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ABSTRACT:   

We work within a Winterberg framework where space, i.e., the vacuum, consists of a two 

component superfluid/super-solid made up of a vast assembly (sea) of positive and negative 

mass Planck particles, called planckions.  These material particles interact indirectly, and have 

very strong restoring forces keeping them a finite distance apart from each other within their 

respective species.  Because of their mass compensating effect, the vacuum appears massless, 

charge-less, without pressure, net energy density or entropy.  In addition, we consider two 

variable 𝐺 models, where, 𝐺, is Newton’s constant, and, 𝐺−1 , increases with an increase in 

cosmological time.  We argue that there are at least two competing models for the quantum 

vacuum within such a framework.  The first follows a strict extension of Winterberg’s model.  

This leads to nonsensible results, if 𝐺 increases, going back in cosmological time, as the length 

scale inherent in such a model will not scale properly.  The second model introduces a different 

length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the 

Planck mass.  Moreover we establish a connection between ordinary matter, dark matter, and 

dark energy, where all three mass densities within the Friedman equation must be interpreted 

as residual vacuum energies, which only surface, once aggregate matter has formed, at 

relatively low 𝐶𝑀𝐵 temperatures.  The symmetry of the vacuum will be shown to be broken, 

because of the different scaling laws, beginning with the formation of elementary particles.  

Much like waves on an ocean where positive and negative planckion mass densities effectively 

cancel each other out and form a zero vacuum energy density/ zero vacuum pressure surface, 

these positive mass densities are very small perturbations (anomalies) about the mean.  This 

greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem 

associated with the vacuum. 
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models, extended gravity, Newton’s constant as an order parameter, high energy behavior for 

the vacuum. 

 

I Introduction 

There are at least two competing models for the vacuum energy density, or, equivalently, 

vacuum pressure, based on the Winterberg Model.  This model is explained at length in 

references, [1,2,3,4,5,6,7], and further references therein.  The first is within a strict Winterberg 

interpretation where the Planck length, 𝑙𝑃𝑙 ≡ (ħ 𝐺/𝑐3)1/2, is considered to be the fundamental 

length scale to be associated with space.  This is also, according to Winterberg, the nearest 

neighbor distance of separation between positive mass Planck particles, and negative mass 

ones, as well.  The second model for the vacuum is a modified version [8,9,10], where the 

inherent length scale is, 𝐿.  This has the same interpretation as above, but now at much larger 

distances for the graininess of space.  In the present epoch, 𝐿0 = 5.03 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠, and its 

value was derived using box quantization, and considering transitions between excited energy 

states for both the  positive, and independently, the negative mass Planck particles.  This length 

scale ties in nicely to the 𝐶𝑀𝐵 temperature, and also, with the Higgs mass, which the former 

fundamental length, 𝑙𝑃𝑙 , in the Winterberg model, does not.  

The first length scale, 𝑙𝑃𝑙 , leads to incredibly high number densities for each planckion species, 

positive, and negative, of the order, 𝑙𝑃𝑙
−3 = 2.37 𝐸104 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/𝑚3, in the present epoch.  The 

individual volumes, occupied by these particles, are thus correspondingly small.  The second 

length scale, used in vacuum energy density model two, is much larger.  Here, 𝐿0 = 5.03 𝐸 −

19 𝑚𝑒𝑡𝑒𝑟𝑠, and thus, the number density for both species is relatively small, 𝐿0
−3 =

7.86 𝐸54 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/𝑚3. The subscript, “0”, will denote quantities defined in the present 

epoch, where the redshift, 𝑍 = 0.  The individual planckion volumes are now much larger than 

the customary Planck volume. 

Another intriguing aspect associated with this new fundamental length scale, 𝐿, for space, was 

that a connection could be made with the Higgs field [9,10].  If “𝐿” is considered a coherence 

length, then it has an effective scattering mass associated with it, defined as, 𝑀 ≡ ħ/(𝐿𝑐).  Its 

present day value is, 𝑀0 ≡ ħ/(𝐿0𝑐) = 6.99 𝐸 − 25 𝑘𝑔 = 392.9 𝐺𝑒𝑉/𝑐2.  This is very close to 

the Higgs mass, 125.35 𝐺𝑒𝑉/𝑐2.  This has led this author to try to establish a connection 

between the two concepts.  The result are references, [9,10].  The Higgs is treated as a 

composite particle, consisting of one positive with one negative Planck particle, held together 

by very strong superfluid forces.  The individual species are compelled to rub shoulders with 

one another, as they both occupy the same space, and by virtue of position (potential energy), 

their wave functions are forced to overlap.  In the current epoch, the Higgs coherence length is 
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roughly, 3.13 𝑡𝑖𝑚𝑒𝑠 that of the individual Planck wave functions.  The Planck particles do not 

interact directly, as demonstrated by Winterberg. 

We also showed [9,10] that the vacuum potential energy associated with the composite Higgs 

field equals, 𝑈𝐻𝑃𝐸 = 𝑀𝑐2(𝑛+̅̅̅̅ − 𝑛−̅̅̅̅ )/𝑛𝐿 = ħ𝑐𝐿2 (𝑛+̅̅̅̅ − 𝑛−̅̅̅̅ ).  The subscript, 𝐻𝑃𝐸, stands for 

Higgs potential energy, and, 𝑛𝐿 ≡ 𝐿−3, is the number density for both positive and negative 

mass Planck particles.  The, 𝑛±̅̅̅̅  , are the energy-weighted, number density averages for 

positive/negative mass Planck particles, within a region of space. The +/- Planck particles can 

have different populations within their excited energy states.  If space is devoid of ordinary 

matter, dark matter, and dark energy, then we have a perfectly balanced vacuum, where only 

Planck particles and radiation are present, and in thermal equilibrium with one another.  Under 

such conditions, 𝑛+̅̅̅̅ = 𝑛−̅̅̅̅  , and space does not have an inherent mass density or pressure 

associated with it.  It is also massless, charge-less, and without entropy.   

If, on the other hand, 𝑛+̅̅̅̅  ≷  𝑛−̅̅̅̅  , then the vacuum is not perfectly balanced, and the rest mass 

of the Higgs is either increased or decreased by this amount.  A nontrivial vacuum energy 

density, or equivalently, a non-trivial vacuum pressure, in the amount, 𝑢𝑣𝑎𝑐𝑢𝑢𝑚 = 𝑝𝑣𝑎𝑐𝑢𝑢𝑚 =

𝑢𝐻𝑃𝐸 = 𝑝𝐻𝑃𝐸 = 𝑀𝑐2 (𝑛+̅̅̅̅ − 𝑛−̅̅̅̅ ), results.  See references, [9,10].  Ordinary matter, dark matter, 

and dark energy, are thus considered to be residual artifacts of the quantum vacuum, small 

perturbations, manifesting themselves, at relatively low 𝐶𝑀𝐵 temperatures, below, 1 𝑇𝑒𝑉 

[11,12,13,14].  According to Winterberg, elementary particles are quasi-particle excitations, 

upon this sea of positive and negative Planck particles.  The Planck particles, in turn, interact 

with the 𝐶𝑀𝐵 photons.  The elementary particles manifest themselves in a series of steps 

(freeze out), as the universe cools.  Going even further, dark matter and dark energy are 

thought to result as a consequence of ordinary matter aggregating.  See in this regard, 

references, [15,16,10], where inherent use of the Winterberg planckion hypothesis has been 

made. 

The question naturally arises as to how these two fundamental lengths, 𝑙𝑃𝑙 , and, 𝐿 , scale upon 

an expansion of the universe.  Do they scale realistically, as the 𝐶𝑀𝐵 temperature increases, 

going back in cosmological time?  We will find that, 𝑙𝑃𝑙 , does not behave as it should, which is 

to decrease with increasing 𝐶𝑀𝐵 temperatures.  The derivation of, 𝐿 , on the other hand, 

explicitly invokes the 𝐶𝑀𝐵 temperature, and lends itself naturally to a correct scaling behavior, 

as we shall see.  Another plus is that it is quite conservative in its scaling, given the many orders 

of magnitude difference, in 𝐶𝑀𝐵 temperature. 

To prove this, we will subject both quantum vacuum density models, one based on, 𝑙𝑃𝑙 , and the 

other relying on, 𝐿 , to two cosmologically time-varying 𝐺 models, where, 𝐺 = 𝐺(𝑍), is 

Newton’s constant.  Since the cosmic scale parameter, “𝑎”, is related to both 𝐶𝑀𝐵 
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temperature, 𝑇, and redshift, 𝑍, we could just as well write, 𝐺 = 𝐺(𝑎) = 𝐺(𝑇) = 𝐺(𝑍), since, 

𝑎 = 𝑇0/𝑇 = (1 + 𝑍)−1.  The, 𝑇0 , is the current epoch 𝐶𝑀𝐵 temperature, 

𝑇0 = 2.726 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾𝑒𝑙𝑣𝑖𝑛.  Newton’s constant, 𝐺,  is assumed to depend solely on the 𝐶𝑀𝐵 

radiation temperature, which permeates space.  As a matter of fact, we consider 𝐺−1 to be a 

fundamental property of the vacuum, an order parameter, which vanishes at sufficiently high 

temperatures [17,18,19], much like magnetization in a paramagnet.  If we did not allow 𝐺 to 

vary with cosmological time, then there would be no mechanism for the Planck length, 𝑙𝑃𝑙, to 

scale. 

Our two, very distinct, one-parameter models for, 𝐺−1 = 𝐺−1(𝑎), which we call gravitational 

models, 𝐴, and 𝐵, are relatively simple functions, which mimic order parameter behavior.  At 

low temperatures, they both approach a saturation value, and at very high temperature, both 

𝐺−1 functions increase as, 𝑇−1.  Both models, even though functionally very different, indicate 

almost the same inception temperature for, 𝐺−1, between, 6 − 7 𝐸21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾𝑒𝑙𝑣𝑖𝑛.  Before 

that point in time, gravity, as we know it, ceased to exist.  We should point out that Winterberg 

never entertained a variable gravitational constant.  As such, his length scale, 𝑙𝑃𝑙 ≡ (ħ 𝐺/

𝑐3)1/2, never varied.  His fundamental length could also not scale as the universe expanded 

(cooled down).  To make our point, however, we will proceed with the “what if” scenario, and 

show how his model would differ fundamentally from ours, had he allowed for such an 

interpretation. 

We believe that, at some point, 𝐺−1 ceases to exist.  This would have important ramifications, 

including the fact, that then, the masses for the positive and negative Planck particles would 

also disappear.  Remember that by definition, 𝑚𝑃𝑙 ≡ (ħ𝑐/𝐺)1/2 = ±∣ 𝑚𝑝𝑙 ∣.   Thus, if, 𝐺−1, 

vanishes, then so would our masses for the positive and negative mass planckions.  The 

inception temperature for 𝐺−1  must be interpreted, in our view, as the freeze-out temperature 

for positive and negative mass planckions.   

