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Abstract: calculation of the lift in flight – Kutta-Zhukowsky’s Equation – a personal summary. 
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KUTTA-ZHUKOWSKY’S EQUATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have a long cylinder in a uniform flow U and spinning with a constant angular speed ω. This 

makes the fluid over the cylinder surface have a speed component 0ru   , because of the 

viscosity. Still on the cylinder surface there is the v  component from the U flow. In Appendix 2 

(eq. (2.5)) we prove the component v at h. 12.00 is 2U, so around the cylinder at different   

angles, we will have:  sin2Uv  . Therefore, around the cylinder we will have tangentially a 

 0sin2 rUuvvT  . 

After naming p  the pressure far away from the cylinder and p that over the cylinder, according to 

the Bernoulli Equation (see Appendix 3): constghvp   2
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ghvpghvp    and being all at the same height h, we have, after a 

comparison between the flow on the left side of the cylinder and that over the cylinder:  
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If we now consider the infinitesimal element of arc dr0 , it makes along an l (el) stretch of cylinder 

(which ideally extends into the sheet), a small surface dlr0 . Its projection over the orizontal plane 

is obviously: dlr sin0  . Over it the pressure )(  pp  acts, and as it is drawn downwards in the 

drawing, the relevant force over the small surface is upwards and its sign will be opposite: 
dlrppdL N sin)( 0][  . Let’s evaluate now the force per unit of length of the cylinder: 

drppdLdL mN sin)( 0]/[   (with no more the small l - el). 



About the total lift L, we will integrate from bottom to top of the cylinder, that is between 2
  

and 2
 ; not only; we will multiply by two, as the cylinder has got two “sides”, back and front: 
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Now, as the peripheral speed u of the cylinder is all over the circumference, the circulation  (speed 

by space of action) is:  ur02   , from which: 

 UL                     (Kutta-Joukowski Equation for the spinning cylinder)                                   (3) 

Therefore, we can state that when a circulation  is generated and not only by a spinning cylinder,  
but also by an aerofoil (wing), a lift L is generated (see here below). 
 
KUTTA-JOUKOWSKI FOR A GENERAL AEROFOIL   
(Kutta-Joukowski Theorem) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here we have an aerofoil which generates a circulation  (a speed u taken on a crown at a certain 
distance r from the foil, in order to be under the approximation limits). 
If we consider here, as well, a small surface created by d  and if we use the Bernoulli equation far 
from the calculation point (where the pressure is p  and the speed of the flow is U) and on the 

calculation point (where we have p and 

 sin2)90cos(2)( 22222 UuuUUuuUuU 
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As we are at a certain distance from the aerofoil, r is relatively large and 2u  can be neglected  with 

respect to 2U , from which:   sinUupp   .                                                                             (4) 

Now, as well as in the previous case of the cylinder, the force due to such a pressure p vertically on 
the small surface (per metre of wing length): 

 drldlr sin/sin                                                                                                                        (5) 



is: dprdLdL CmN sin]/[  , (L on the crown) and according to (4): 

 drUupdLdL CmN sin)sin(]/[   , from which, after integrating between 0 and 2 (so 

avoiding also to multiply by two), we have: 
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This is just one of the vertical contributions of force, as in opposition to the case of the cylinder, 
where we made calculations on the edge of the cylinder, there was no access of fluid into the 
cylinder itself, as it was impenetrable. 
But here we are considering a crown which is far away from the foil, so through the infinitesimal 
surface given by (5) in its horizontal component, some fluid has access, and it’s an access of mass. 
As we have flow from left to right, the access of mass is through the vertical component of the 
surface, so through:  

 drldlr cos/cos   and such a flow dQ, in [(kg/s)/m], due to U, will be: 
 dUrdQ cos  .                                                                                                                            (7) 

And we also have to say that such a mass, entered into the crown, undergoes an increase of vertical 
speed (due to the existence of u) which is:  

cosuv   ,                                                                                                                                     (8) 
from which, as the change of the linear momentum is a force, we have: 

