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Abstract. 

At first we identify the main error in the formulation of the concept of the weak solution to 

Navier-Stokes (NS) equations which is the completely insufficient treatment of the 

incompressibility condition on the fluid (expressed in the standard way by div u = 0). The 

repair requires the complete reformulation of the NS problem. The basic concept must be the 

generalized motion (i.e. the generalized flow) which replaces the standard velocity field. Here 

we define the generalized flow on the bases of Geometric measure theory extended to the 

theory of Cartesian currents and weak diffeomorphisms (see [1], [2]). Then the key concept 

of the complete weak solution to the NS problem is defined and the two conjectures (the 

existence and the regularity ones) concerning the complete weak solutions are formulated. 

In two appendices many technical details are described (concerning e.g. Cartesian currents, 

homology conditions, weak diffeomorphisms, etc.). Our approach is based on the unification 

of the standard analysis of NS equations with the methods of Geometric measure theory and 

of the theory of Cartesian currents. 

 

1. Introduction  
 

In this paper the regularity of initial and boundary conditions for the Navier-Stokes (NS) 

problem will be assumed.  

The aim of this paper consists in the realization of following steps 
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(i) The division of the NS equations into two parts: the evolution part and the 

determinant part (expressing the volume conservation of the flow) 

(ii) The analysis of the insufficient (and incomplete) formulation of the determinant 

part (i.e. of the equation div u = 0) 

(iii) The introduction of the concepts of the generalized flow and of the homological 

conditions 

(iv) The definition of the weak differentiability of the generalized flow and the 

definition of the associated velocity field to a given weakly differentiable 

generalized flow 

(v) The definition of the concept of the complete weak solution to the NS problem, 

i.e. the fundamental reformulation of the standard weak formulation of the NS 

equations  

(vi) The formulation of the existence and regularity conjectures for the complete 

weak solution to the NS problem 

In conclusion we can characterized our approach in general in the following terms: 

We have combined two different parts of analysis 

(i) The standard analysis of NS equations, used in the evolution part 

(ii) Geometric measure theory extended to the theory of Cartesian currents, 

homology conditions, weak diffeomorphisms etc. used in the determinant part of 

the NS problem 

The resulting theory has a substantially richer structure than the standard analysis of NS 

equations and this gives a hope to arrive at a regularity. Especially the homology conditions 

(and their consequence – the weak convergence of determinants) can give the new input 

into the analysis of the NS problem. (On the other hand, the property of the weak 

convergence of determinants is necessary for the “right” solution to the incompressibility  

problem.) 

The organization of the paper is following. In sect. 2 we analyze the two objections to the 

standard  concept of the weak solution to NS equations. In sect. 3 we describe the basic 

concepts and facts from the theory of Cartesian currents, weak diffeomorphisms, homology 

conditions etc. In sect. 4 we introduce the key new concepts: the generalized flow, its weak 

derivative, its associated velocity field. In sect. 5 we introduce the reformulation of the NS 

problem, the concept of the complete weak solution and the two basic conjectures. Then in 

sect. 6 there is a discussion and in sect. 7 conclusions. In App. A there is a detailed definition 

of graph-current and of homology conditions. In App. B we describe one variant of the 

definition of the standard weak solution to the NS equations which is used in this paper. 

 



 

 

 

 

  



2. Two critical objections to the standard concept of the weak 

solution to the Navier-Stokes equations 
 

The concept of the weak solution to the Navier-Stokes (= NS) equations has two 

problematic points which will be analyzed in this section. 

The first objection consists in the fact that the NS equations are the mixture of two different 

parts:  

(i) the standard evolution equation for the velocity field  

(ii) the (non-evolution) volume-conserving constraint containing the problem with 

determinants of the motion of the fluid.  

These two parts are completely different in character and we assert that part with 

determinants is (when considered in a standard way) treated in a wrong and insufficient 

way.  

The standard treatment of the volume-conserving condition is expressed as the divergence 

equation div u(x, t) = 0 (for a.e. t, 0 ≤ t ≤ T and a.e. x ∊ Ω ) where u is a velocity field. But it is 

known from [1] and [2] that the correct treatment of determinants requires to take into 

account the homology properties of maps describing the motion of a fluid.  

