[
l2E +∆

]2 . (55)

We can replace the integration limit ∞ with Λ which we later take to infinity. Now:

V (p2) = − 1

4π
lim
Λ→∞

∫ 1

0
dx

Λ2

2∆ (∆ + Λ2)

= − 1

4π
lim
Λ→∞

∫ 1

0
dx

Λ2

2 (m2 − x(1− x)p2) [(m2 − x(1− x)p2) + Λ2]
.

(56)

So we have:

V (4m2) = − 1

4π
lim
Λ→∞

∫ 1

0
dx

Λ2

2 (m2 − 4m2x(1− x)) [(m2 − 4m2x(1− x)) + Λ2]

= − 1

4π
lim
Λ→∞

∫ 1

0
dx

Λ2

2 (m− 2mx)2
[
(m− 2mx)2 + Λ2

]
= − 1

8π
lim
Λ→∞

[
1

2m (m− 2mx)
+

arctan
(
m−2mx

Λ

)
2mΛ

]1
0

= − 1

8π
lim
Λ→∞

[
− 1

2m2
− 1

2m2
+

arctan
(
−m

Λ

)
2mΛ

−
arctan

(
m
Λ

)
2mΛ

]
=

1

8πm2
(57)

and

V (0) = − 1

4π
lim
Λ→∞

∫ 1

0
dx

Λ2

2m2 [m2 + Λ2]

= − 1

8πm2
. (58)
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Hence

δg = 6m4g2
[
V (4m2) + 2V (0)

]
= 6m4g2

[
1

8πm2
− 1

4πm2

]
= −3g2m2

4π
(59)

Now we need to get the mass renormalization factor. Proceeding as in Peskin, we need to

consider the self energy loop diagram. One can show that,

0 = 3im2g

∫
d2k

(2π)2
i

k2 −m2
− iδm. (60)

Wick rotating we get:

δm = 3im2g

∫
d2k

(2π)2
1

k2 −m2

= 3m2g

∫
d2l

(2π)2
1

l2 +m2

=
3m2g

2π
lim
Λ→∞

∫ Λ

0

ldl

l2 +m2

=
3m2g

4π
lim
Λ→∞

ln

(
Λ2 +m2

m2

)
→ 3m2g

2π
lim
Λ→∞

ln

(
Λ

m

)
(61)

It is actually better to take what is given in Rajaraman which gives mass renormalisation:

δm =
3m2g

2π

∫ Λ

0

dk√
k2 +m2

=
3m2g

2π
ln

(
Λ +

√
Λ2 +m2

m

)
(62)

We now have both counter terms for the renormalized theory. They are:

δg = −3m2g2

4π

δm =
3m2g

2π
lim
Λ→∞

ln

(
Λ +

√
Λ2 +m2

m

)
(63)
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VII. CANCELLATION OF DIVERGENCES

The counter term contribution to action is (note that we will take which ever sign coming from

square roots (+ or -) will be convenient for canceling divergences):

Sct = −1

2
δm

∫ τ

0
dt

∫ ∞

−∞
dxϕ2cl +

1

4
δg

∫ τ

0
dt

∫ ∞

−∞
dxϕ4cl

= − 4τϵ

3gm
δm +

8τϵ3

9g2m
δg

= −2mτϵ

π
ln

(
Λ +

√
Λ2 +m2

m

)
− 2mτϵ3

3π
(64)

We can neglect the ϵ3 term coming from the g renormalization as no result to such high order

in epsilon can be trusted. We can only work up to epsilon squared.

Now

Sct −
1

2

∑
ν = − 4τϵ

3gm
δm +m2τϵ2

∑
n

1√
C2
n +m2

− τ

2

∑
n

√
C2
n +m2 + τE0

= −2mτϵ

π

∫ ∞

0

dk√
k2 +m2

+ 2m2τϵ2
∫ ∞

0

dn√
C2
n +m2

= (65)

L =
2

mϵ
(66)

The same result arrises from dimensional regularization. I haven’t written that up yet.

VIII. DIMENSIONAL REGULARISATION AND INFINITY CANCELLATION

Take d = 2− 2α

Sct = −1

2
δm

∫ τ

0
dt

∫ ∞

−∞
dxϕ2cl +

1

4
δg

∫ τ

0
dt

∫ ∞

−∞
dxϕ4cl

= − 4τϵ

3gm
δm +

8τϵ3

9g2m
δg

= −4imτϵ

∫
d2k

(2π)2
1

k2 −m2
+O(ϵ3)

= −4imτϵ

[
−i
4π

Γ(α)

Γ(1)

(
1

m2

)α]
= −mτϵ

π

[
1

α
− γ +O(α)

]
(67)
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Now the sum over stability angles with the dimensions d/2 from the d we used in the mass

renormalisation. To use the same parameter α we need to take d = 1− α.

