Neuro-symbolic Meta Reinforcement Learning for Trading

S I Harini,' Gautam Shroff,> Ashwin Srinivasan,' Prayushi Faldu,’ Lovekesh Vig 2

! APPCAIR, BITS Pilani K.K. Birla Goa Campus
2 TCS Research
3 1IT Delhi

Abstract

We model short-duration (e.g. day) trading in financial mar-
kets as a sequential decision-making problem under uncer-
tainty, with the added complication of continual concept-drift.
We, therefore, employ meta reinforcement learning via the
RL? algorithm. Tt is also known that human traders often
rely on frequently occurring symbolic patterns in price series.
We employ logical program induction to discover symbolic
patterns that occur frequently as well as recently, and ex-
plore whether using such features improves the performance
of our meta reinforcement learning algorithm. We report ex-
periments on real data indicating that meta-RL is better than
vanilla RL and also benefits from learned symbolic features.

Introduction

Deep learning techniques have achieved human-like and
even superhuman performance in a number of arenas: video
games, strategy games, robotics, etc. In many of these are-
nas, the spectrum of human performance varies widely, from
average to expert. Human traders in financial markets also
differ greatly in skill and performance. The consistent suc-
cess of expert traders is unlikely to be due to chance alone;
it is more likely that such traders are explicitly or implicitly
relying on patterns in the data they see.

External events in the world clearly affect prices in finan-
cial markets. Thus, accurately forecasting financial prices
over medium term, e.g., months, weeks or even days is a
challenging if not hopeless task, even for deep-learning tech-
niques, see (Shah and Shroff 2021). The impact of external
events is reduced when trading over a shorter time frame,
such as sub-second high-frequency trading as well as, to
an extent, intra-day trading. However, intra-day price vari-
ations are the result of complex feedback between buyers
and sellers, as modeled in (Wang 2014). Such feedback re-
sults in near chaotic, but not random, behavior, i.e., the auto-
correlation in the price series is not zero: the price series
has ‘memory’. Thus, short-duration price series, while near
chaotic, do seem to exhibit patterns albeit not consistently,
which is what human traders exploit.

It is known that deep-learning techniques can indeed track
chaotic systems, such as the Lorenz equations (Madondo
and Gibbons 2018); thus, it is not unreasonable to expect
deep learning could be effective in near chaotic environ-
ments such as financial markets. Indeed, there have been

many attempts at applying machine learning, and, more re-
cently, deep learning to trading, some of which are men-
tioned in the next section.

Even so, applying deep learning in financial markets faces
challenges: First, data is scarcer than one may expect - there
are only so many days of past history, and so many finan-
cial instruments, even if one assumes all instruments be-
have alike. This is far fewer data than, say, text or images
on the internet. Second, price series exhibit patterns, these
change over time, and it is well known that markets contin-
ually change their ‘regime’, e.g. from ‘trending’ to ‘mean-
reverting’, as well as their volatility.

In this paper we (a) model trading as one of sequential
decision-making under uncertainty, (b) apply deep meta re-
inforcement learning to make trading decisions and (c)
investigate whether the incorporation of features based on
hand-crafted patterns that are often used by human traders
improves performance. Further, we observe a meta-pattern
in such hand-crafted patterns which we use to automatically
learn a large number of similar features using techniques
borrowed from inductive logic programming, and inves-
tigate whether these add to the effectiveness of our meta-RL
based trading agent. We present preliminary results on real
data that indicate that both meta reinforcement learning and
logical features, both hand-crafted and learned, are more ef-
fective than vanilla RL or primary price features alone. We
conclude with ideas for future exploration.

Background/Related Work
Meta-learning

Meta-learning approaches seek to learn in situations train-
ing data is scarce, either inherently or due to rapid distribu-
tion shifts that render older data less relevant to the current
task, as is the case for short-duration trading. Meta-learning
techniques are‘ learning to learn’ by training on many re-
lated tasks, so that performance on similar future tasks is im-
proved. Optimization-based meta-learning, exemplified by
the MAML algorithm (Finn, Abbeel, and Levine 2017) at-
tempts to learn a good parameter initialization such that a
few steps of gradient descent starting from there are suf-
ficient to adapt rapidly to a new task even with very few
data samples. While MAML and related meta-learning tech-
niques do apply in reinforcement learning setting, they still

require training on a new task, albeit with limited data. In
the case of trading, where an episode is ideally an entire day,
it is of limited use since a model so adapted could only be
used the next day, and without further adaptation as the day
progresses. (Metric-based meta-learning techniques, such as
matching networks (Vinyals et al. 2016) do not easily ap-
ply in reinforcement learning.) The third class of traditional
meta-learning techniques are model-based, wherein adap-
tion on new data takes place within the activations of a net-
work’s hidden states rather than via any gradient-based up-
dates. The RL? algorithm (Duan et al. 2016) which we use
here is also a model-based meta-learning technique. In such
a technique, adaption on new data, in our case new rewards,
takes place within the network activations as rewards arrive,
making such a technique most applicable in our scenario.