IdLdUurvdQ   2cos ,                                                                                                         (9) 

where IL  is the inertial contribution to the lift. By integrating now the (9) between 0 and 2  , we 

get IL : 
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and for the total lift IC LLL   we sum up the contributions of the (6) and (10), so having: 

uUrL 2  and as above we defined the circulation ru 2  , we get, once again, the Kutta 

Joukowski Equation: 
 UL        (Kutta Joukowski Equation for an aerofoil).                                                              (11) 

 
APPENDIX 1 – The Continuity Equation 
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APPENDIX 2 – The Potential of the flow 
 
About the speed v on the circumference of the spinning cylinder, and in particular about the 
component v  due to the external flow, whose horizontal speed far away is U, let’s find a potential 

function   so that v ; from the Continuity Equation (see App. 1)  )( v
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Laplace’s Equation: 
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Let’s remind now the expression for the Laplacian in cylindrical coordinates (very suitable for us, 
as our spinning cylinder has got a cylindrical symmetry indeed): 
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axis as ideally penetrating into the sheet. Moreover, out of symmetry reasons of our long cylinder, 

the component with z is zero, so:   
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Therefore, in cylindrical coordinates we can say that the v speed components around the cylinder 

and due to the speed of the external flow (U, from far away), will be formally three: v , rv  and zv , 

but out of geometric reasons and out of reasons of uniformity of the cylinder, we have that 0zv .   

We realize that the function )cos(  nrA n
n  is a solution for the (2.1) both with either n=+1 or 

n=-1 (and   An  /  A-n   =  constants to be found), so we have at least two solutions:   cos11 rA  

and  cos)cos( 1
1

1
12





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With reference to the above figure and after suitably reconciling all the algebraic signs, in order to 
make the equations fit the figure, we see that a bit on the left of the point at h. 09 (as if it was about 
a clock…) the speed of the flow is U and is horizontal, from left to right, while over the cylinder, 

right at h. 09, the speed gets obviously zero, and it will eventually increase upwards ( v ) as long as 

θ increases. The same is about the point at h. 15, on the right side of which the flow will then get 
back a U horizontal speed, towards right, that is  -U. 
Let’s use those two points (h. 09 and h. 15) to evaluate   and then, from the equation we will find, 

we will calculate the value of v  at h. 12: 
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Now, in order to figure out A1, let’s get on the horizontal axis (θ=0 or θ=180°) and let’s evaluate rv , 

which must be, for r  , respectively U and –U: 
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At last, about v  evaluated in a generic  θ and in  θ=90°, we have: 
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Moreover, still vertically (θ=90°), or at a certain  θ= θ0,  but far away from the cylinder, ( r ) 
the flow must get back to the imperturbated flow when there’s no cylinder, that is with v=U: 
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everywhere around the cylinder.  
 
APPENDIX 3 – Bernoulli’s Equation 
                  
According to the energy conservation:   
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 , and then  const , and where there’s no viscous forces, 

the Navier-Stokes Equation for sure reduce sto the Euler’s one (but added with the gravitational 
component):  
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If now we consider the divergence and the gradient in terms of directional derivative, on direction 
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 that is, really the statement! 
 
 
 
 



APPENDIX 4 – Venturi and Pitot 
 
Venturi pipe and evaluation of the flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where the pipe gets narrower, the fluid speed is higher, but the flow is uniform anyway along all 
the pipe ( 2211 SvSvvSQ  ); by using the Bernoulli’s Equation in these two points at different 

sections and same height (horizontally):  
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Pitot pipe and evaluation of the external flow speed. 
 
 
 
 
 
 
 
 
 
 
Starting from the Bernoulli’s Equation, let p1 be the external ambient pressure measured by the 
pressure gauge M1 and p2 that measured by pressure gauge M2, which receives the fluid with speed: 
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APPENDIX 5 – Divergence and Rotor Theorems  
 
Divergence Theorem (practical proof):  
 
 
 
 
 
 
 
 
 
 
 
                                        Fig. 6: For the Divergence Theorem. 
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Rotor or di Stokes’ Theorem (practical proof-by Rubino!):  
 
 
 
 
 
 
 
 
 
 
 
                   Fig. 7: For the Rotor Theorem (proof by Rubino). 
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Let’s figure out  ldB


 : 
On dz  B is Bz;  on dx  B is Bx; on dy  B is By;  
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y

B
dx

x

B
B zz

z








  , for 3-D Taylor’s development and also because to go from the 

center of dz to that of –dz we go up along x, then we go down along y and nothing along z itself. 