Thus the correct formulation of the NS problem requires the following 

(i) To consider the standard weak solution to the NS equations  

(ii) To complement the treatment of the volume-conserving constraint in a way 

reflecting the necessary homology properties of maps describing the weak 

flow of the fluid. 

To realize this program it is necessary 

(i) To define the concept of the generalized (i.e. weak) flow, i.e. the semigroup of 

weak diffeomorphisms (see  [2]) 

(ii) To define what is the weak (time) derivative of this weak flow (i.e. the 

velocity field) 

(iii) To define what is the volume-conserving weak flow 

This will be done in the section 4. 

Then it is necessary to reformulate the NS problem in terms of the weak flow (i.e. in the 

terms of the generalized motion of the fluid) instead of the standard formulation in terms of 

the velocity field (i.e. in the form of NS equations for the velocity field). This will be done in 



the section 5 where the basic concept of the complete weak solution to the NS problem is 

defined. 

The second objection to the concept of the standard weak solution to the NS equations 

consists in the fact that this solution is not, in general, the solution of the original NS 

problem, i.e. to find the (possibly generalized) motion of the fluid. 

In the situation where the velocity field is not smooth, it is known that, in general, the 

corresponding flow is not uniquely defined and thus the motion of the fluid is not uniquely 

defined by the velocity field. (In the situation when the velocity field is smooth, the 

corresponding flow is uniquely defined.)  

Thus the weak solution to the NS equations does not create the weak solution to the 

original NS problem. 

As a conclusion we arrive at following facts 

(i) The treatment of the volume-conservation condition in the standard 

definition of the weak solution to the NS problem is insufficient  

(ii) The weak solution to the NS equations is not, in general, the solution to the 

NS problem (in fact, it is necessary to introduce the concept of the complete 

weak solution using the concept of the generalized flow). 

 

  



3. The basic concepts for problems with determinants: Cartesian 

currents, weak diffeomorphisms, homology conditions, the weak 

convergence of determinants 
 

Let us fix the bounded simply connected domain Ω ⊂ R3 with the smooth boundary. 

Notation 3.1. We shall consider a copy R3ˆ of R3 and Ωˆ ⊆ R3ˆ where Ωˆ is isomorphic to Ω 

(Ωˆ is a copy of Ω in R3ˆ). We shall denote coordinates in R3 by (x1, x2, x3) and coordinates in 

R3ᶺ by (y1, y2, y3). 

The graph GU of the map U is defined as a 3-dimensional current in R3 ⤬ R3ᶺ ([1], sect. 3.2.1 

(5) and above, p. 230) and its meaning is the integration of the differential 3-form over the 

graph GU of U (the explicit definition of the graph-current GU can be found in App. A below).   

The Sobolev map U ∊ W1,1(Ω, R3ᶺ) is called a Cartesian map (as a special case of Cartesian 

currents) if 2 x 2 minors of DU and detDU are integrable functions and the associated 

graph-current GU is homologically closed, ∂GU = 0, (i.e. ∂GU(ω) = GU(dω)= 0 for each 2-form 

ω compactly supported in Ω ⤬ R3ˆ). We assume moreover that U satisfies the Lusin’s 

condition (i.e. |U(A)| = 0 if |A| = 0), where |.| denotes the Lebesgue measure in R3). 

The set dif1,1,vc (Ω, Ωˆ) of weak volume-conserving diffeomorphisms in Ω is defined as 

following (vc = volume-conserving). 

Definition 3.1. The Sobolev map U ∈ W1,1 (Ω. R3ˆ) is in dif1,1,vc (Ω. Ωᶺ), i.e. U is the volume-

conserving weak diffeomorphism on Ω if U satisfies the following conditions  

(i) U(Ω) = Ωˆ a.e., i.e. |U(Ω) - Ωˆ| = |Ωˆ - U(Ω)| = 0. (Here | . | denotes the Lebesgue 

measure in R3.) 

(ii) There exists a Sobolev map Uˆ ∈ W1,1 (Ωˆ, R3) such that Uˆ(U(x)) = x for a.e. x ∈ 

Ω and U(Uˆ(y)) = y for a.e. y ∈ Ωˆ - i.e. Uˆ is the a.e. inverse of U. 