Machine-learning for Trading

Recent works applying machine learning to trading based
on price signals alone have also used deep neural networks
as well as reinforcement learning: ‘Deep Momentum Net-
works’ (Lim, Zohren, and Roberts 2019) as well as ‘Mo-
mentum Transformer’ (Wood et al. 2021) formulate the trad-
ing task as one of suggesting the position to take, e.g., 1
for a long (i.e., buy) position, -1 for a short (i.e., sell) posi-
tion, and O for no position. Exiting a buy/sell position takes
place when a 0 action follows the previous 1 actions, etc.
Neural networks are trained to directly optimize volatility-
adjusted expected returns, adjusted for transaction costs,
over a trading period. Transaction costs are computed by
tracking when positions are entered and exited, i.e., when
actions change from one time step to the next. The former
paper uses MLPs and LSTMs, while the latter uses trans-
formers. Both works are essentially applying vanilla REIN-
FORCE to the MDP formulation of the trading problem.
Deep Reinforcement Learning in Trading (Zhang, Zohren,
and Roberts 2020) uses the same formulation as the above
two works, but applies more refined reinforcement learning
techniques, e.g., policy-gradient, actor-critic, and deep-Q-
learning algorithms. In contrast to the formulation used in
all the above three works, we also model actions as buy (1),
sell(-1), or do nothing (0), but these can only be taken when
no position (i.e., zero shares) are held. As soon as a position
is taken our training environment computer when this posi-
tion exits due to the pre-defined stop-loss/target being met
or the day end being reached, at which point a reward is re-
turned to the RL agent. We postulate that such a formulation
makes for easier learning since the agent only needs to deal
with one kind of situation, i.e. when it holds no position. The
downside is that exit conditions (i.e., stop-loss/targets/end-
of-day) are fixed in advance, rather than determined based
on price movements. Note that however, such exit condi-
tions can also be outputs of the policy, i.e., varying stop-
loss/targets for each buy or sell, based on current volatility,
or whatever the agent finds useful; nevertheless, we have not
reported experiments with this enhancement here.

Inductive Logic Programming

Inductive logic programming (ILP) (Muggleton and Raedt
1994) investigates the inductive construction of first-order

clausal theories from examples and background knowledge.
ILP is ordinarily employed in a supervised learning setting,
where positive (and usually negative) examples of a target
concept are given in terms of base features. Also supplied is
background knowledge in the form of facts as well as log-
ical rules, typically in a logic programming language, i.e.,
Prolog. The ILP process involves constructing a theory that
explains the examples provided with the desired accuracy,
support, and confidence. At each stage in this process, possi-
ble theories are tested against target examples via resolution
using background knowledge.

In our case we do not have target examples or con-
cepts, instead, price data is translated into Prolog facts,
and feature templates, or ‘meta-rules’, are added as back-
ground knowledge using techniques introduced in (Muggle-
ton, Lin, and Tamaddoni-Nezhad 2015). Thereafter, start-
ing from instances selected randomly as in (Muggleton and
Raedt 1994), features with high support in the data are dis-
covered as in (Dehaspe and Raedt 1997), via (SLD) resolu-
tion! using the supplied background facts and meta-rules.

Methodology
Task Formulation and Learning Environment

Each task represents a trading day for a particular symbol
(i.e., stock). Data arrives each minute with the open, high,
low, and close prices for the past minute along with techni-
cal analysis indicators (as will be detailed below in a subse-
quent section). The agent issues buy/sell/do-nothing actions
based on the data seen so far for the day. Once an order (i.e.,
buy or sell) is placed, the agent does not see any data (or
reward) until the price moves by an amount determined by
pre-defined stop-loss or target values; e.g. if these are each
1%, the agent receives a reward (positive or negative) when
the close price changes by 1% from the point at which the
order was placed, At this point, the agent resumes receiving
data every minute until it places another order. Alternatively,
if the day ends, the agents receive a reward based on the final
closing price of the day. As noted earlier, this formulation
differs from that in prior works (Lim, Zohren, and Roberts
2019; Wood et al. 2021; Zhang, Zohren, and Roberts 2020).