The outline of the paper is as follows.  In section II, the two competing vacuum energy density 

models are compared.  In section III, our two variable 𝐺−1 models, 𝐴 and, 𝐵, are introduced.  In 

section IV, we focus on gravitational model, 𝐴.  Here we show that Winterberg’s scaling model 

does not make physical sense if 𝐺 is allowed to increase going back in cosmological time.  Our 

modified version, however, based on a new length determination, which measures the 

graininess of space, will scale appropriately upon expansion of the universe.  Two tables will be 

constructed, Tables I & II, which charts the evolution of the universe, where both vacuum 

energy density models are considered.  A remarkable feature will surface, namely that in no 

other epoch, other than at the inception temperature for, 𝐺−1 , do we have a match between 

the 𝐶𝑀𝐵 radiation density, and our Planck particle energy density.  In other words, both energy 

densities equal each other, in that particular epoch.  This is to be expected at the time of Planck 
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particle “freeze-out”.  Both energy density calculations are entirely independent of each other.  

One is based on a gravitational model, and the other is based on radiation, two different 

concepts. 

In section V, we will focus on gravitational model, 𝐵, for a variable, 𝐺−1.  Again we consider 

both vacuum energy density models, that of Winterberg, and a modified version, developed by 

this author.  We construct new tables for both vacuum energy density models, Tables III & IV, 

which charts the evolution of the vacuum upon expansion.  Here again, we will obtain 

qualitatively similar results.  And we obtain the spectacular result, that only close to the 

inception temperature for, 𝐺−1, i.e., at, 𝑇 = 𝑇∗, do we have a near perfect match between the 

𝐶𝑀𝐵 radiation energy density, and the Planck vacuum energy density.  There is no a-prior 

reason to assume this, as the two concepts are seemingly unrelated, and independent of one 

another.  This lends credence, and support, for our 𝐺−1models, and, equally important, their 

respective parametrizations, in terms of temperature. 

In section VI, we focus on ordinary matter, dark matter, and dark energy.  We will make a case 

for why these should be treated as residual energy densities, perturbations within the vacuum, 

in effect, which only surface at much lower 𝐶𝑀𝐵 temperatures, once the planckion vacuum 

symmetry has been broken.  The amount of symmetry breaking is truly insignificant given the 

vast assembly (ocean) of Planck particles, which are present.  And finally, in section VII, we 

present our summary, and conclusions. 

 

II Two Competing Vacuum Energy Density Models 

In this section we compare the two competing vacuum energy density models.  The first is due 

to Winterberg, if he were to assume a variable, 𝐺, which increases as one goes back in time.  

The second is a modification based a new interpretation for vacuum energy, referenced in 

[8,9,10].  The latter defines a new fundamental length scale for the vacuum, which we denote 

by, 𝐿, versus, Winterberg’s, 𝑙𝑃𝑙. 

If Winterberg is correct, then, 𝑙𝑃𝑙 ≡ (ħ 𝐺/𝑐3)1/2 , would define the intrinsic length scale for the 

vacuum, and measure the graininess of space.  In previous epochs, as 𝐺 increases, this 

definition would then imply that, 𝑙𝑃𝑙 , also increases.  This makes no sense, as space should 

contract, going back in time.  The volume occupied by the individual Planck particles, 𝑙𝑃𝑙
3  would 

also increase, going back in time, and the number density, 𝑛𝑃𝑙 = 𝑙𝑃𝑙
−3 , would therefore, 

decrease.  This is not what we would expect.  As 𝑍 increases, the Planck particle number density 

should increase, and the planckion volume should decrease. 

In the current epoch, and only in this epoch, we obtain the values, 
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   𝑙𝑃𝑙,0 ≡ (ħ 𝐺0/𝑐
3)1/2 = 1.62 𝐸 − 35 𝑚𝑒𝑡𝑒𝑟𝑠                         (2 − 1𝑎) 

    𝑙𝑃𝑙,0
3 = 4.22 𝐸 − 105 𝑚3              (2 − 1𝑏) 

    𝑛𝑃𝑙,0 = 𝑙𝑃𝑙,0
−3 = 2.37 𝐸104               (2 − 1𝑐) 

These are the customary values, and quite dramatic, given their orders of magnitude.   

As far as the planckion energy density is concerned, for the positive and negative mass Planck 

particles, we would find, 

   𝜌𝑝𝑙𝑎𝑛𝑐𝑘𝑖𝑜𝑛𝑠 = 𝜌± = ± ∣ 𝑚𝑃𝑙 ∣/ 𝑙𝑃𝑙
3                 (2 − 2) 

The Planck mass is defined by, 

    𝑚𝑃𝑙 ≡ ± (ħ𝑐/𝐺)1/2 = ± ∣ 𝑚𝑃𝑙 ∣               (2 − 3) 

In the present epoch, we thus obtain, 

  𝜌𝑝𝑙𝑎𝑛𝑐𝑘𝑖𝑜𝑛𝑠,0 = ± ∣ 𝑚𝑃𝑙,0 ∣/ 𝑙𝑃𝑙,0
3 = ± 5.16 𝐸96 𝑘𝑔/𝑚3              (2 − 4) 

  𝑚𝑃𝑙,0 ≡ ± (ħ𝑐/𝐺0)
1/2 = ± 2.18 𝐸 − 8 𝑘𝑔                (2 − 5) 

Because of the mass compensating effect between the ± mass planckions, we expect for the 

undisturbed vacuum, the following net mass density 

   < 𝜌𝑝𝑙𝑎𝑛𝑐𝑘𝑖𝑜𝑛𝑠 > = < 𝜌+ > + < 𝜌− >= 0               (2 − 6) 

The, < ⋯ >, denote an average, within a region of space.  In such a balanced state for the 

vacuum, we expect zero net energy density, and, no net vacuum pressure.  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2 − 6), 

represents an elegant solution to the cosmological constant problem in physics, as pointed by 

Winterberg. 

We now turn to our second fundamental length scale for the vacuum, 𝐿. It is determined as 

follows.  A Planck oscillator emits and absorbs the following amount of energy, for a given 

frequency, 𝜈, and temperature, 𝑇, 

    ∆𝐸 = ℎ𝜈/2  +   ℎ𝜈/[𝑒(ℎ𝜈/𝑘𝐵𝑇) − 1]               (2 − 7) 

The peak frequency of blackbody photon radiation is related to the temperature via the 

formula, 

𝜈𝑝𝑒𝑎𝑘 = 2.8214 (𝑘𝐵𝑇/ℎ) 

                 = 1.601 𝐸11    𝐻𝑧               (2 − 8) 
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The, 𝑘𝐵, is Boltzmann’s constant, and the above frequency calculation is for the current 𝐶𝑀𝐵 

temperature of, 𝑇0 = 2.726 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾𝑒𝑙𝑣𝑖𝑛.  For this 𝐶𝑀𝐵 temperature,  ℎ𝜈𝑝𝑒𝑎𝑘 =

1.061 𝐸 − 22 𝐽𝑜𝑢𝑙𝑒𝑠.  Substituting this into, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 7), we obtain 

      ∆𝐸𝑝𝑒𝑎𝑘 = [. 5 + .0633](1.061 𝐸 − 22) 

                    = 5.976 𝐸 − 23  𝐽𝑜𝑢𝑙𝑒𝑠               (2 − 9) 

We assume that the 𝐶𝑀𝐵 photons impart energy and momentum through elastic collisions to 

the surrounding positive and negative mass planckions.  The 𝐶𝑀𝐵 blackbody photons will also 

absorb the same amount of peak energy, when the planckions undergo transitions from higher 

energy states to lower levels.  The blackbody photons are assumed to be in thermal equilibrium 

with the surrounding planckions.  Thus, the most probable amount of energy emitted and 

absorbed by the planckions is specified by, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 9). 

Of course, as the 𝐶𝑀𝐵 temperature increases, the peak frequency will also increase, as seen by, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 8).  This will serve to increase the most probable amount of energy, emitted 

and absorbed, by the planckions through, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 9).  In actual fact, however, a whole 

spectrum (continuous distribution) of energies (frequencies) are continuously being emitted 

and absorbed, because there are many different transitions possible, and not just the “most 

probable” one.  We expect that distribution to follow a blackbody spectrum.  Thus the vacuum 

is made up of a continuum of vibrating frequencies due to the randomly, oscillating planckions.  

The Heisenberg uncertainty relation results, as do many of the other characteristics associated 

with quantum mechanics.  We believe that blackbody photon bombardment of the planckions 

is ultimately responsible for this “Zitterbewegung”, a random, chaotic motion inherent to 

space, and associated with quantum mechanics.  A particle, such as an electron, when placed 

upon such a sea of Planck particles, will inherently rock back and forth, in a random, chaotic 

fashion. 

Now the planckions are pretty much anchored in position due to their very strong superfluid 

restoring forces acting upon them within their respective species.  We can thus treat each 

individual planckion, positive or negative, as a particle trapped in a three dimensional box.  

Because of box quantization, the energy levels for each species are given by the well-known 

quantum mechanical formula, 

𝐸 𝑛𝑥 𝑛𝑦 𝑛𝑧
= 𝜋2ħ2/(2𝑚𝐿2)  (𝑛𝑥

2 + 𝑛𝑦
2 + 𝑛𝑧

2)            (2 − 10) 

The, 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 , are quantum numbers, which can take on the values, 1,2,3, ….   The lowest 

energy level, or ground state, is specified by, (𝑛𝑥 , 𝑛𝑦  , 𝑛𝑧) = (1,1,1).  The size of the box is, 𝐿3, 

where, 𝐿, is the length on one side.  The formula is still valid at zero temperature, and holds for 
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both, the quantized positive, as well as the quantized negative mass, planckions.  A transition 

between energy states or levels, positive or negative, would emit or absorb a finite amount of 

energy, 

∆𝐸 = 𝐸 𝑛𝑥 𝑛𝑦 𝑛𝑧
− 𝐸 𝑛𝑥

′   𝑛𝑦 
′  𝑛𝑧

′              (2 − 11) 

The unprimed quantum numbers refer to the situation before, and the primed quantum 

numbers correspond to the situation after the transition.  This is completely analogous to the 

situation in the Hydrogen atom, where we have the Lyman series, the Balmer series, the 

Paschen series, etc.  Even though the energy levels are quantized (discrete), the transitions are 

continuous, because the quantum numbers can approach infinity. 

By considering a few transitions with actual quantum numbers, such as, 211 → 111 (positive 

planckion emission), or, −111 → −112 (negative planckion emission), it is easy to convince 

oneself that, 𝐸111, is the most probable, i.e., the most frequent amount of energy, either 

emitted or absorbed.  Thus, we are justified in setting, 

    (𝛥𝐸)𝑝𝑒𝑎𝑘 = 2 𝐸111 = 3𝜋2ħ2/( 𝑚𝑃𝑙 𝐿
2)             (2 − 12) 

The factor of 2 is needed because the photon energy is, on average, equally divided between 

the two species of planckions, positive and negative.  A negative mass particle will have its 

energy lowered, if it transitions upwards within the quantum mechanical box.  

Now, we have a value for, (𝛥𝐸)𝑝𝑒𝑎𝑘.  See, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 9).  We also know that the Planck 

masses have the values,  𝑚𝑃𝑙 = ± ∣  𝑚𝑃𝑙 ∣ = ±  2.176 𝐸 − 8  𝑘𝑔.  Thus, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 12), 

can be used to solve for 𝐿.  We find that, in the present epoch, 

𝐿 = 𝑙+(0) = 𝑙−(0) = 5.03 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠            (2 − 13) 

This we consider to be the fundamental length scale for the vacuum (space), in the current 

epoch.  It is also the nearest neighbor distance of separation between two positive, or two 

negative, Planck particles, within the two component superfluid/ super-solid. 