1

2

∑
n

ν =
∑
n

[
τ

2

√
C2
n +m2 − m2τϵ2√

C2
n +m2

]

→ E0τ −
L

2π

∫ ∞

−∞
dC

[
m2τϵ2√
C2 +m2

]
(68)

Since C is in Euclidean space we need to first rotate it to ”some sort of 1 dimensional” Minkowski

space. Take C → −iC

→ E0τ +
L

2π

∫ ∞

−∞
dC

[
m2τϵ2√
C2 −m2

]
= E0τ + Lm2τϵ2

[
(−1)1/2i

(4π)1/2
Γ(α/2)

Γ(1/2)

(
1

m2

)α/2
]

= E0τ −
Lm2τϵ2

2π

[
2

α
− γ +O(α)

]
= E0τ −

Lm2τϵ2

π

[
1

α
− γ +O(α)

]
(69)

Then including the vacuum energy

Sct −
1

2

∑
ν = E0τ −

mτϵ

π

[
1

α
− γ

]
− E0τ +

Lm2τϵ2

π

[
1

α
− γ

]
=

Lm2τϵ2

πα
− mτϵ

πα
(70)

This gives

L =
1

mϵ
(71)

(?????) should really be 2 due to definition of d = 2 - e.

Possible explanation could be that L comes in from the stability equation. And the stability

equation knows nothing about the localisation of the oscillon. It treats the stability as an oscillating

background.

Write the explanation containing the non-locality of stability equation.

IX. PUTTING TOGETHER THE PIECES

No ϵ3 results can be trusted since we saw that there is no energy conservation at that level, as

our classical solution of the field is not valid at orders that high. Another reason is that the stability
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angles which would next have ϵ4 term would became of third order in epsilon as we integrated over

C.

Therefore we can write classical action as:

Scl =
4ϵ

3gmτ

(
4π2 −m2τ2

)
+

4mτϵ3

9g
− 256mτϵ5

243g
=

=
16π2ϵ

3gmτ
− 4mτϵ

3g

=
4
(
4π2 −m2τ2

)
3gmτ

√
1− 4π2

m2τ2
(72)

We saw that counter terms cancelled the sum over stability angles exactly. Even if they give us

an additional finite value, the result will only differ slightly hence it is worth first seeing the mass

spectrum in the exact cancellation case.

The expression which gives us WKB corrected quantum energy is therefore:

E = − d

dτ

[
Scl + Sct −

1

2

∑
i

νi

]

= −dScl
dτ

= − d

dτ

[
4
(
4π2 −m2τ2

)
3gmτ

√
1− 4π2

m2τ2

]

=
4
(
8π2 +m2τ2

)
3gmτ2

√
1− 4π2

m2τ2
(73)

Now we shall use this expression for energy in terms of purely the period, to impose the quan-

tization:

2πN =W = Eτ [E] + Scl

=
4
(
8π2 +m2τ2

)
3gmτ

√
1− 4π2

m2τ2
+

4
(
4π2 −m2τ2

)
3gmτ

√
1− 4π2

m2τ2

=
16π2

gmτ

√
1− 4π2

m2τ2
. (74)

We now have a system of 2 equation relating E to τ , and τ to N.

E =
4
(
8π2 +m2τ2

)
3gmτ2

√
1− 4π2

m2τ2

N =
8π

gmτ

√
1− 4π2

m2τ2
(75)

By eliminating τ we get a quartic equation for the WKB quantised energy (correct up to order

including ϵ2 )

81g2E4 − 36m2
(
4 + 3g2N2

)
E2 +m4N2

(
12 + g2N2

)2
= 0 (76)
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with solutions:

EN = ±m

3g

√
8 + 6g2N2 ± (4− g2N2)3/2 (77)

Since energy has to be positive we can immediately eliminate 2 solutions. The remaining two

are:

EN =
m

3g

√
8 + 6g2N2 ± (4− g2N2)3/2 (78)

Since this is the rest energy it is the mass of the oscillon. The solution we can trust more since

it has lower energy and would be more stable is:

MN =
m

3g

√
8 + 6g2N2 − (4− g2N2)3/2 (79)

where N = 0, 1, 2, ... 2
g , since the energy has to be real. In the Sine-Gordon breather case the

rest energy also went to 0 for N = 0. If we are to give any interpretation in terms of a number of

particles then this is to be expected.