Similarly, on -dx  B is dy
y

B
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z

B
B xx

x

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    and on -dy  B is dz
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By summing up all contributions: 
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that is, the statement:  
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APPENDIX 6 – Rotor and rotation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Why does the rotor is so called? Let’s consider the elementary rectangle of flow ABCD in the 
above figure; at time t, it moves from O to O’ and then, after a time dt, it wraps in A’B’C’D’. 
AB on the x axis moves towards A’B’ and also rotates about dτ1. AD, as well, in the y direction, 
rotates about dτ2. 

So: dxdt
x

v
d




1 , dydt

y

u
d




2  , from which: dt

x

v
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d
d




 1

1


    and    dt

y

u
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d
d


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2


  .  

The angular speeds of AB and AD are: 
x

v

dt

d
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1
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   and   

y

u

dt

d
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2
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About the centre O, the mean angular speed is: z
y

u

x

v
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  which is the vorticity for the z axis. If the vorticity is zero, the flow is said 

irrotational. In three dimensions, we have:  ),,( zyxrotV  
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 , that is, if the rotor is zero, the fluid didn’t rotate.  

 
APPENDIX 7 – TheEuler’s Equation 

Euler’s Equation:      (


p
vv

t

v 










)( ) .   

(p is the pressure; moreover, this equation is a sketch of the Navier-Stokes Equation, whereas we’re 
not yet taking into account the gravitational field and the viscous forces) 

The force acting on a small fluid volume dV is  Sdpfd


  , with sign -, as we are dealing with a 

force towards the small volume. Moreover: 

 
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dVpSdpf


, after having used a dual of the Divergence theorem (a Green’s 

formula), to go from the surface integral to the volume one.  

We also have: pdVp
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f
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
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



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

][ , but, in terms of dimensions, it’s simultaneously true 

that: 
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][   and from these two equations, we have:  

p
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 .                                                                                                                                   (7.1) 

Now we remind that:  ),,( dzdydxld 
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 , so we can easily 

write that: 
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 )(   and for (7.1) we finally have: 
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)(  that is the Euler’s Equation, indeed. 
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APPENDIX 8 – The Navier Stokes Equation 
 
The Navier-Stokes Equation in the case o fan incompressibile fluid, that is const  and  

0 v


:  (this situations is about most of practical cases) 
 

vpvv
t

v 
22]
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1
[ 



                                                                                   (8.1) 

where  v


  (vorticity), η (viscosity),  (gravitational potential), ρ (density), v


(velocity), t 

(time). 
Now, the terms of this Euler’s Equation have the dimension of an acceleration a


; so, if we want to 

take into account the gravitational field, too, on the right side we can algebraically add the 
gravitational acceleration g


, with a negative sign, as it’s downwards.  

But we know that the gradient of the potential   is really g


 ( g


 ), so: 
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p
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v
)(  . As the following vectorial identity is in force: 
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)()( vvvvvv
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  , and if we take the expression for the vorticity ( v


 ), we 

have: 








 



p

vv
t

v 2

2

1
 and, so far, we have also taken into account the gravitational 

field. In the most general case where we have to do with a viscous fluid , we’ll also add a viscous 
force component: 





viscfp

vv
t

v









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

 2

2

1
                                                                                          (8.2) 

whereas viscf


 is divided by the density because of the dimension compatibility with other terms in 

that equation.  

(8.2) is already the Navier-Stokes Equation, whereas the viscous force viscf


 is still to be evaluated. 

We will evaluate viscf


 in the case of incompressible fluids, that is fluids with const , >> 0




t


 

so, for the Continuity Equations,  0)(  v


 ,  >>  0 v


. 