We note that, once this distance is known, a typical number density for both the positive, and 

the negative, mass planckions, can be found. We calculate, 

𝑛+(0) = 𝑙+(0)−3 = 7.86 𝐸54 𝑚−3                      (2 − 14𝑎) 

    𝑛−(0) = 𝑙−(0)−3 = 7.86 𝐸54 𝑚−3                      (2 − 14𝑏) 

    𝑛0 ≡ 𝐿0
−3 = 𝑙±(0)−3 = 7.86 𝐸54 𝑚−3         (2 − 14𝑐) 
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These results were derived in a previous work, reference, [8], by this author.  The (0) signifies a 

vacuum in the undisturbed, equilibrium state.  The above numerical results hold only in the 

present epoch, as we used,  𝑇0 = 2.726 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾𝑒𝑙𝑣𝑖𝑛, as our starting point 𝐶𝑀𝐵 

temperature. 

As mentioned, it is important to realize that as the 𝐶𝑀𝐵 temperature increases, so does the 

peak frequency by, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 8).  Thus, (𝛥𝐸)𝑝𝑒𝑎𝑘, increases, as does, 𝐸111.  This shows us 

that at higher 𝐶𝑀𝐵 temperatures, the "𝐿" value actually decreases, which is what we would 

expect for the universe going back in cosmological time.   

Also very important is the realization that the Planck mass can now take on both positive and 

negative values, i.e., 𝑚𝑃𝑙 = ± ∣  𝑚𝑃𝑙 ∣.  If both positive and negative mass is substituted in, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 10), then the average of both positive with negative energy states equals, 

  𝐸𝑉𝑎𝑐𝑢𝑢𝑚 = < 𝐸 𝑛𝑥 𝑛𝑦 𝑛𝑧
>+ +< 𝐸 𝑛𝑥 𝑛𝑦 𝑛𝑧

>−                        (2 − 15) 

    = ∑ (𝐸 𝑛𝑥 𝑛𝑦 𝑛𝑧
)+ 𝑛𝑥 𝑛𝑦 𝑛𝑧

/𝑁 + ∑ (𝐸 𝑛𝑥 𝑛𝑦 𝑛𝑧
)− 𝑛𝑥 𝑛𝑦 𝑛𝑧

/𝑁 = 0      

This implies that under normal conditions (circumstances), the quantum mechanical vacuum 

has no net vacuum energy density, nor does it have net vacuum pressure, as the planckions are 

in a perfectly balanced state, in terms of numbers, and populated energy levels.  The vacuum is 

also devoid of net mass or charge.  The vacuum will appear empty, when, in fact, it is not. 

A long standing problem in physics is the cosmological constant problem.  If there were only 

one species of Planck particle, and if it had positive mass, then the mass density of the quantum 

mechanical vacuum would equal the absolute value of, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 4).   But because there 

are two species, one with positive, and the other with negative mass, the net energy associated 

with Planck particles is zero.  In our version of the quantum vacuum, we would substitute, 

𝐿 = 5.03 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠, for 𝑙𝑃𝑙  .  Our modified version of, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 4), would thus 

read, 

   𝜌𝑄𝑀 =  𝑚𝑃𝑙/𝐿
3 = ± 1.71 𝐸47 𝑘𝑔/𝑚3 (𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑒𝑝𝑜𝑐ℎ)           (2 − 16) 

In the current epoch, the value of 𝐿 is specified by 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 13).    And, 𝑚𝑃𝑙 , has the 

unique value, ±2.176 𝐸 − 8 𝑘𝑔.  Upon comparison with our previous equation, 𝑎𝑡𝑖𝑜𝑛, (2 − 2) , 

this is certainly different, numerically.  We will identify the energy densities associated with 

ordinary matter, dark matter and dark energy, in Friedman’s equation, with something else.  It 

is not to be compared to either, 𝑚𝑃𝑙/𝐿
3,  nor, ( ∣ 𝑚𝑃𝑙 ∣ +(−∣ 𝑚𝑃𝑙∣ ∣)/𝐿3 = 0.  Rather, it must be 

a residual part of, 𝜌𝑣𝑎𝑐𝑢𝑢𝑚, left over after the vacuum symmetry is broken, at much reduced 

𝐶𝑀𝐵 temperatures.  More on this will be said later, in section VI. 
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We have seen that our length scale for the quantum vacuum is directly tied in to 𝐶𝑀𝐵 

temperature, unlike the Planck length, 𝑙𝑃𝑙.  We can write, 𝐿 = 𝐿(𝑇) = 𝐿(𝑎) = 𝐿(𝑍), since the 

cosmic scale parameter, “𝑎”, is defined as, 𝑎 ≡ 𝑇0/𝑇 = (1 + 𝑍)−1.  It is now time to establish 

the exact dependency.  We start with, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (2 − 7), 𝑎𝑛𝑑, (2 − 8).  All variables with 

subscript,“0” , denote the current epoch (𝑍 = 0).  By setting up a ratio, we find that, 

    ∆𝐸𝑝𝑒𝑎𝑘/∆𝐸𝑝𝑒𝑎𝑘,0 = 𝑇/𝑇0 = 𝑎−1             (2 − 17) 

Also from, 𝑎𝑡𝑖𝑜𝑛, (2 − 12) , it follows that, 

∆𝐸𝑝𝑒𝑎𝑘/∆𝐸𝑝𝑒𝑎𝑘,0 = 𝐸111/𝐸111,0 = ( 𝑚𝑃𝑙,0 𝐿0
2)/( 𝑚𝑃𝑙 𝐿

2)     

      = (𝑙𝑃𝑙/𝑙𝑃𝑙,0) (𝐿0/𝐿)
2                                (2 − 18) 

From the defining relations for Planck length, 𝑙𝑃𝑙 , and, Planck mass, 𝑚𝑃𝑙 , in terms of 𝐺 , we can 

establish the relation, 𝑙𝑃𝑙 = ħ/(𝑚𝑃𝑙𝑐).  That’s how we obtained the second line in, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 18).   

We next set the right hand side of, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 17), equal to the right hand side of, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 18), and rearrange terms.  This gives, 

     𝐿/𝐿0 = (𝑙𝑃𝑙/𝑙𝑃𝑙,0)
1/2 𝑎1/2             (2 − 19) 

And finally, let us use the defining relation for the Planck length, 𝑙𝑃𝑙 ≡ (ħ 𝐺/𝑐3)1/2, to re-

express, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 19), as, 

     𝐿/𝐿0 = (𝐺/𝐺0)
1/4 𝑎1/2             (2 − 20) 

Once 𝐺 = 𝐺(𝑎) is specified, we can easily find the scaling behavior for, 𝐿/𝐿0, using this last 

equation. Remember that the value of, 𝐿0 , is specified by, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 13).  The 

corresponding, 𝑙𝑃𝑙/𝑙𝑃𝑙,0 , scaling law is simpler, 

     𝑙𝑃𝑙/𝑙𝑃𝑙,0 = (𝐺/𝐺0)
1/2               (2 − 21) 

We notice that, if, 𝐺 does not vary cosmologically, then there is no scaling behavior for, 𝑙𝑃𝑙.  

The new fundamental length, 𝐿, by contrast, would still scale. 

 

III Two Variable 𝑮−𝟏(𝒂) Models 

We next review our two variable, 𝐺−1 = 𝐺−1(𝑎) , models for Newton’s constant, 𝐺.  These are 

relatively simple, one-parameter, nonlinear functions, which mimic (display) order parameter 

behavior for, 𝐺−1.  These functions were first introduced, and explored in reference, [17].  We 
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wanted to explain the quintessence parameter, 𝑤 = −.98.  In the 𝛬𝐶𝐷𝑀 model, this 

parameter is set exactly equal to minus one.  But after over a decade of indirect 

measurements, 𝑤 = −.98 , seems to be a better fit to observation [20,21,22,23].  If we assume 

that, 𝑤 = −.98, then we can fix the parameters in our two 𝐺−1models, designated as models 

𝐴, and 𝐵.  Our results reduce to the 𝛬𝐶𝐷𝑀 model in the limit where, 𝑤 → −1.  Except in the 

early universe, there is hardly any difference between these gravitational models, 𝐴 and, 𝐵, and 

the 𝛬𝐶𝐷𝑀 model.  In all fairness, given the uncertainty in the measurement of, 𝑤, it is also not 

unreasonable to assume that, 𝑤 = −1. 

The first parametrization for, 𝐺−1, is called model, 𝐴, and has the functional form, 

    𝐺 −1= 𝐺∞
−1[1 − 𝑒−4.28 𝑎] (𝑀𝑜𝑑𝑒𝑙 𝐴)             (3 − 1) 

In, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 1), the, 𝐺∞
−1 is the saturated value, taken in the limit where, 𝑎 → ∞.  The 

“𝑎” is the cosmic scale parameter, equal to, 𝑎 = (1 + 𝑍)−1 = 𝑇0/𝑇.  A plot of, 𝐺 −1/𝐺0
−1, is 

given by the blue histogram in, 𝐹𝑖𝑔𝑢𝑟𝑒 1.  Notice that, in this figure, we give a ratio in terms 

of the present value of, 𝐺0
−1, where, 𝐺0, is the customary value of Newton’s constant.  By 

constructing a ratio, we factored out the constant, 𝐺∞
−1.  In the present epoch, we are close 

to the saturated value since it was demonstrated that, 𝐺0 = 1.014 𝐺∞. 

The second variable, 𝐺 −1 function, model, 𝐵, has the assumed form, 

𝐺 −1= 𝐺∞
−1[coth(17.67𝑎) − 1/(17.67𝑎)] (𝑀𝑜𝑑𝑒𝑙 𝐵)            (3 − 2) 

           = 𝐺∞
−1 ∗ 𝐿(17.67𝑎) 

This equation is proportional to the Langevin function, 𝐿(𝑥) = 𝐿(17.67𝑎), known from 

paramagnetism.  Again, the, 𝐺∞
−1 , is a saturation value, and with this new parametrization, 

𝐺0 = 1.054 𝐺∞.  In other words we are close to saturation in the present epoch.  A plot of, 

𝐺 −1/𝐺0
−1, for model 𝐵, is given by the green histogram in, 𝐹𝑖𝑔𝑢𝑟𝑒 1.  The two ratios, 

𝐺 −1/𝐺0
−1 , for models 𝐴 and 𝐵, look very similar, even though the two functions, 𝐺 −1, are 

quite distinct from one another. 
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The parameters, 4.28, in, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 1), and, 17.67, in, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 2), were fixed by 

imposing the condition that the quintessence parameter equals, 𝑤 = −.98. 

Both functions specified by, 𝑎𝑡𝑖𝑜𝑛𝑠, (3 − 1) 𝑎𝑛𝑑 (3 − 2) , mimic order parameter behavior in 

that they approach a saturation value (different for the two competing models), as 𝑎 → ∞.  

Moreover, both functions, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (3 − 1) 𝑎𝑛𝑑 (3 − 2), are proportional to 𝑇−1, at very 

high 𝐶𝑀𝐵 temperatures.  Both indicate an inception temperature for,  𝐺−1, in the 

neighborhood of, 6 − 7 𝐸21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾𝑒𝑙𝑣𝑖𝑛.  For model, 𝐴, we found, specifically [17], that, 

𝑇∗ = 6.19 𝐸21 𝐾, whereas for model, 𝐵, we obtained a very similar result, 𝑇∗ = 6.99 𝐸21 𝐾.  