M1 =
m

3g

√
8 + 6g2 − (4− g2)3/2 (80)

then we can write in the weak coupling case of small g,

M1 = m− mg2

96
+O(g4) (81)

For a Nth state in terms of the 1st state we can write in the weak coupling limit:

MN = M1

√√√√8 + 6g2N2 − (4− g2N2)3/2

8 + 6g2 − (4− g2)3/2

= M1N − g2

96
M1

(
N3 −N

)
−O

(
g4
)

(82)

We can compare this seemingly unrelated mass spectrum to the Sine-Gordon breather model

which has a Lagrangian:

LSG =
1

2
(∂µϕ)

2 +
m4

λ

(
cos

(√
λ

m
ϕ

)
− 1

)

=
1

2
(∂µϕ)

2 − m2

2
ϕ2 +

λ

24
ϕ4

=
1

2
(∂µϕ)

2 − m2

2
ϕ2 +

m2g′

4
ϕ4 (83)
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where we can write g′ = λ
6m2 , to make Lagrangian more similar to our oscillon Lagrangian.

The mass spectrum of a Sine-Gordon breather is (all written with primes):

MSG =
16m

γ
sin

(
N ′γ

16

)
(84)

where

γ =
λ/m2

1− λ/(8πm2)

=
6g′

1− 3g′

4π

(85)

In weak coupling the mass of 1st state for Sine-Gordon is:

M ′
1 = m− 3mg′2

128
(86)

then

M ′
N ′ = M ′

1N
′ − 1

6

(
λ

16m2

)2

M ′
1

(
N ′3 −N ′)

= M ′
1N

′ − 3g′2

128
M ′

1

(
N ′3 −N ′) (87)

We can therefore see that our oscillon mass spectrum is identical to Sine-Gordon, to order g2,

with identification of the coupling constants:

Oscillon = S − G
g2

96
=

3g′2

128

→

g = ±
3g′SG
2

= ± λ

4m2
(88)

We can therefore interpret our oscillon the same way as the Sine-Gordon breather in the weak

coupling limit. This means that we can interpret it as a bound state of N particles with a slightly

lower binding energy.

X. SINE-GORDON BREATHER

We have established that if we write the Sine-Gordon equation with g′ coupling analogous to

our phi to the 6 model there is a correspondence in the weak coupling limit to the coupling λ in

the S-G model.
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Now the breather field is also the same in the small ϵ approximation if we use the oscillon

identity

mτ =
2π√
1− ϵ2

(89)

with abbreviation

τ̃ =
mτ

2π
(90)

Then

ϕ =
4m√
λ
arctan

√τ̃2 − 1
sin
(
mt
τ̃

)
cosh

(
mx

√
τ̃2 − 1/τ̃

)


=
4m√
λ
arctan

[
ϵ√

1− ϵ2
sin

(
2πt

τ

)
sech (mxϵ)

]
≃ 4mϵ√

λ
sin

(
2πt

τ

)
sech (mxϵ)

= ϵ

√
8

3g′
sin

(
2πt

τ

)
sech (mxϵ)

(91)

Now for the stability angles

ν = τ
√
m2 + q2n

(92)

Lqn + 4arctan(
m
√
τ̃2 − 1

qτ̃
) = 2πn (93)

We can expand up to ϵ2, solve solve for q, insert it into the equation for ν, expand again and

we get using LCn = 2πn

ν = τ

√
m2 +

4π2n2

L2
− 4mτϵ

L
√
m2 + 4π2n2

L2

= τ
√
m2 + C2

n − 4mτϵ

L
√
m2 + C2

n

(94)

This is again consistent with our oscillon stability angle upon identification

L =
2

mϵ
. (95)

We therefore have more or less all ingredients exactly dual in both of the models.
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XI. QUANTIZATION OF GENERAL OSCILLONS

We can say that an oscillon should go to vacuum expectation value

ϕ(x) → ϕ0 = ⟨0 | ϕ | 0⟩, (96)

when its period goes to

τ → 2π

m
, (97)

where m is the mass in the Lagrangian.

XII. QUANTISATION OF GENERAL OSCILLONS

A. General Theory

We can apply the semi-classical quantization to an oscillon ϕ(x) by splitting the fields into

rectangles of small width, similar to performing a Riemann integral by splitting the curve into

rectangles and summing over them. Then each rectangle acts as a spatially homogeneous field and

the results derived through the Mathieu equation can be used to obtain local quantization. Then

all these regions must be summed over and a hopefully meaningful result can be obtained.