(iii) Both U and Uˆ satisfy the Luzin property, i.e. if |A| = 0 then |U(A)| = 0 (and 

|Uˆ(A)| = 0 for each A ⊆ Ωˆ, |A|=0).  

(iv) 2x2-minors M2x2DU are integrable functions and the same is true for M2x2DUˆ 

(v) The Jacobian detDU(x) = 1 for a.e. x ∈ Ω. Correspondingly detDUˆ(y) = 1 for 

a.e. y ∈ Ωˆ. 

(vi) The current GU = GˆUˆ is closed inside of Ω ⤬ Ωˆ in the sense of [1], i.e ∂GU = 

∂GˆUˆ = 0 in Ω ⤬ Ωˆ. (i.e. GU(dω) = 0 for each smooth compactly supported 2-

form ω on Ω ⤬ Ωˆ.) 

(vii) For each measurable subset A of Ω we have |U(A)| = |A| and the same is true 

for Uˆ - i.e. the volume-conservation for U and Uˆ is satisfied. 



Remark 3.2. The closeness ∂GU = 0 of the graph GU is the principal property of Cartesian 

currents and of weak diffeomorphisms. It is clear that this condition is weakly closed (i.e. it 

is passing through the weak limits) since it can be expressed as GU(dω) = 0 for each smooth 

2–form ω compactly supported in Ω ⤬ Ωˆ.  

The map U conserves the orientation a.e. This follows from the condition (v). 

Remark 3.3. In fact, the condition (iv) from the definition 3.1. (the integrability of minors) 

is superfluous since it follows from the other conditions from this definition.  

Proof. 2⤬2 minor of DU can be expressed as a derivative of Uˆ (Uˆ is an inverse map to the 

map U), M2x2(DU(x)) = M2x2DUˆ(y)/detDU(Uˆy), y = U(x). Since detDU = 1 a.e. we have 

M2x2(DU(x)) = DUˆ(y). The transformation from variables x onto variables y is governed by 

the property that detDU = 1 a.e. 

As a consequence we obtain that detDU (i.e. that the distributional determinant of DU) is 

represented by the function identically equal to 1 a.e. 

Homological conditions are defined as GU(dω) for each 2-form ω compactly supported in Ω 

⤬ Ωˆ.  There are 3 types of forms ω’s depending on the number of differentials dy: 0, 1, 2. 

The details of the homological conditions are described in App. A, part 2. 

The weak continuity of determinants means that the weak convergence of DUk to DU 

implies the weak convergence of detDUk to detDU. This is the quite non-trivial but 

fundamental property. Without this property the variational problems with determinants 

cannot be solved. The weak continuity of determinants contains two properties (we assume 

that DUk converge weakly to DU) 

(i) detDUk are integrable functions and detDUk converges weakly to some 

integrable function w 

(ii) w = detDU 

The property (i) is not connected directly to the homology conditions while the property 

(ii) is fundamentally based on homology conditions. The details of the weak continuity of 

determinants can be found in [2]. 

In general, the weak continuity of determinants is the central property for the solution of 

problems with determinants. Homological conditions are the true basis for proving the 

weak continuity of determinants. None of these properties are considered in the standard 

treatment of the NS equations and this is the main drawback (insufficient property) of the 

standard formulation of the weak solution to the NS equations. 

 



4. The new concepts: the generalized (weak) flow, its weak derivative 

and the associated velocity field 
 

At first we shall define the concept of a one-dimensional semi-group of weak 

diffeomorphisms which we shall denote as a weak (i.e. generalized) flow. 

Let  Ω ⊂ ℝ3  be a bounded open set in ℝ3 with a smooth boundary.    

Let U, V, W be weak diffeomorphism defined on Ω with values in Ω. We say that W is a 

composition of U and V (denoted as U ○ V) if for a.e. x ∊ Ω the relation V(U(x)) = W(x) is 

satisfied. 

Let  {Urs}0≤r≤s≤T  be a set of weak diffeomorphisms defined on Ω with values in Ω, T > 0. 