Before that point in cosmological time, our premise is that gravity, as we know it, did not exist.  

And neither did massive planckions, by, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 3).  Also, the fact that both different 

functions give us an almost equal inception temperature leads us to suspect that there may be 

some inherent bias (merit) in treating inverse gravity as an order parameter. 

The physical motivation behind the two functions, and their respective parametrizations, have 

been touched upon in reference [17], and will not be repeated here.  Moreover, these two 

functions were also used to present a different version of inflation.  For a discussion of this, we 

refer the reader to reference, [19]. 

From, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 1), it should be clear that 
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−𝟏 𝐯𝐞𝐫𝐬𝐮𝐬 𝐜𝐨𝐬𝐦𝐢𝐜 𝐬𝐜𝐚𝐥𝐞 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫, 𝐚  

FIGURE 1 

  Blue histogram refers to gravitational model,  𝐴 
  Green histogram refers to gravitational model,  𝐵 
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𝐺/𝐺0= [1 − 𝑒−4.28]/[1 − 𝑒−4.28 𝑎]  (𝑀𝑜𝑑𝑒𝑙 𝐴)            (3 − 3) 

The, 𝐺0, is the current epoch value for Newton’s constant, the one we are familiar with.  

Similarly, using, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 2), it follows that, 

𝐺/𝐺0 = [𝑐𝑜𝑡ℎ(17.67) − 1/(17.67)]/[coth(17.67𝑎) − 1/(17.67𝑎)]       (𝑀𝑜𝑑𝑒𝑙 𝐵)                      

                                                                                                                                                     (3 − 4) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (3 − 3) 𝑎𝑛𝑑 (3 − 4), are all that are needed for determining the scaling 

behavior for our two quantum vacuum models. 

 

IV Gravitational Model, A, Scaling for Two Planck Particle, Vacuum Energy 

Densities 

We next look at the cosmological evolution for our two competing vacuum energy density 

models, presented in section II.  In this section, we focus on our gravitational model, 𝐴, where, 

𝐺 −1, has the functional form, specified by, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 1). 

In order to structure our discussion, we will present our results in table form, Tables I, and II.  

We proceed to illustrate how the various entries in the rows/columns are obtained.  This will 

allow for an easy comparison with model, 𝐵, discussed in the next section. 

Under the first column in Table I, column “A”, we enter the cosmic scale parameter, “𝑎”.  For, 

𝑎 > 1, we are looking at future epochs, and for, 𝑎 < 1, we are going back in cosmological time.  

Notice that we stop at, 𝑎∗ = 4.37 𝐸 − 22, as this corresponds to our inception temperature for 

𝐺−1.  For gravitational model, 𝐴, the inception temperature is, 𝑇∗ = 6.19 𝐸21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾𝑒𝑙𝑣𝑖𝑛.  

Column “B” gives us a typical 𝐶𝑀𝐵 energy, corresponding to the entries under column “A”.  We 

are using the formula, 𝐸 = 𝑘𝐵𝑇, where 𝑘𝐵, is Boltzmann’s constant.  Notice that the energy is 

specified in units of billions of electron volts, 𝐺𝑒𝑉 = 109 𝑒𝑉. 

Under column “C”, in Table I, we calculate our specific values for, 𝐺/𝐺0.  For this we use, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 3), where the appropriate cosmic scale parameter, “𝑎”, is found under column 

“A”.  This will determine the various row values.  At the very highest temperature, we see that, 

𝐺∗ ≡ 𝐺(𝑎∗) = 5.273 𝐸20 ∗  𝐺0. 

Columns, “D” and, “E”, in Table I, give us the Planck length, and Planck number density, for both 

the positive, and the negative mass, Planck particle.  We are using, 𝑙𝑃𝑙 ≡ (ħ 𝐺/𝑐3)1/2, and, 

𝑛𝑃𝑙 = 𝑙𝑃𝑙
−3, respectively, for these calculations.  The appropriate 𝐺 value is found under column 

“C”.  We note that, as the 𝐶𝑀𝐵 temperature increases, we obtain smaller “𝑎” values, and the 
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fundamental length scale for the vacuum, 𝑙𝑃𝑙 , consequently increases.  This is not what we 

want for a smaller sized universe, moving back in time.    Also, the planckion number densities, 

found under column, “E”, for both the positive and negative mass Planck particle, decrease.  

Upon a contraction of the universe, this number should increase!  In short, we believe it is a 

mistake to interpret, 𝑙𝑃𝑙 , as the fundamental length scale for space. 

 

Column “F” gives us the absolute value of the Planck mass.  We are using the formula, 

∣ 𝑚𝑃𝑙 ∣ ≡ (ħ𝑐/𝐺)1/2, and, the relevant 𝐺 is found under column “C”.  Unless otherwise stated, 

𝑀𝐾𝑆 units are used throughout.  For column “G”, we construct the ratio, 𝑚𝑃𝑙𝑐
2/(𝑘𝐵𝑇).  Notice 

that this ratio approaches unity, as the cosmic scale parameter, “𝑎” nears, 𝑎∗ , the scale 

parameter at 𝐺−1 inception.  We define, 𝑎∗ ≡ 𝑎(𝑇∗) , where, 𝑇∗ , is our inception temperature 

for, 𝐺−1 .  According to this gravitational model, the temperature of inception is, 𝑇∗ =

𝑇0/4.40 𝐸 − 22 = 6.19 𝐸21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾𝑒𝑙𝑣𝑖𝑛.  This is many orders of magnitude less than the 

Planck temperature, 𝑇𝑃𝑙 = 1.417 𝐸32 𝐾. 

 

The positive planckion mass density is given under column “H”.  For the negative mass Planck 

particle, we would take negative this value.  We have used the formula, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 2).  

Obviously, if positive is added to negative, we obtain zero net mass density.  This would 

represent the vacuum in a perfectly balanced state.  At very high energies we believe that such 

a state existed.  The vacuum was made up exclusively of planckions, and blackbody radiation.  

As the universe cooled upon expansion, below energy scales of, 1 𝑇𝑒𝑉, the vacuum gets broken 

in a series of steps,  First ordinary matter appears.  And then at much cooler temperatures, dark 

matter and dark energy make their appearance.  These are, however, residual energy densities, 

small perturbations, upon a vast ocean of positive and negative mass planckions.  We postpone 

discussion of this until section, VI. 

 

Under column “I”, we consider the 𝐶𝑀𝐵 blackbody radiation energy density, divided by, 𝑐2.  

From the cosmic scale parameter values, “𝑎”, listed under column, “A”, we can find the 𝐶𝑀𝐵 

temperature, using, 𝑇 = 𝑇0/𝑎.  Once we have the temperature, we can find the equivalent 

radiation mass density, utilizing the well-known formula, 

     𝜌𝑅𝑎𝑑. = 4𝜎𝑇4/𝑐3                            (4 − 1) 

 

Here, 𝜎, is the Stefan-Boltzmann constant, 𝜎 = 5.670 𝐸 − 8 (𝑀𝐾𝑆 𝑢𝑛𝑖𝑡𝑠). 

 

If we compare column “H” to column “I”, we will notice a remarkable coincidence.  At the 𝐺−1 

inception temperature, and in no other epoch, do we have a numerical match in value, for mass 

density, between these two columns.  The radiation mass density equals the planckion mass 

density, in this epoch, and no other.  Of course, we do not believe that this is a coincidence.  
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This is what is to be expected if the planckions are to freeze out of the vacuum, at this specific 

temperature.  We emphasize that column “H” is based on a very specific gravitational order 

parameter model, model, 𝐴, for 𝐺−1.  Column “I” on the other hand, is a property of blackbody 

radiation, and thus independent of gravity (column “H”).  This is more than a remarkable 

coincidence.  It lends credence, and support for our specific model for, 𝐺−1, and just as 

important, for its specific parametrization, in terms of the value, −4.28, in, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 1). 

 

 

 

 

 

1st Variable Vacuum Energy Density for Gravitational Model A T* = 6.19 E21 K = inception temperature for G -1

A B C D E F G H I

Cosmic CMB Variable Variable 1st Variable Variable Variable 1st Variable Indep. CMB

Scale Photon Gravitational Planck (+/-) Planck (+) Planck (+) Planck (+) Planck Radiation 

Parameter Energy Constant Length # Density Mass Energy Ratio Mass Density Mass Density

"a"   k B T G/G 0 l Pl n Pl  = (l Pl )
-3  m Pl + = -m Pl - m Pl + c

2 /k B T ρ Vac+ = - ρ Vac- ρ Rad

(GeV) (meters) (meters-3) (kg) (kg/m3) (kg/m3)