To obtain the stability angles we need to solve a partial differential equation of form[
− ∂2

∂t2
+

∂2

∂x2
−

N∑
n=0

anϕ
n(x, t)

]
ξ(x, t) = 0, (98)

where a0 = m is the mass and ϕ the oscillon solution to the equations of motion.

Let us define an open-set rectangular function Π(x) which takes the value 1 in the open-set

neighbourhood (x− δ, x+ δ) for some 0 < δ ≪ 1 and is 0 elsewhere. Then we can use this function

to discretize an otherwise smooth (at least twice differentiable) oscillon solution by writing

ϕ(x, t) =
∞∑

y=−∞
ϕ̄(y, t)Π(y − x), where y ∈ {−∞, ...,−2δ, 0, 2δ, 4δ, ...,∞} (99)

and the spatially averaged value of the field is

ϕ̄(y, t) =
1

2δ

∫ y+δ

y−δ
ϕ(z, t)dz (100)

This means that we can write[
− ∂2

∂t2
+

∂2

∂x2
−
∑
n,y

anϕ̄
n(y, t)Π(y − x)

]
ξ(x, t) = 0 (101)
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The rectangular functions are othonormal in the sense that Π(x)Π(y) = Π(x) = Π(y) = 1 if

x = y ∈ (−δ, δ) and 0 otherwise. Of course x − y = 2nδ, where n ∈ Z. The function can also be

written as a combination of Heaviside Thetas:

Π(x) = Θ(x− δ)−Θ(x+ δ) (102)

Therefore we can multiply the equality by Π(y0 − x) to separate the differential equation[
Π(y0 − x)

∂2

∂t2
+
∑
n,y

anϕ̄
n(y, t)Π(y − x)Π(y0 − x)

]
ξ(x, t) = Π(y0 − x)

∂2

∂x2
ξ(x, t)[

∂2

∂t2
+
∑
n

anϕ̄
n(y0, t)

]
ξ(y0, t) = Π(y0 − x)

∂2

∂x2
ξ(x, t) (103)

Now since we defined Π(y0 − x) on an open interval (y0 − x− δ, y0 − x+ δ) we can see that the

neighbourhood of the second derivative of ξ(x, t) will equal the second derivative of ξ in the neigh-

bourhood. However if we had defined Π with a closed interval, there would be infinite boundary

terms involved coming from the fact that the derivative at the boundary of an interval is ill-defined

since differentiation requires the existence of more than one point. Therefore[
∂2

∂t2
+
∑
n

anϕ̄
n(y0, t)

]
ξy0(y, t) =

∂2

∂y2
ξy0(y, t), for y ∈ (y0 − δ, y0 + δ) (104)

The differential equation is therefore separable in the neighbourhood of any point y0 on the

x axis. Introducing a separation constant C2
yn for each of the differential equations (at different

points y) and writing ξy0(y, t) = χy0(y)ψy0(t) for the neighbourhood , we get

[
d2

dt2
+
∑
n

anϕ̄
n(y0, t)

]
ψy0(t) = −C2

y0ψy0(t)

d2

dy2
χy0(y) = −C2

y0χy0(y) (105)

Boundary conditions need to be set to get the values of constants C2
yq ≡ C2

q for q ∈

{−∞, ...,−2δ, 0, 2δ, ...,∞}. Introducing a new, more compact notation, yq means the x-axis neigh-

bourhood variable about a point x = q. Subscripts q tells us at which discrete point the equations

are based. Therefore the set of differential equation for the whole oscillon quantization reads:[
d2

dt2
+
∑
n

anϕ̄
n(q, t)

]
ψq(t) = −C2

qψq(t)

d2

dy2q
χq(yq) = −C2

qχq(yq)

for q ∈ {−∞, ...,−2δ, 0, 2δ, ...,∞} (106)
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Solutions to spatial equations are

χq(yq) = Aqe
iCqyq +Bqe

−iCqyq , ∀q (107)

We know that ξ(x, t + τ) = eiνξ(x, t) and that ψq(t + τ) = e2πiµqψq(t). Also ξ(x, t) =∑
q χq(yq)ψq(t)Π(q − x), so

ξ(x, t+ τ) =
∑
q

χq(yq)ψq(t+ τ)Π(q − x)

eiν
∑
q

χq(yq)ψq(t)Π(q − x) =
∑
q

e2πiµqχq(yq)ψq(t)Π(q − x)

(108)

This implies that each region must have the same stability angles. This makes sense since all the

regions are governed by the same Mathieu equation for the time evolution, with only a different

amplitude of oscillation of the background potential. The Mathieu characteristic exponent is

therefore q independent