Definition 4.1. The set  {Urs}0≤r≤s≤T  of weak diffeomorphisms will be called the weak flow if 

the following conditions are satisfied 

(i) Urr is an identity map on Ω for each 0 ≤ r ≤ T 

(ii) For each 0 ≤ r ≤ s ≤ t ≤ T  the diffeomorphism Urt is the composition of Urs and 

Ust, i.e. 

Urt = Urs ○ Urs  

Definition 4.2. The weak flow {Urs}0≤r≤s≤T  will be called the volume-conserving weak flow if 

for a.e. r and s the map Urs is the volume-conserving weak diffeomorphism. 

In the NS problem only such weak flows are considered which have an associated velocity 

field u(x, t) where x ∊ Ω, t ∊ [0, T]. The definition of the associated velocity field requires 

certain attention. 

Definition 4.3. We shall say that the weak flow  {Urs}0≤r≤s≤T  is weakly differentiable if there 

exists an L1-vector field u(x, t) ∊ R3, x ∊ Ω, t ∊ [0, T] such that for a.e. t, r, s ∊ [0, T], 0<t<r<s 

we have 

∫Ω dx φ(x) Uts(x) = ∫Ω dx φ(x) Utr(x) + ∫Ω ∫r≤w≤s  dx φ(x) dw u(Utw(x), w) 

for each smooth function φ(x) on Ω.  

The vector field u(x, t) is then called the velocity field of the weak flow {Urs}0≤r≤s≤T (assuming 

that this weak flow is weakly differentiable). 

Remark 4.1. It is clear that the velocity field is uniquely determined by the corresponding 

generalized flow (assuming that this flow is weakly differentiable). In fact, if we have for a.e. 

x ∊ Ω  



Uts(x) = Utr(x) + ∫r≤w≤s  dw uk(Utw(x), w) , k = 1,2 

where u1 and u2 are two possible velocity fields, then we obtain for a.e.  r < s and for a.e. x ∊ 

Ω that 

∫r≤w≤s  dw [u1(Utw(x), t) – u2(Utw(x), w)] = 0.  

Thus u1(y, w) = u2(y, w) for a.e. y ∊ Ω and a.e. w ∊ [t, T] since Utw(Ω) covers almost all of Ω 

for a.e. w. 

Let us remark that the inverse transformation from the velocity field to the weak flow is 

not, in general, uniquely defined. In fact, to a given (non-smooth) velocity field there may 

exist many corresponding weak flows and also may exist no corresponding weak flow. 

Remark 4.2. There is a question considering the integrability of the last integral in the 

Definition 4.3. Let us consider the following integral (Φ is a smooth function) 

 ∫Ω ∫r≤w≤s  dx’ dw Φ((Utw)-1x’) u(x’, w) . 

This integral is convergent since the function Φ((Utw)-1x’) is bounded and u is integrable. 

Then we can make a transformation  x’ = Utw (x) in the integral which is volume-conserving. 

We obtain 

∫Ω ∫r≤w≤s  dx dw Φ(x) u(Utw(x), t) . 

  



 

5. The reformulation of the NS problem: the concept of a complete 

weak solution to the NS problem and the two conjectures 
 

Our reformulation of NS problem is based on the concept of the complete weak solution to 

the NS problem. This new type of the weak solution to the NS problem is formulated using 

the weak flow as a primitive object instead of the velocity field. 

Definition 5.1. Assume that the smooth initial and boundary data are given.  

We shall say that the weak flow  {Urs}0≤r≤s≤T  is a complete weak solution to the NS problem 

if the following conditions are satisfied 

(i) The weak flow  {Urs}0≤r≤s≤T  is the volume-conserving weak flow   

(ii) The weak flow {Urs}0≤r<s≤T is weakly differentiable. Let u(x, t) be  the velocity field 

associated to this flow .  

(iii) The velocity field u(x, t) is the standard Leray-Hopf (see [3] and App. B) weak 

solution to NS equations. 

(iv) The (smooth) initial and boundary  conditions for the velocity field are satisfied. 

The main novity in our approach is two-fold: 

(i) The standard central object – the velocity field is substituted by the weak flow 

describing the (generalized) motion of the fluid 

(ii) The divergence equation div u = 0 is expressed by the requirement of the 

volume-conservation of this weak flow. This allows (and requires) the use of the 

homology conditions (and Cartesian currents, in general) which will be new 

elements in the study of the NS problem. This new input may enable us 

(possibly) to arrive at the statement that the corresponding complete weak 

solution exists and is smooth.  