3.9 6.02E-14 9.86E-01 1.60E-35 2.42E+104 2.19E-08 2.04E+32 5.30E+96 2.01E-33

3.8 6.18E-14 9.86E-01 1.60E-35 2.42E+104 2.19E-08 1.99E+32 5.30E+96 2.23E-33

1 2.35E-13 1.00E+00 1.62E-35 2.37E+104 2.18E-08 5.20E+31 5.16E+96 4.65E-31

1.00E-01 2.35E-12 2.83E+00 2.72E-35 4.97E+103 1.29E-08 3.09E+30 6.43E+95 4.65E-27

1.00E-02 2.35E-11 2.35E+01 7.84E-35 2.07E+102 4.49E-09 1.07E+29 9.31E+93 4.65E-23

1.00E-03 2.35E-10 2.31E+02 2.46E-34 6.75E+100 1.43E-09 3.42E+27 9.67E+91 4.65E-19

1.00E-04 2.35E-09 2.30E+03 7.76E-34 2.14E+99 4.53E-10 1.08E+26 9.71E+89 4.65E-15

1.00E-05 2.35E-08 2.30E+04 2.45E-33 6.77E+97 1.43E-10 3.43E+24 9.71E+87 4.65E-11

1.00E-06 2.35E-07 2.30E+05 7.76E-33 2.14E+96 4.53E-11 1.08E+23 9.71E+85 4.65E-07

1.00E-07 2.35E-06 2.30E+06 2.45E-32 6.77E+94 1.43E-11 3.43E+21 9.71E+83 4.65E-03

1.00E-08 2.35E-05 2.30E+07 7.76E-32 2.14E+93 4.53E-12 1.08E+20 9.71E+81 4.65E+01

1.00E-09 2.35E-04 2.30E+08 2.45E-31 6.77E+91 1.43E-12 3.43E+18 9.71E+79 4.65E+05

1.00E-10 2.35E-03 2.30E+09 7.76E-31 2.14E+90 4.53E-13 1.08E+17 9.71E+77 4.65E+09

1.00E-11 2.35E-02 2.30E+10 2.45E-30 6.77E+88 1.43E-13 3.43E+15 9.71E+75 4.65E+13

1.00E-12 2.35E-01 2.30E+11 7.76E-30 2.14E+87 4.53E-14 1.08E+14 9.71E+73 4.65E+17

1.00E-13 2.35E+00 2.30E+12 2.45E-29 6.77E+85 1.43E-14 3.43E+12 9.71E+71 4.65E+21

1.00E-14 2.35E+01 2.30E+13 7.75E-29 2.15E+84 4.54E-15 1.08E+11 9.74E+69 4.65E+25

1.00E-15 2.35E+02 2.28E+14 2.44E-28 6.89E+82 1.44E-15 3.45E+09 9.94E+67 4.65E+29

1.00E-16 2.35E+03 2.22E+15 7.62E-28 2.26E+81 4.62E-16 1.10E+08 1.05E+66 4.65E+33

1.00E-17 2.35E+04 2.30E+16 2.45E-27 6.77E+79 1.43E-16 3.43E+06 9.71E+63 4.65E+37

1.00E-18 2.35E+05 2.30E+17 7.76E-27 2.14E+78 4.53E-17 1.08E+05 9.71E+61 4.65E+41

1.00E-19 2.35E+06 2.30E+18 2.45E-26 6.77E+76 1.43E-17 3.43E+03 9.71E+59 4.65E+45

1.00E-20 2.35E+07 2.30E+19 7.76E-26 2.14E+75 4.53E-18 1.08E+02 9.71E+57 4.65E+49

3.00E-21 7.83E+07 7.68E+19 1.42E-25 3.52E+74 2.48E-18 1.78E+01 8.74E+56 5.74E+51

2.00E-21 1.17E+08 1.15E+20 1.73E-25 1.92E+74 2.03E-18 9.69E+00 3.89E+56 2.90E+52

1.00E-21 2.35E+08 2.30E+20 2.45E-25 6.77E+73 1.43E-18 3.43E+00 9.71E+55 4.65E+53

4.40E-22 5.34E+08 5.24E+20 3.70E-25 1.98E+73 9.51E-19 1.00E+00 1.88E+55 1.24E+55

TABLE I 
            1st Vacuum Energy Density Model 
          Assuming Gravitational Model A 
     See text for details 
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The above discussion has dealt with, 𝑙𝑃𝑙 , as the fundamental length scale for the vacuum,  

which defines its graininess, so to speak.  This fundamental length scale is, in our view, deficient 

for the reasons listed above.  It just does not scale correctly upon expansion of the universe.  A 

better alternative is to introduce a new length scale, 𝐿.  To this we now turn. 

 

Our value for 𝐿 was derived in section II.  In particular, we consider, (2 − 20) , which gives the 

scaling behavior for, 𝐿/𝐿0.  We notice that it depends on the scaling parameter, “𝑎”, and, 𝐺/𝐺0.  

However, we do have a gravitational model for, 𝐺/𝐺0, in terms of , “𝑎”.  It is given by, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 3).   We are therefore in a position to determine the cosmic evolution of the 

universe, using this specific gravitational function.  Let us turn to Table II, where our alternative 

vacuum mass density model, will be considered.  

 

Column “J” is a repeat of column “A” from the previous table, Table I.  It lists the cosmic scale 

parameter, “𝑎”.  Column “K”, in Table II, gives us, ∆𝐸𝑝𝑒𝑎𝑘.  This is calculated from, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (2 − 7), 𝑎𝑛𝑑, (2 − 8).  We first find the new 𝐶𝑀𝐵 temperature, using our entries 

under column “A”, remembering that, 𝑇 = 𝑇0/𝑎.  Then we employ, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 8), to 

determine the peak frequency, 𝜈𝑝𝑒𝑎𝑘 .  This result is then entered into, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 8), to 

find, ∆𝐸𝑝𝑒𝑎𝑘.   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 9), is valid only in the present epoch.  We next calculate the new 

fundamental length scale for the vacuum, 𝐿, using, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 12).  This will be entered 

under column “L”.  We have to keep in mind, however that the value of, 𝑚𝑃𝑙 , also changes with 

cosmological time.  Therefore, we have to import the appropriate values from column “F”, in 

Table I.  It should come as no surprise that the peak energy emitted, or absorbed, ∆𝐸𝑝𝑒𝑎𝑘, is 

temperature dependent, and increases as one goes back in cosmological time.  It is also not 

surprising that the value of 𝐿 decreases (as it must) when we scale back to earlier epochs.  This 

is the behavior we seek. 

 

Column “M” in Table II, gives us the “scattering mass” defined as, 𝑀 ≡ ħ/(𝐿𝑐).  It is positive 

definite (unlike, 𝑚𝑃𝑙), and its significance will be seen shortly.  Column “N” specifies the 

number density for both positive and negative mass Planck particle.  Here we use the simple 

relation, 𝑛𝐿 = 𝐿−3, which is an extension of, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (2 − 14𝑐), to other epochs.   We notice 

that the “scattering mass” increases going back in cosmological time, as does the positive with 

negative mass, planckion number density.  In the current epoch, 

𝑛0 = 𝐿0
−3 = 7.86 𝐸54 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/𝑚3.  But at the inception temperature for, 𝐺−1, the planckion 

number density value has increased to a fantastic, 2.46 𝐸71 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/𝑚3.  This can be seen 

by referring to Table II, column, “N”. 
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In column “O”, we calculate the mass density associated with the positive mass Planck particle.  

The negative mass Planck particle will have minus this value.  The net mass density is thus zero 

for a vacuum in the balanced state (no perturbations).  These entries are easily obtained by 

multiplying the appropriate entries in Column “F”, from Table I, with those corresponding 

entries from column “N’, in Table II.  The result is column “O”.  Needless to say, the vacuum 

mass densities in column “O” increase as one goes back in time.  The net will always be zero, 

unless the vacuum symmetry is broken in some fashion.  The vacuum mass density multiplied 

by, 𝑐2, would give us the vacuum energy density, which according to Winterberg, is equivalent 

to the vacuum pressure.  It is only in the unbalanced state where we would obtain a net 

vacuum energy density, and a net vacuum pressure. 

 

With our second definition of vacuum energy density, we notice that we also have a match 

between column “O” and column “I”.  The vacuum mass density has pretty much the same 

value as the 𝐶𝑀𝐵 radiation “mass” density, but only close to the 𝐺−1inception temperature, 

and in no other epoch.  This is no accident in our view.  If the positive and negative planckions 

are to “freeze out” of the vacuum, then the Planck particle energy density should correlate with 

the 𝐶𝑀𝐵 energy density.  Again there is no a-priori reason to assume that a gravitational model 

should coincide with a background radiation model as these two concepts are, at first sight, 

totally unrelated. 

 

Upon a more careful analysis of, columns ”O” with “I”, we note that the second to last row in 

column “O”,  more closely matches the second to last row entry, in column “I”.  One could 

argue, however, that the freeze-out of planckions did not happen instantaneously.  In other 

words, it takes a certain period of time, and a specific drop in 𝐶𝑀𝐵 temperature, from the start 

of the process, to the finish, for freeze-out to occur.  As a prime example, we can point to 

recombination, where the process started some 150,000 years after the Big Bang, and was only 

completed at roughly 370,000 years after.  There was a temperature drop by roughly a factor of 

50 (𝑘𝐵𝑇~13.6 𝑒𝑉 𝑡𝑜 .26 𝑒𝑉), from start to finish, which would be similar to the above example.  

While not definitive, we believe that this match is close enough for us to call it a match. 

 

There are two remaining columns, columns, “P” and “Q”, in Table II.  Column “P” is just the 

vacuum mass density, column “O”, multiplied by, 𝑐2, divided by the number density.  Or, what 

is equivalent, it is simply the rest mass energy of the positive planckion, ∣ 𝑚𝑃𝑙 ∣ 𝑐2.  This 

represents the energy needed within the vacuum, to dislodge one positive Planck particle, from 

its neighbors.  A negative Planck particle would need the same amount of energy, but negative, 

in order to disassociate itself from particles within its species.  Remember that the two species 

do not interact directly, but indirectly through their overlapping wave functions.   
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There is, however, a second rest mass energy, and that is represented by column “Q”.  This is, 

𝑀𝑐2, where, the scattering mass, 𝑀, is defined by the relation, 𝑀 ≡ ħ/(𝐿𝑐).   This rest mass 

enters into the equation associated with the Higgs field, and when we have a +/- Planck particle 

“imbalance”.  As shown in previous work [9,10], this is related to the Higgs potential energy, 

when we have an unbalanced vacuum, where, (𝑛+̅̅̅̅ ≠ 𝑛−̅̅̅̅ ).  If that is the case, then the following 

holds true. 

     𝑈𝐻𝑃𝐸 = 𝑀𝑐2 (𝑛+̅̅̅̅ − 𝑛−̅̅̅̅ )/𝑛𝐿                           (4 − 2) 

The quantity, 𝑀𝑐2, is what is what is calculated under column “Q”.  We take the entries in 

column “M”, and multiply them by, 𝑐2, to determine these values.  From, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (4 − 2), 

we can find, 𝑝𝐻𝑃𝐸 = 𝑢𝐻𝑃𝐸 = 𝑛𝐿 𝑈𝐻𝑃𝐸, where, 𝑝𝐻𝑃𝐸, is the vacuum pressure, and, 𝑢𝐻𝑃𝐸 , equals 

the net vacuum energy density, when there is a net imbalance in a region of space.   The  𝑛±̅̅̅̅  are 

the energy weighted number densities, for the positive and the negative mass Planck particles.  

See reference [10] for further details. 
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2nd Variable Vacuum Density for Gravitational Model A           T* = 6.19 E21 K = inception temperature for G -1

J K L M N O P Q

Cosmic Peak Emission Fundamental "Scattering 2nd Variable 2nd Variable Variable "Scattering

Scale & Absorption Length scale Mass"  (+/-) Planck (+) Planck Planck Rest Mass"  

Parameter Energy for Vacuum M = ħ/(L c) # Density Mass Density Mass Energy Energy

"a" ( Δ E) Peak L M n L  = (L) -3 ρ Vac + = - ρ Vac -  m Pl +  c 2 M c 2

(= 2*E111) (meters) (kg) (m-3) (kg/m3) (Joules) (Joules)