--------------------------------- 

Calculation of viscf


: 

 
VISCOSITY: 
 
 
 
 
 
 
 
 
 
  Fig. 1. 

We know from general physics that: 
d

v

S

F


  ,                                                                             (8.3) 

d 

S F


v


bottom 

Free surface of the fluid 



that is, in order to drag the slab whose base surface is S, over the fluid, at a d distance from the 

bottom, and drag it at a v


 speed, we need a force F


  
Now, let’s write down (8.3) in a differential form, for stresses 


 and for components:  (x) 

y

u

S

Fx
x




    , having set ),,( wvuv 


, and so: 

S
y

u
Fx 




                                                                                                                                    (8.4) 

We now use (8.4) on a small fluid volume dV in Fig. 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Small volume of fluid dV. 
 
                                                                                                Fig. 3: Axis y, faces 2 and 5. 
 
In Fig. 3 we have reproduced what shown in Fig. 1, but in a three-dimension context.  
 
Faces 2 and 5: 
 
so, with reference to Fig. 3, let’s figure out the viscous forces (due to variations of u) on faces 2 and 
5 of the small volume, that is those we meet when moving along the y axis, by using (8.4): 
 

Viscous shear stress on face 2  dxdzdyyin
y

u
)]_([ 




   

 
 
 
This force acting on face 2 is positive (+) because the fluid over the point where it’s figured out (UP 
zone) has got a higher speed (longer horizontal arrows) which drags S along the positive x. 
 
On face 5, on the contrary, we’ll have a (-) negative sign, because the fluid under such S surface has 
got a lower speed (down) and want to be dragged, so making a resistance, that is a negative force: 

Viscous shear stress on face 5 dxdzyin
y

u
)]0_([ 




   

 The resultant on x is the difference  between the two equations, or better, the algebraic sum: 
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having multiplied numerator and denominator by dy. Therefore: 
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u
F yx 2
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)(



        (viscous force on x due to variations of u along y)                                      (8.5) 

 
Faces 3 and 6: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Axis z, faces 3 and 6. 
 
Similarly to the previous case, we have, as a result:  

dV
z

u
F zx 2

2

)(



        (viscous force on x due to variation of u along z)                                       (8.6) 

 
Faces 1 and 4: 
 

For what case )( xxF  is concerned, that is the viscous force on x due to variations of u (which is a 

component on x) along x itself, we will not talk about shear stresses, as, in such a case, the relevant 
force is still about x, but acts on S=dydz, which is orthogonal to x; so, it’s about a NORMAL force, 
a tensile/compression one, and we refer to Fig. 5 below: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Axis x, faces 1 and 4. 
 
Anyway, nothing changes with numbers, with respect to previous cases, and we have:  
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    (viscous force on x due to variations of u along x itself)                                  (8.7) 
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Now that we have three components of the viscous forces acting along x (that is those due to 
variations of the u component (comp. x) of speed v


, with respect to y, z and x itself), let’s sum 

them up and get viscxF   : 
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   , and we rewrite it 

below: 

udVF viscx
2                                                                                                                          (8.8) 

Now we carry out the same reasonings for an evaluation of viscyF   and of visczF  , and obviously get 

( ),,( wvuv 


): 

vdVF viscy
2                                                                                                                          (8.9) 

wdVF viscz
2                                                                                                                       (8.10) 

from which, finally, by adding (8.8), (8.9), and (8.10), we have: 

vdVwzvyuxdVzFyFxFF visczviscyviscxvisc
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Now, such a viscF


 must be used in (8.2), after having divided it by    and by dV (that is, by 

dVM   ), as both sides of (8.2) have got the dimension  of a force divided by a mass, indeed, so: 
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And therefore, finally, the Navier-Stokes Equation, and we write it better again: 
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Compressible fluids – very rare cases:  

for those cases,  const , >> 0




t


, >> 0)(  v


 , and to (8.12) we have to add the following 

term: )(
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 , but (8.12) already enclose a big series of practical cases… 

 
 

General acceleration 

Pressure forces 

Gravity forces 

Viscous forces 
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