Thus we can state the following two conjectures. 

The Conjecture 1. (the existence conjecture). 

For each smooth initial and boundary conditions there exists a complete weak solution to 

the NS problem. 

The Conjecture 2. (the regularity conjecture). 



Each complete weak solution to the NS problem (assuming the smooth initial and boundary 

conditions) is such that its associated velocity field is smooth. 

We assume that the new input containing the homology conditions and the correct 

formulation of the volume-conservation condition make possible that these two conjectures 

will be true. 

Even in the situation where the regularity proof is not available but the Conjecture 1. would 

be proved we obtain the strong advantage by having the complete weak solution to NS 

problem since it  gives the weak solution to the complete NS problem (i.e. it defines the 

weak motion of the fluid). 

  



6. The discussion  
 

It is quite probable that the Conjecture 1. is true since it is completely natural. But this does 

not mean that the proof must be simple. 

On the other side, the Conjecture 2. seems to be rather open.  

We have only an idea why the standard regularity conjecture should not be true: since the 

standard volume-conserving constrain (div u = 0) is rather insufficient (i.e. it is not 

considering correctly distributional minors and determinants). But this is not the argument 

for the validity of the regularity of the complete weak solution. This argument gives only the 

possibility of the regularity of the complete weak solution to the NS problem. 

 

 

  



7. Conclusions  
 

As a conclusion we can consider the following definitions and findings  

 The NS problem must be divided into two parts: the evolution part and the 

determinant (incompressibility and non-evolution) part  

 The determinant part is in the standard way treated in a wrong and insufficient way  

(i.e. by the condition div u = 0) 

 The right treatment of the determinant part must be based on methods from the 

Geometric measure theory and from the theory of Cartesian currents (see [1], [2],  

consider weak diffeomorphisms, homology conditions and other concepts from this 

theory) 

 Our approach is based on the union of two rather different parts of real analysis: the 

theory of NS equations and the Geometric measure theory extended to the theory of 

Cartesian currents 

 This approach requires the change of the basic object of the study: the velocity field 

must be replaced by the weak (i.e. generalized) flow which is a semigroup of weak 

diffeomorphisms (introduced in [2]) 

 The weak differentiability of the weak flow must be carefully defined and also the 

velocity field associated to the weak flow must be defined in a unique way 

 The (hidden) main problem stays in the fact that in the situation when the velocity 

field is not smooth then the corresponding weak flow can be non-unique and can be 

also non-existent 

 The NS equations are reformulated in a completely new way based on the concept of 

a weak flow  

 The central concept of the complete weak solution to the NS problem is defined  

Then we formulate two basic conjectures 

 The existence conjecture: for smooth data the complete weak solution exists 

 The regularity conjecture: (assuming smooth initial and boundary data) the velocity  

field associated to the complete weak solution is regular 

In two appendices technical parts concerning Cartesian currents, homological conditions 

and existence of the standard weak solutions to NS equations the situation is explained In 

more details. 

 

  



Appendix A. 
 

In this section we describe in more details the definition of the graph-current GU and the 

intuitive content of homology conditions. Also the weak continuity of determinants is 

discussed. 

 

1. The detailed description of the graph-current GU .  

To each map U with integrable minors of its Jacobi matrix we can define the corresponding  

3-dimensional current GU in the space ℝ3 ⤬ ℝ3ᶺ (here ℝ3ᶺ is the copy of ℝ3). 

We shall use the following useful notation (useful only in ℝ3) 

   1’=2, 1’’=3, 2’=3. 2’’=1, 3’=1, 3’’=2,         ∂x = ∂/∂x 

in our formulas. The indexes i. j. .. α, β, .. will take values in {1, 2, 3}.  

At first we have to classify 3-forms in ℝ3 where x1, x2, x3 will be coordinate variables in ℝ3 

and y1, y2, y3 will be coordinates in ℝ3ᶺ. The 3-form φ can be decomposed as φ = φ0 + φ1 + 

φ2 + φ3, where 

φ0 = a0 (x, y) dx,   dx = dx1 ∧ dx2 ∧ dx3 

φ1 = Σ bαi (x, y) dxi’ ∧ dxi’’ ∧ dyα 

φ2 = Σ cβ j (x, y) dxj ∧ dy β’ ∧ dy β’’ 

φ3 = a3 (x, y) dy1 ∧ dy2 ∧ dy3. 