3.9 1.53E-23 9.90E-19 3.55E-25 1.03E+54 2.26E+46 1.97E+09 3.19E-08

3.8 1.57E-23 9.77E-19 3.60E-25 1.07E+54 2.35E+46 1.97E+09 3.24E-08

1 5.98E-23 5.03E-19 6.99E-25 7.86E+54 1.71E+47 1.96E+09 6.29E-08

1.00E-01 5.98E-22 2.06E-19 1.70E-24 1.14E+56 1.47E+48 1.16E+09 1.53E-07

1.00E-02 5.98E-21 1.11E-19 3.17E-24 7.35E+56 3.30E+48 4.03E+08 2.85E-07

1.00E-03 5.98E-20 6.20E-20 5.67E-24 4.19E+57 6.01E+48 1.29E+08 5.10E-07

1.00E-04 5.98E-19 3.49E-20 1.01E-23 2.36E+58 1.07E+49 4.08E+07 9.07E-07

1.00E-05 5.98E-18 1.96E-20 1.79E-23 1.33E+59 1.91E+49 1.29E+07 1.61E-06

1.00E-06 5.98E-17 1.10E-20 3.19E-23 7.47E+59 3.39E+49 4.08E+06 2.87E-06

1.00E-07 5.98E-16 6.20E-21 5.68E-23 4.20E+60 6.03E+49 1.29E+06 5.10E-06

1.00E-08 5.98E-15 3.48E-21 1.01E-22 2.36E+61 1.07E+50 4.08E+05 9.07E-06

1.00E-09 5.98E-14 1.96E-21 1.79E-22 1.33E+62 1.91E+50 1.29E+05 1.61E-05

1.00E-10 5.98E-13 1.10E-21 3.19E-22 7.47E+62 3.39E+50 4.08E+04 2.87E-05

1.00E-11 5.98E-12 6.20E-22 5.68E-22 4.20E+63 6.03E+50 1.29E+04 5.10E-05

1.00E-12 5.98E-11 3.48E-22 1.01E-21 2.36E+64 1.07E+51 4.08E+03 9.07E-05

1.00E-13 5.98E-10 1.96E-22 1.79E-21 1.33E+65 1.91E+51 1.29E+03 1.61E-04

1.00E-14 5.98E-09 1.10E-22 3.19E-21 7.48E+65 3.39E+51 4.08E+02 2.87E-04

1.00E-15 5.98E-08 6.18E-23 5.69E-21 4.24E+66 6.11E+51 1.30E+02 5.12E-04

1.00E-16 5.98E-07 3.45E-23 1.02E-20 2.43E+67 1.12E+52 4.15E+01 9.16E-04

1.00E-17 5.98E-06 1.96E-23 1.79E-20 1.33E+68 1.91E+52 1.29E+01 1.61E-03

1.00E-18 5.98E-05 1.10E-23 3.19E-20 7.47E+68 3.39E+52 4.08E+00 2.87E-03

1.00E-19 5.98E-04 6.20E-24 5.68E-20 4.20E+69 6.03E+52 1.29E+00 5.10E-03

1.00E-20 5.98E-03 3.48E-24 1.01E-19 2.36E+70 1.07E+53 4.08E-01 9.07E-03

3.00E-21 1.99E-02 2.58E-24 1.36E-19 5.83E+70 1.45E+53 2.23E-01 1.23E-02

2.00E-21 2.99E-02 2.33E-24 1.51E-19 7.90E+70 1.60E+53 1.82E-01 1.36E-02

1.00E-21 5.98E-02 1.96E-24 1.79E-19 1.33E+71 1.91E+53 1.29E-01 1.61E-02

4.40E-22 1.36E-01 1.60E-24 2.20E-19 2.46E+71 2.34E+53 8.55E-02 1.98E-02

TABLE II 
  2nd Vacuum Energy Density Model 
          Assuming Gravitational Model A 
         See text for details 
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V Gravitational Model, B, Scaling for Two Planck Particle, Vacuum Energy 

Densities 

In this section, we consider gravitational model, 𝐵, for, 𝐺−1, given by, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (3 −

2), 𝑎𝑛𝑑, (3 − 4).  Just like in section IV we will construct two tables.  Table III will apply for our 

naïve vacuum energy density model, based on scaling length, 𝑙𝑃𝑙.   Table IV will hold for our 

alternative vacuum energy density model, where,  , is the fundamental length scale for the 

vacuum.  We believe that Table IV represents a more sensible model.  The only real difference 

between section IV, and this section, is our choice for, 𝐺/𝐺0, which is worked out under column 

“C” of table III.  We will now be using, specifically, 𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (3 − 4) , for its determination.  

Columns “A”, and “B” are the same as before. 

Upon a comparison of the entries under column “C” of Table III, with the corresponding values 

of those under column “C” of Table I, we do not see much of a difference.  The figure in section 

III, Figure I, shows that our two 𝐺−1 functions, are qualitatively very similar.  And so, we will not 

expect too much of a variation going forward with our other columns, when comparing the 

results of this section, with those of the previous section.  We have a new inception 

temperature for our new function, 𝑇∗ = 6.99 𝐸21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾.  Previously, we had, 𝑇∗ =

6.19 𝐸21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾.  Moreover, it will take longer to reach saturation with our new 

gravitational model, 𝐵.  When the scale parameter, “𝑎”, approaches, 40, there is virtually no 

further change in 𝐺−1.  We can call this the effective saturation point, i.e., 𝐺−1(𝑎 = 40) ≅ 𝐺∞
−1.  

In the previous section, we had correspondingly, 𝐺−1(𝑎 = 3.9) ≅ 𝐺∞
−1.  In general, gravitational 

model,  , is less dramatic in its variation than model, 𝐴. 

Because the values or entries in columns “D” through to “I” in Table III will not differ too much 

from those in the previous section, we will not comment on them further here, except to note 

the following.  As before, the 𝑙𝑃𝑙 values in column “D” increase going back in cosmological time, 

which makes little sense.  Also the entries in column ”E” for Planck particle number density go 

counter to what one would expect, if one goes back to previous epochs.  Also note the 

surprising match between 𝜌𝑉𝑎𝑐+ (column “H”) and 𝜌𝑅𝑎𝑑 (column “I”), but only as one 

approaches the inception temperature for, 𝐺−1.  In no other epoch, past or present, do we 

have such a convergence. 
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Our second table in this section is, Table IV.  This holds for our alternative model, where, 𝐿, is 

the fundamental length scale to be associated with the vacuum.  This table will follow the same 

format as Table II, in section IV.  The results will change slightly, but not appreciably.  Hence the 

same general conclusions can be drawn.  We note that there is a decrease in, 𝐿, as one goes 

1st Variable Vacuum Energy Density for Gravitational Model B T* = 6.99 E21 K = inception temperature for G -1

A B C D E F G H I

Cosmic CMB Variable Variable 1st Variable Variable Variable 1st Variable Indep. CMB

Scale Photon Gravitational Planck (+/-) Planck (+) Planck (+) Planck (+) Planck Radiation 

Parameter Energy Constant Length # Density Mass Energy Ratio Mass Density Mass Density

"a"   k B T G/G 0 l Pl n Pl  = (l Pl )
-3  m Pl + = -m Pl - m Pl + c

2 /k B T ρ Vac+ = - ρ Vac- ρ Rad

(GeV) (meters) (meters-3) (kg) (kg/m3) (kg/m3)

40 5.87E-15 9.45E-01 1.57E-35 2.58E+104 2.24E-08 2.14E+33 5.78E+96 1.82E-37

39 6.02E-15 9.45E-01 1.57E-35 2.58E+104 2.24E-08 2.09E+33 5.78E+96 2.01E-37

1 2.35E-13 1.00E+00 1.62E-35 2.37E+104 2.18E-08 5.20E+31 5.16E+96 4.65E-31

1.00E-01 2.35E-12 1.91E+00 2.23E-35 8.98E+103 1.58E-08 3.76E+30 1.42E+96 4.65E-27

1.00E-02 2.35E-11 1.61E+01 6.47E-35 3.68E+102 5.43E-09 1.30E+29 2.00E+94 4.65E-23

1.00E-03 2.35E-10 1.60E+02 2.05E-34 1.17E+101 1.72E-09 4.11E+27 2.01E+92 4.65E-19

1.00E-04 2.35E-09 1.60E+03 6.47E-34 3.70E+99 5.44E-10 1.30E+26 2.01E+90 4.65E-15

1.00E-05 2.35E-08 1.60E+04 2.05E-33 1.17E+98 1.72E-10 4.11E+24 2.01E+88 4.65E-11

1.00E-06 2.35E-07 1.60E+05 6.47E-33 3.70E+96 5.44E-11 1.30E+23 2.01E+86 4.65E-07

1.00E-07 2.35E-06 1.60E+06 2.05E-32 1.17E+95 1.72E-11 4.11E+21 2.01E+84 4.65E-03

1.00E-08 2.35E-05 1.63E+07 6.53E-32 3.59E+93 5.39E-12 1.29E+20 1.93E+82 4.65E+01

1.00E-09 2.35E-04 6.33E+07 1.29E-31 4.70E+92 2.74E-12 6.54E+18 1.29E+81 4.65E+05

1.00E-10 2.35E-03 1.60E+09 6.47E-31 3.70E+90 5.44E-13 1.30E+17 2.01E+78 4.65E+09

1.00E-11 2.35E-02 1.60E+10 2.05E-30 1.17E+89 1.72E-13 4.11E+15 2.01E+76 4.65E+13

1.00E-12 2.35E-01 1.60E+11 6.47E-30 3.70E+87 5.44E-14 1.30E+14 2.01E+74 4.65E+17

1.00E-13 2.35E+00 1.60E+12 2.05E-29 1.17E+86 1.72E-14 4.11E+12 2.01E+72 4.65E+21

1.00E-14 2.35E+01 1.60E+13 6.47E-29 3.70E+84 5.44E-15 1.30E+11 2.01E+70 4.65E+25

1.00E-15 2.35E+02 1.60E+14 2.05E-28 1.17E+83 1.72E-15 4.11E+09 2.01E+68 4.65E+29

1.00E-16 2.35E+03 1.60E+15 6.47E-28 3.70E+81 5.44E-16 1.30E+08 2.01E+66 4.65E+33

1.00E-17 2.35E+04 1.60E+16 2.05E-27 1.17E+80 1.72E-16 4.11E+06 2.01E+64 4.65E+37

1.00E-18 2.35E+05 1.60E+17 6.47E-27 3.70E+78 5.44E-17 1.30E+05 2.01E+62 4.65E+41

1.00E-19 2.35E+06 1.60E+18 2.05E-26 1.17E+77 1.72E-17 4.11E+03 2.01E+60 4.65E+45

1.00E-20 2.35E+07 1.60E+19 6.47E-26 3.70E+75 5.44E-18 1.30E+02 2.01E+58 4.65E+49

3.00E-21 7.83E+07 5.34E+19 1.18E-25 6.07E+74 2.98E-18 2.13E+01 1.81E+57 5.74E+51

2.00E-21 1.17E+08 8.01E+19 1.45E-25 3.31E+74 2.43E-18 1.16E+01 8.04E+56 2.90E+52

1.00E-21 2.35E+08 1.60E+20 2.05E-25 1.17E+74 1.72E-18 4.11E+00 2.01E+56 4.65E+53

3.90E-22 6.02E+08 4.11E+20 3.27E-25 2.85E+73 1.07E-18 1.00E+00 3.06E+55 2.01E+55

TABLE III 
            1st Vacuum Energy Density Model 
         Assuming Gravitational Model B 
     See text for details 
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back in cosmological time.  And we also have an increase in +/- mass Planck number 

density, 𝑛 = 𝐿−3, as the redshift, 𝑍, increases.  This scaling behavior is to be expected.  Also the 

positive and negative vacuum energy densities neutralize one another, when the vacuum is in a 

perfectly balanced state.  And so, the cosmological constant problem has been greatly reduced 

in scope. 