The graph-current GU is defined as an integration of the 3-form φ over the graph of U. Thus 

we obtain (assuming that the map U is smooth) 

GU (φ0) = ∫Ω a0 (x, U(x)) dx 

GU (φ1) = Σ ∫ bαi (x, U(x)) dxi’ ∧ dxi’’ ∧ ∂xkUα(x) dxk = Σ ∫ bαi (x, U(x)) ∂xiUα(x) dx 

GU (φ2) = Σ ∫ cβj(x, U(x)) dxj ∧ ∂xmUβ’(x) dxm ∧ ∂xkUβ’’(x) dxk  

= Σ ∫ cβj(x, U) dxj ∧ [∂xj’Uβ’ dxj’ ∧ ∂xj’’Uβ’’ dxj’’ + ∂xj’’Uβ’ dxj’’ ∧ ∂xj’Uβ’’ dxj’] = Σ ∫ cβj(x, U) [∂xj’Uβ’ 

∂xj’’Uβ’’ - ∂xj’’Uβ’ ∂xj’Uβ’’] dxj ∧ dxj’ ∧ dxj’’=  

= Σ ∫ cβj(x, U(x)) Mβ’,β’’j’,j’’(DU(x)) dx 

GU (φ3) = Σ ∫ a3 (x, U(x)) ∂xiU1(x) dxi ∧ ∂xjU2(x) dxj ∧ ∂xkU3(x) dxk  



= Σ ∫ a3 (x, U) ∂xiU1 ∂xjU2 dxj ∂xkU3 εijk dx = ∫ a3(x, U(x)) detDU(x) dx . 

In the situation where U is a Sobolev map from W1,1 (Ω) with the integrable minors of the 

Jacobi matrix, we define the graph-current GU by the formula described above (i.e. by the 

same formula as in the regular case).   

 

2. Homology conditions. 

The general form of homology conditions is expressed by ∂GU(ω) = GU(dω) = 0, where ω is 

any compactly supported 2-form in Ω ⤬ ℝ3ᶺ. In this subsection we analyze the content of 

homology conditions in details.  

The 2-form ω can be expressed as a sum of the following 2-forms 

ω0i = f(x, y) dxi’ ∧ dxi’’,       i ∊ {1, 2, 3} 

ω1,α j = g(x, y) dxj ∧ dyα , α, i ∊ {1, 2, 3} 

ω2,β = h(x, y) dyβ’ ∧ dyβ’’ .  β ∊ {1, 2, 3} 

Then we obtain  

dω0i = ∂xif(x, y) dxi ∧ dxi’ ∧ dxi’’ + Σα ∂yαf(x, y) dyα ∧ dxi’ ∧ dxi’’ , 

dω1,α j = ∂xj’g(x, y) dxj’ ∧ dxj ∧ dyα  + ∂xj’’g(x, y) dxj’’ ∧ dxj ∧ dyα  + ∂yα’g(x, y) dyα’ ∧ dxj ∧ dyα  + 

∂yα’’g(x, y) dyα’’ ∧ dxj ∧ dyα     

dω2, β = Σk ∂xkhβ(x, y) dxk ∧ dyβ’ ∧ dyβ’’ + ∂yβhβ(x, y) dyβ ∧ dyβ’ ∧ dyβ’’   . 

The application of the Cartesian current GU onto the 3-form dω gives the rather 

complication expression, so that we choose the special form of 2-forms ω’s 

ω0,γ i =φ(x) yγ dxi’ ∧ dxi’’,       i, γ ∊ {1, 2, 3} 

ω1,α,γ j = φ(x) yγ dxj ∧ dyα , α, γ, i ∊ {1, 2, 3} 

ω2,β,γ = φ(x) yγ dyβ’ ∧ dyβ’’ .   β, γ ∊ {1, 2, 3} 

Then we obtain 

dω0,γ i = ∂xiφ(x) yγ dxi ∧ dxi’ ∧ dxi’’ + φ(x) dyγ ∧ dxi’ ∧ dxi’’ 

dω1,α,γ j = ∂xj’φ(x) yγ dxj’ ∧ dxj ∧ dyα + ∂xj’’φ(x) yγ dxj’’ ∧ dxj ∧ dyα + φ(x) dyα’ ∧ dxj ∧ dyα δγα’ + 

φ(x) dyα’’ ∧ dxj ∧ dyα δγα’’ . 



dω2,β,γ = Σ ∂xkφ(x) yγ dxk ∧ dyβ’ ∧ dyβ’’ + φ(x) dyβ ∧ dyβ’ ∧ dyβ’’ δγβ . 

Then applying the graph-current GU to these forms we obtain  

GU(dω0,γ i) = ∫ ∂xiφ(x) Uγ(x) dxi ∧ dxi’ ∧ dxi’’ + φ(x) ∂xiUγ dxi ∧ dxi’ ∧ dxi’’ = ∫[∂xiφ(x) Uγ + φ(x) 

∂xiUγ] dx = ∫∂xi[φ(x) Uγ] dx = 0  

This defines the distributional derivative of Uγ. Then we have 

GU(dω1,α,γ j) = ∫ ∂xj’φ Uγ dxj’ ∧ dxj ∧ ∂xj’’Uα dxj’’+ ∂xj’’φ Uγ dxj’’ ∧ dxj ∧ ∂xj’Uα dxj’ + φdxj ∧ 

[(∂xj’Uα’ dxj’ + ∂xj’’Uα’ dxj’’)] δγα’ ∧ [(∂xj’Uα dxj’ + ∂xj’’Uα dxj’’)] + φdxj ∧ [(∂xj’Uα’’dxj’ + ∂xj’’Uα’’dxj’’)] 

δγα’’  ∧ [(∂xj’Uα dxj’ + ∂xj’’Uα dxj’’)]  

= ∫[∂xj’φ Uγ ∂xj’’Uα (-1) + ∂xj’’φ Uγ ∂xj’Uα]dx + φ δγα’ [∂xj’Uα’ ∂xj’’Uα  - ∂xj’’Uα’ ∂xj’Uα] + φ δγα’’ 

[∂xj’Uα’’ ∂xj’’Uα  - ∂xj’’Uα’’ ∂xj’Uα] dx  

= ∫ Uγ [∂xj’’φ ∂xj’Uα - ∂xj’φ ∂xj’’Uα]dx + φδγα’M α’,α j’,j’’(DU)dx + φδγα’’M α’’,α j’,j’’ (DU)dx 

Here the only interesting homology conditions are those which contain minors of different 

order – i.e. where δγα’ or δγα’’  are nonzero – i.e. where γ=α’ or γ=α’’. In this way we obtain 

two homology conditions 

(i) GU(dω1,α,α’ j) = ∫Uα’[∂xj’’φ ∂xj’Uα - ∂xj’φ ∂xj’’Uα] dx + φ M α’,α j’,j’’(DU) dx  

(ii) GU(dω1,α,α’’ j) = ∫Uα’’[∂xj’’φ ∂xj’Uα - ∂xj’φ ∂xj’’Uα] dx + φ M α’’,α j’,j’’(DU) dx 

Both expressions must be equal to zero and this gives the distributional definition of 2 x 2 

minors of DU in terms of DU. 

GU(dω2,β,γ) = ∫ Σ ∂xkφ Uγ dxk ∧ [∂xk’Uβ’ dxk’ + ∂xk’’Uβ’ dxk’’] ∧  [∂xk’Uβ’’ dxk’ + ∂xk’’Uβ’’ dxk’’] + φ Σ 

∂xiUβ dxi ∧ ∂xjUβ’dxj ∧ ∂xkUβ’’dxk δγβ = ∫ Σ ∂xkφ Uγ [∂xk’Uβ’ ∂xk’’Uβ’’ - ∂xk’’Uβ’ ∂xk’Uβ’’] dx + φ Σ 

∂xiUβ ∂xjUβ’ ∂xkUβ’’ εijk dx δγβ . 

This condition is non-trivial only when δγβ = 1 (i.e. γ=β) and in this case it gives the 

distributional definition of the determinant of DU using 2 x 2 minors of DU.  