We also remark that there is a match between column “I” from the previous table, Table III, and 

column “O” in this table, Table IV.  The values in the last three rows, of column “O” match, fairly 

closely, the 2nd to last row entry in column “I”.  Again, we expect that the freeze-out process for 

the positive and negative mass planckions to take some time.  We will have a corresponding 

drop in temperature.  Therefore, the results of column, “O” should lag, somewhat, those of 

column “I”.  Ideally, we should start with the last row in column “I”, for the beginning of the 

planckion freeze out process, and finish with the second to last row, or third to last row, in 

column “O”.  There will thus be a corresponding drop in temperature, from start to finish. 
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2nd Variable Vacuum Density for Gravitational Model B           T* = 6.99 E21 K = inception temperature for G -1

J K L M N O P Q

Cosmic Peak Emission Fundamental "Scattering 2nd Variable 2nd Variable Variable "Scattering

Scale & Absorption Length scale Mass"  (+/-) Planck (+) Planck Planck Rest Mass"  

Parameter Energy for Vacuum M = ħ/(L c) # Density Mass Density Mass Energy Energy

"a" ( Δ E) Peak L M n L  = (L) -3 ρ Vac + = - ρ Vac -  m Pl +  c 2 M c 2

(= 2*E111) (meters) (kg) (m-3) (kg/m3) (Joules) (Joules)

40 1.49E-24 3.14E-18 1.12E-25 3.24E+52 7.26E+44 2.01E+09 1.01E-08

39 1.53E-24 3.10E-18 1.14E-25 3.37E+52 7.54E+44 2.01E+09 1.02E-08

1 5.98E-23 5.03E-19 6.99E-25 7.86E+54 1.71E+47 1.96E+09 6.29E-08

1.00E-01 5.98E-22 1.87E-19 1.88E-24 1.53E+56 2.41E+48 1.42E+09 1.69E-07

1.00E-02 5.98E-21 1.01E-19 3.49E-24 9.80E+56 5.32E+48 4.88E+08 3.14E-07

1.00E-03 5.98E-20 5.66E-20 6.22E-24 5.52E+57 9.49E+48 1.55E+08 5.59E-07

1.00E-04 5.98E-19 3.18E-20 1.11E-23 3.10E+58 1.69E+49 4.89E+07 9.94E-07

1.00E-05 5.98E-18 1.79E-20 1.97E-23 1.75E+59 3.00E+49 1.55E+07 1.77E-06

1.00E-06 5.98E-17 1.01E-20 3.50E-23 9.81E+59 5.34E+49 4.89E+06 3.14E-06

1.00E-07 5.98E-16 5.66E-21 6.22E-23 5.52E+60 9.49E+49 1.55E+06 5.59E-06

1.00E-08 5.98E-15 3.20E-21 1.10E-22 3.06E+61 1.65E+50 4.84E+05 9.89E-06

1.00E-09 5.98E-14 1.42E-21 2.48E-22 3.50E+62 9.58E+50 2.46E+05 2.23E-05

1.00E-10 5.98E-13 1.01E-21 3.50E-22 9.81E+62 5.34E+50 4.89E+04 3.14E-05

1.00E-11 5.98E-12 5.66E-22 6.22E-22 5.52E+63 9.49E+50 1.55E+04 5.59E-05

1.00E-12 5.98E-11 3.18E-22 1.11E-21 3.10E+64 1.69E+51 4.89E+03 9.94E-05

1.00E-13 5.98E-10 1.79E-22 1.97E-21 1.75E+65 3.00E+51 1.55E+03 1.77E-04

1.00E-14 5.98E-09 1.01E-22 3.50E-21 9.81E+65 5.34E+51 4.89E+02 3.14E-04

1.00E-15 5.98E-08 5.66E-23 6.22E-21 5.52E+66 9.49E+51 1.55E+02 5.59E-04

1.00E-16 5.98E-07 3.18E-23 1.11E-20 3.10E+67 1.69E+52 4.89E+01 9.94E-04

1.00E-17 5.98E-06 1.79E-23 1.97E-20 1.75E+68 3.00E+52 1.55E+01 1.77E-03

1.00E-18 5.98E-05 1.01E-23 3.50E-20 9.81E+68 5.34E+52 4.89E+00 3.14E-03

1.00E-19 5.98E-04 5.66E-24 6.22E-20 5.52E+69 9.49E+52 1.55E+00 5.59E-03

1.00E-20 5.98E-03 3.18E-24 1.11E-19 3.10E+70 1.69E+53 4.89E-01 9.94E-03

3.00E-21 1.99E-02 2.36E-24 1.49E-19 7.66E+70 2.28E+53 2.68E-01 1.34E-02

2.00E-21 2.99E-02 2.13E-24 1.65E-19 1.04E+71 2.52E+53 2.19E-01 1.49E-02

1.00E-21 5.98E-02 1.79E-24 1.97E-19 1.75E+71 3.00E+53 1.55E-01 1.77E-02

3.90E-22 1.53E-01 1.41E-24 2.49E-19 3.54E+71 3.80E+53 9.65E-02 2.24E-02

TABLE IV 
  2nd Vacuum Energy Density Model 
           Assuming Gravitational Model B 
         See text for details 
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VI Possible Connection with Ordinary Matter, Dark Matter, and Dark Energy 

In this section we seek to establish a connection between the vacuum energy densities 

introduced thus far, and ordinary matter, dark matter, and dark energy.  Recently [15], we 

came up with a model for dark matter, and dark energy, based on ordinary matter, and a 

gravitational polarization model for space based on +/- mass planckions.  Ordinary matter, i.e., 

aggregate matter, made up of atoms and molecules, can polarize the space around it at 

sufficiently low temperatures, and strong enough gravitational fields.  The space is, of course, 

filled with planckions, and this can induce a slight separation between the positive and negative 

masses, creating gravitational dipoles or bound matter.  This produces dark matter according to 

our thinking, where the induced gravitational field due to dipoles, 𝑔(1), reinforces the original 

gravitational field, 𝑔(0), due to ordinary matter. This dipole matter mass distribution is what is 

measured, for example, in Friedman’s equation. 

Moreover, both types of masses, free, and bound dipole matter, produce gravitational fields, 

which contribute to their own energy density, and which we call dark energy.   Thus, both dark 

matter and dark energy, have a common origin, and that is ordinary matter, and, assuming that 

space filled with planckions.  Remember that the mass density parameters in Friedman’s 

equation are smeared values, only valid when immense distance scales , in excess of, 100 𝑀𝑝𝑐, 

are considered.  Then, and only then, can the individual galaxies be treated much like molecules 

in a gas.  Using Gauss’’ law at every point in the universe, it is easy to see how dark energy 

permeates all of space.  No one location in the universe is preferred over the other, and when 

space is smeared, the 𝐶𝑀𝐵 temperature is quite uniform.  The details can be found in 

reference [15]. 

In the present epoch, based on the ordinary matter, dark matter and dark energy, percentage 

contributions to the critical mass density, we estimated that the gravitational susceptibility, 

𝜒 = 𝜒𝑔, is equal to,  

    𝜒0 = 𝜒(𝑎 = 1) = .842     (𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑒𝑝𝑜𝑐ℎ)             (6 − 1) 

This is a large amount, but then, the universe is largely cool and empty.  In all epochs, the 

following relation must hold, 

     𝜒(𝑎) + 𝐾(𝑎) = 1                (6 − 2) 

Here, 𝜒(𝑎), is the gravitational susceptibility, and, 𝐾(𝑎) is the relative gravitational 

permittivity.  We are proceeding by analogy to electrostatics.  By this equation, 𝐾0 =

𝐾(𝑎 = 1) = .158.  In contrast to electrostatics, where we have, (𝐾 − 𝜒) = 1, in gravistatics, 

we have, (𝐾 + 𝜒) = 1.  The former condition leads to screening, where the electrical dipole 
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moments take away from the original field.  The latter condition produces anti-screening, 

where the dipole gravitational field, 𝑔(1), will reinforce (strengthen) the original field, 𝑔(0). 

The gravitational polarization, �⃗�   , in a linear approximation, equals, 

     �⃗� = 𝜀 𝜒 𝑔 = 𝜀 𝑔(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗                (6 − 3) 

Here, 𝜀 ≡ 1/(4𝜋𝐺), is the gravitational permittivity.  The gravitational displacement field, �⃗⃗�   , 

by analogy to electrostatics, equals. 

     �⃗⃗� = 𝜀 𝐾 𝑔 = 𝜀 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗  ⃗                (6 − 4) 

And the macroscopic gravitational field,  

     𝑔 = 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑔(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

          = 𝐾𝑔 + 𝜒𝑔                  (6 − 5) 

Again, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗  ⃗, is the gravitational field due to ordinary matter,  𝑔(1)⃗⃗ ⃗⃗ ⃗⃗  ⃗, is the gravitational field due 

to dark matter, and, 𝑔 , is the total macroscopic field.  The source terms are, 

     − ∇⃗⃗ ∙ �⃗⃗� = 𝜌𝐹 = 𝜌𝑜𝑟𝑑.  𝑚𝑎𝑡𝑡𝑒𝑟               (6 − 6) 

               − ∇⃗⃗ ∙ �⃗� = 𝜌𝐵 = 𝜌𝑑𝑎𝑟𝑘 𝑚𝑎𝑡𝑡𝑒𝑟                     (6 − 7) 

We note that by, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (6 − 5), (6 − 3), 𝑎𝑛𝑑 (6 − 4),  

    (𝜀 𝑔 ) = �⃗⃗� + �⃗�   (𝑔𝑟𝑎𝑣𝑖𝑠𝑡𝑎𝑡𝑖𝑐𝑠)                          (6 − 8) 

This equation is to be contrasted with electrostatics, where, 

    (𝜀0 �⃗� ) = �⃗⃗� − �⃗�   (𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠)                            (6 − 9) 

As mentioned, the polarization of Planck particles gives the dark matter source term.  See, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (6 − 7). 

For our purposes, we are interested in the scaling behavior for ordinary matter, dark matter, 

and dark energy.  Within the context of our gravitational polarization model, for the mass 

densities in Friedman’s equation, we obtain [16], 

   𝜌𝑂𝑀/𝜌𝑂𝑀,0 = 𝑎−3  (𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟)            (6 − 10) 

  𝜌𝐷𝑀/𝜌𝐷𝑀,0 = (𝜒/𝐾)(𝐾0/𝜒0)𝑎
−3  (𝑑𝑎𝑟𝑘 𝑚𝑎𝑡𝑡𝑒𝑟)           (6 − 11) 
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   𝜌𝐷𝐸/𝜌𝐷𝐸,0 = (𝐾0/𝐾) 𝑎−3  (𝑑𝑎𝑟𝑘 𝑒𝑛𝑒𝑟𝑔𝑦)                     (6 − 12) 

In order to proceed further, we need a specific function for, 𝜒 = 𝜒(𝑎).  This we do not have.  

The point, however, is that these scaling laws are totally at odds with the vacuum energy 

density scaling laws given in the previous two sections.  They look nothing like, 

    𝜌𝑉𝑎𝑐/𝜌𝑉𝑎𝑐,0 = (𝑚𝑃𝑙/𝑚𝑃𝑙,0) (𝐿/𝐿0)
−3 

              = (𝑙𝑃𝑙,0/𝑙𝑃𝑙) (𝐿/𝐿0)
−3 

              = (𝐺/𝐺0)
−1/2(𝐺/𝐺0)

−3/4𝑎−3/2 

              = (𝐺/𝐺0)
−5/4𝑎−3/2             (6 − 13) 

In the third line we made use of, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (2 − 21), 𝑎𝑛𝑑 (2 − 20).  We are using the scaling 

laws employed in column “O”, in Tables II, and IV.  Tables I, and III, have been disqualified 

because the fundamental length for the vacuum, 𝑙𝑃𝑙, does not scale appropriately.  Because, 

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (6 − 13), looks nothing like, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (6 − 10), (6 − 11) 𝑎𝑛𝑑 (6 − 12), we 

conclude that the symmetry exemplified by these last three equations are broken.  They do not 

have the original symmetry of the vacuum, which is, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (6 − 13).  As a matter of fact, 

the scaling laws appearing in, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (6 − 10), (6 − 11) 𝑎𝑛𝑑 (6 − 12), do not appear to 

depend on, 𝐺/𝐺0. 