GU(dω2,β, β) = ∫ Σ ∂xkφ Uβ Mβ’,β’’ k’,k’’(DU) dx + φ detDU dx = 0 . 

In the NS problem we have detDU = 1 a.e. (i.e. the volume-conservation) and thus the last 

equation is the condition required for 2 x 2 minors of DU. 

 

 

  



Appendix B.   
 

The explicit definition of the standard weak solution to the NS equations will be described 

in this section (all statements in this appendix are standard and we take them from [3]).  

We shall use the formulation and the existence theorem of the standard weak solution to 

the NS equations from the recent paper [3]. For the formulation of the NS problem some 

function spaces must be used [3]. More details can be found in [3]. 

At a start we shall define spaces with zero divergence used here. Let Ω be a bounded 

domain in R3 with the Lipschitz boundary.  

The basic space L20,div(Ω) is defined as a closure of the space    {u ∈ (C∞0(Ω))3 ; div u = 0} in 

the L2 norm ([3], 2.3.3). 

The analogous Sobolev space is defined by ([3], 2.3.2) 

W1,20,div(Ω) = {u ∈ (W1,20 (Ω))3 ; div u = 0} 

and its dual space (W1,20,div(Ω)* is defined in the standard way. If f ∊ (W1,20,div(Ω)* and u ∊ 

W1,20,div(Ω), then the duality between f and u will be denoted by f [u]. 

The Bochner spaces are used. Let I = (0, T) be a finite interval on the time axis and let X be a 

Banach space. We shall say that the function f : I →X is a simple function if there exists a 

measurable decomposition {O1, .. , Ok} of an interval I such that f is constant on each Oi. A 

function f : I → X is called strongly measurable if there exists a sequence of simple functions 

fn such that limn→∞ ||fn(t) − f(t)||X = 0 for a.e. t ∈ I. Then we define the Bochner space L1(I; X) 

as a set of all strongly measurable functions f : I →X such that the function ||f(.)||X is 

integrable over I ([3], 2.2, 2.2.1).  

Analogously, the Bochner space L2(I, X) is defined as a set of all functions f ∊ L1(I; X) such 

that (||f(.)||X )2 is integrable over I and the Bochner space L∞(I, X) is defined as a set of all 

functions f ∊ L1(I; X) such that ess sup ||f(.)||X is bounded over I ([3], 2.2.1). 

Bochner spaces will be used only when X is L20,div(Ω) or W1,20,div(Ω) or (W1,20,div(Ω))*. (More 

details on useful function spaces can be found in [3], Chap. 2.) 

Now we are ready to formulate the concept of the standard (Leray-Hopf) weak solution to 

the NS equations. We shall call this weak solution a standard weak solution since we have 

introduced above a new concept of a complete weak solution to the NS problem. (See [3], 

3.1.) 

Let f ∈ L2(I; (W1,20,div(Ω))*), u0 ∈ L20,div(Ω).  



The function u ∈ L2(I; W1,20,div(Ω)) ∩ L∞(I; L20,div(Ω)) with ∂u/∂t ∈ L1(I; (W1,20,div(Ω))*) is 

called a standard (Leray-Hopf) weak solution to the Navier–Stokes equations if 

(i)  ∂u/∂t[ϕ] + ∫Ω(u · ∇u)·ϕ dx + ν ∫Ω ∇u:∇ϕ dx = f[ϕ] , ∀ϕ ∈ W1,20,div(Ω) and a.e. t ∈ I,  

(The evolution equation for the velocity field; here ν denotes the viscosity.) 

(ii) limt→0+ ∫Ω u(t, ·) · ϕ dx = ∫Ωu0 · ϕ dx , ∀ϕ ∈ L20,div(Ω). 

(Initial conditions.) 

(iii) ∫Ω |u(t)|2 dx + 2ν ∫(0,t) ∫Ω |∇u|2 dx dτ ≤ ∫Ω |u0|2 dx + 2 ∫(0,t) f[u] dτ   for a.e. t ∈ I.  

(So-called energy inequality.) 

Then in [3, 3.1.2] the existence of the standard (Leray-Hopf) weak solution to the NS 

equations is proved. 
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