Even if we consider the 𝛬𝐶𝐷𝑀 model, nothing would change in our conclusion.  In the 𝛬𝐶𝐷𝑀 

model, we have the conventional scaling laws for ordinary matter, dark matter, and dark 

energy.  These are, 

   𝜌𝑂𝑀/𝜌𝑂𝑀,0 = 𝑎−3  (𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟)            (6 − 14) 

                𝜌𝐷𝑀/𝜌𝐷𝑀,0 = 𝑎−3  (𝑑𝑎𝑟𝑘 𝑚𝑎𝑡𝑡𝑒𝑟)                   (6 − 15) 

   𝜌𝐷𝐸/𝜌𝐷𝐸,0 = 1  (𝑑𝑎𝑟𝑘 𝑒𝑛𝑒𝑟𝑔𝑦)                            (6 − 16) 

Even though they are totally different from our 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (6 − 10), (6 − 11), 𝑎𝑛𝑑 (6 − 12), 

they do not correspond to, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (6 − 13).  As such, adopting these equations would still 

imply a broken symmetry for the vacuum, if we accept a Planck particle vacuum.  Notice that a 

Planck particle quantum vacuum scales very slightly in comparison to ordinary matter, and dark 

matter.  The interesting feature, from our point of view, however, is its explicit dependence on, 

(𝐺/𝐺0). 

According to Winterberg, elementary particles, such as electrons, are quasi-particle excitations 

within the vacuum.  Quite literally, they are self-sustaining and decaying vortices, with 

rotational symmetry, which can form within the vacuum, as the vacuum cools down.  This 
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clearly would break the lattice type symmetry inherent in our greater model for the vacuum.  

Dark matter and dark energy are formed from ordinary matter, once the universe has 

sufficiently cooled such that aggregate matter appears.  Clumping is necessary.  It is difficult for 

us to imagine how long range gravitational fields and forces can form when matter and 

radiation are in a plasma like state.  We suspect that dark matter and dark energy can only form 

after recombination, i.e., for redshift values below, 𝑍 = 1090.  Of course, this would require a 

major revision in current thinking.  Atoms and molecules, and their clumping, are needed, from 

our perspective, in order for dark matter, and dark energy, to manifest themselves. 

Finally, let us consider the present day contributions of ordinary matter, dark matter, and dark 

energy to the total mass density.  The radiative component is negligible in the current epoch.  

We wish to compare those component values to the Planck particle vacuum energy density.  

According to the latest Planck collaborations [22,23], the density parameters in Friedman’s 

equation, assume the following values, 

   𝜌𝑂𝑀,0 = .049 𝜌𝑐𝑟𝑖𝑡,0 = .426 𝐸 − 27 𝑘𝑔/𝑚3                     (6 − 17)  

   𝜌𝐷𝑀,0 = .260 𝜌𝑐𝑟𝑖𝑡,0 = 2.242 𝐸 − 27 𝑘𝑔/𝑚3            (6 − 18)  

𝜌𝐷𝐸,0 = .691 𝜌𝑐𝑟𝑖𝑡,0 = 5.959 𝐸 − 27 𝑘𝑔/𝑚3            (6 − 19) 

For the Hubble parameter, the Planck collaboration obtains, in the present epoch, 𝐻0 =

67.74 𝑘𝑚/(𝑠 𝑀𝑝𝑐).  This would correspond to a critical mass density of, 𝜌𝑐𝑟𝑖𝑡,0 = 8.624 𝐸 −

27 𝑘𝑔/𝑚3.   The mass densities in the above equation are smeared values, valid only when 

immense distance scales are entertained, because only then can the individual galaxies be 

treated much like molecules within a fairly dilute gas. 

We compare these values to, 𝜌𝑉𝑎𝑐,0, which is given under column “O”, in Tables II, and IV.  We 

proceed to, 𝑎 = 1, which denotes the present epoch.  The entry is found in the 3rd row in each 

table.  We find that,  

𝜌𝑉𝑎𝑐,0 = 1.71 𝐸47 𝑘𝑔/𝑚3               (6 − 20) 

There is no difference between models, 𝐴, and 𝐵, if, 𝐺 = 𝐺0.  Of course, according to our two 

component, Planck particle, superfluid/ super-solid model, there is a corresponding amount of 

negative Planck particle mass density.  Thus, the total vacuum mass/ energy density is zero.  

This defines the zero net vacuum energy density and, the zero net vacuum pressure surface.  If 

we compare the values in, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (6 − 17) 𝑡ℎ𝑟𝑜𝑢𝑔ℎ (6 − 19), to, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, (6 − 20) , we 

see that they are nothing but very minute perturbations (ripples) in this vast ocean (assembly) 

of a positive, with negative Planck particle mass density.  This is a further indication that the 
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mass densities, which are present in today’s universe, are residual effects, or anomalies upon a 

much greater whole, which is seemingly “not there”. 

 

VII Summary and Conclusions 

We introduced two competing models for a quantum vacuum, assuming that space is made up 

of positive and negative mass Planck particles, interacting through very strong superfluid forces. 

These forces act within their respective species (Winterberg model).  The first model introduces 

the Planck length, 𝑙𝑃𝑙, as the fundamental length scale for space.  This is the presumed nearest 

neighbor distance of separation between individual positive mass planckions, as well as 

negative mass planckions.  It also defines the graininess of the vacuum.  In the present epoch, 

its value is, 𝑙𝑃𝑙,0 = 1.616 𝐸 − 35 𝑚𝑒𝑡𝑒𝑟𝑠. The second vacuum model assumes a different 

fundamental length scale for the vacuum, which we called, 𝐿.  This length, 𝐿 , has the same 

interpretation as above, but is much larger in value.  It is found using box quantization, and 

looking at transitions between energy states for the positive, as well as the negative, mass 

Planck particle.  See section II.  The 𝐶𝑀𝐵 temperature factors in, in a critical and very direct 

way, in defining this new length scale, 𝐿.  This is not the case for,  𝑙𝑃𝑙.  In the present epoch, the 

value for, 𝐿0 equals, 𝐿0 = 5.030 𝐸 − 19 𝑚𝑒𝑡𝑒𝑟𝑠.  

We subjected both vacuum energy density models, to a time varying gravitational constant.  

Only in this way, could one obtain scaling behavior for, 𝑙𝑃𝑙 , for an expanding universe.  If the 

gravitational constant increases going back in cosmological time, however, the 𝑙𝑃𝑙 does not 

scale as it should, i.e., it does not get smaller, as we go back in time.  The alternative length 

scale, 𝐿, however, will scale appropriately, as well as other quantities which depend on it, such 

as planckion number density.  For these and other reasons, we focus our attention on, 𝐿, as the 

true fundamental length scale for the quantum vacuum. 

Two specific functions for, 𝐺−1 = 𝐺−1(𝑎), where, 𝐺 is Newton' s constant were analyzed with 

respect to a specific cosmic evolution.  Although these two functions were very different 

quantitatively, they had very similar qualitative behavior.  Both displayed order parameter 

behavior, in that they approached a saturation value at low 𝐶𝑀𝐵 temperatures.  And, at very 

high CMB temperatures, both 𝐺−1 functions increased as, 𝑇−1.  Both functions had very similar 

inception temperatures.  For gravitational model, 𝐴, the 𝐺−1 formed at 𝐶𝑀𝐵 temperature, 

𝑇∗ = 6.19 𝐸21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾.  For gravitational model, 𝐵, the 𝐺−1coalesced out of the vacuum at 

inception temperature, 𝑇∗ = 6.99 𝐸21 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐾.  We consider, 𝐺−1, to be an inherent 

property of the vacuum, much like paramagnetism.  When 𝐺−1started to form, the planckions 

acquired mass, positive and negative.  The 𝐶𝑀𝐵 temperature, 𝑇∗, is thus the freeze out 

temperature for Planck particles, having positive and negative mass. The rationale for these 
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two specific gravitational functions, and their specific parametrizations, were given in another 

paper.  Their functional form is specified in section III.  See, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (3 − 1) 𝑎𝑛𝑑 (3 − 2).  

Refer also to, 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (3 − 3), 𝑤𝑖𝑡ℎ (3 − 4).  Figure 1 gives their dependency on the cosmic 

scale parameter. 

When we used these distinct gravitational functions, we made a remarkable discovery.  Using 

these two specific functions, with their characteristic parametrizations, we charted out a cosmic 

evolution for the two competing vacuum energy density models mentioned above.  One was in 

terms of the Planck length, 𝑙𝑝𝑙, whereas the other was in terms of an alternative fundamental 

length scale, 𝐿.  Both competing models led to a planckion vacuum energy density, which 

matched the radiation energy density.  This match happened only at the inception temperature 

for, 𝐺−1, and in no other epoch, past, present or future.  This seems to us to be more than a 

coincidence.  It would make sense that 𝐺−1 froze out of the vacuum at a time when the Planck 

particle vacuum energy density matched the 𝐶𝑀𝐵 energy density.  As the 𝐶𝑀𝐵 energy density 

decreases, the Planck particles decouple.  Moreover, this match greatly supports our choice for, 

𝐺−1, with their independent parametrizations.  Remember that gravity is independent of 

radiation, and so, there would be no a-priori reason to assume that a correlation should even 

exist between the two. 

The results for model, 𝐴, which is our first gravitational model, is summarized in Table I, and II.  

Table I, in section IV, considers, 𝑙𝑝𝑙 , to be the fundamental length scale for space.  This leads to 

unsatisfactory scaling behavior.  Table II is better, as it rests on using 𝐿 as the new fundamental 

length scale for the vacuum.  A discussion of the individual columns, and entries within those 

columns, was presented in section IV.  The results for gravitational model, 𝐵, was presented in 

section V.  There, we also summarized our findings using two distinct tables, Tables III, and IV.  

The entries in Table III showed unsatisfactory results, as it was based on using the Planck 

length, 𝑙𝑝𝑙 , as the ultimate length scale for space.  Table IV led to better results as it was 

predicated on employing, 𝐿, as the fundamental length scale.  All 4 tables scaled back to the 

epoch of inception for, 𝐺−1. 

In section VI, we argued that ordinary matter, dark matter, and dark energy must be residual 

mass densities, remnants left over after symmetry breaking.  Their scaling laws look nothing like 

the Planck quantum vacuum scaling laws.  Even in the conventional 𝛬𝐶𝐷𝑀 model, no 

connection can be made, even if 𝐺 is assumed to be constant.  Moreover, their numerical 

values indicate that ordinary matter, dark matter, and dark energy, are very slight perturbations 

upon a much greater assembly of positive and negative mass Planck particles.  It would be akin 

to the slightest of ripples upon a very deep and wide ocean of particles.  The mass densities for 

the component parts, ordinary matter, dark matter, and dark energy, are nothing compared to 

this ocean surface of zero net vacuum mass density, and zero net vacuum pressure.  See, 
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𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠, (6 − 17), 𝑡ℎ𝑟𝑜𝑢𝑔ℎ (6 − 20).  Because of the mass compensating effect between 

the positive and negative mass planckions, the cosmological constant problem has also been 

greatly reduced in scope.  The problem is now to find out how these perturbations came into 

existence, in the first place, and why. 
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