Meta-reinforcement Learning: RL?

To deal with continual distribution shift, we employ the
meta reinforcement learning approach RL? from (Duan et al.
2016). In a standard RL formulation the agent predicts the
next action based on the current state (or history of states, in
the case of a recurrent network) and subsequently receives
a reward. In RL2, the previous action and reward are also
input to the network, and a recurrent network is used. As a
result, changes in the {state,action,reward} distribution are
visible to the agent as it takes actions. Note that the agent
is trained over many trials where it encounters sequences of
tasks with possibly different {state, action, reward} distri-
butions. Thus, in principle, the agent can learn to adapt to a
new distribution when encountering a new task.

"https://en.wikipedia.org/wiki/SLD_resolution

The RL? agent is trained on past data comprising of trials,
where each trial is a sequence of tasks. In the trading con-
text, this entails training the agent over many day-symbol
combinations, and then testing for a new day (for one of the
symbols already seen; though unseen symbols could also be
used - here we use seen symbols). In principle, the meta-RL
agent should rapidly adapt to the reward pattern it experi-
ences in its first few orders even if these differ from the re-
cent past. We use PPO to train the meta-RL agent and an
LSTM agent (whereas (Duan et al. 2016) used TRPO and
a GRU agent), since PPO is known to be more stable while
training and LSTMs are more expressive than GRUs.

Hand-crafted Features

Human traders use price patterns as signals on which to
base their trading decisions. An example of two such pat-
terns are depicted in Figure 1. The ‘three crows’ pattern in-
volves three successive observations over which both open-
ing prices and closing prices decrease sequentially. Simi-
larly, the *four horsemen’ pattern involves a sequence of
four rising open/close prices. In order to explore whether

“three crows” “four horsemen”

g e !
.n o=+
U#ﬁn*ﬂﬂu

Figure 1: Example of hand-crafted features

such features add additional value we detect the presence
or absence of such patterns and append two Boolean fea-
tures to the state at each time step to indicate if and which of
these holds: thus these features would be (0, 0) for all time
steps except at time step 17 where a (0, 1) would indicate the
presence of ‘four horsemen’, and at 6,7, and 8 where (1,0)
would indicate the presence of ‘three crows’ over three re-
cent steps.

Learned Logical Features

The two handcrafted features above are based on patterns
involving increasing/decreasing sequences of primary fea-
tures, viz., open and close prices respectively. We postulate
that increasing and decreasing sequences of other primary
features might also form useful features. For example, in-
creasing/decreasing sequences of highs, lows, or even mov-
ing averages or other technical indicators.

Further, it is also possible that increasing/decreasing se-
quences of derived features, in particular, differences be-
tween primary features may be useful. For example, whether
the difference between open and close is narrowing or
widening may be indicative of decreasing or increasing
volatility, which in turn should be useful for deciding an
appropriate action. The same can be said for differences
in highs and lows, opens and highs, etc. It is also reason-
able to consider differences between technical indicators as

well, e.g., differences between moving averages of different
lengths; the crossing of such moving averages is known to
be used by traders, so narrowing differences would point to
a possible impending crossing.

Of course, exhaustively enumerating all such differences
for each time step would be both computationally inefficient
and likely to confuse the neural network model. Instead, we
use techniques borrowed from inductive logic programming
to enumerate such features in a principled manner and fil-
ter these first based on the frequency of occurrence in the
training data, and then by importance using standard feature-
importance determinants.

Meta-patterns are defined in Prolog to capture the con-
cept of ‘runs’, i.e., a sequence of continually increasing/de-
creasing values (of one or more primary/derived features)
of arbitrary length. Thereafter randomized search followed
by resolution in Prolog is used to enumerate frequently oc-
curring patterns (i.e., those that occur in the training data
more often than a given support value). Background clauses
are included to define the concept of a ‘derived’ feature as
the difference between two primary features. Randomness
is used in the search process to select features to test for.
Search proceeds until the number of high support patterns
found reaches a pre-determined maximum limit.

The above procedure yields a very large number of pat-
terns, which are used to augment the price data with pattern-
based features determined by the presence or absence of one
or more patterns at each time step. These features are used
to train a random forest regression model to predict reward;
as a side-effect, the random forest model returns the impor-
tance of each feature towards predicting reward. These im-
portance values are used to rank pattern-based features. Fi-
nally, a small number of top-ranking features are used to
augment the meta-RL agent’s neural network model.

Evaluation
Data

Data received by the agent at each time step is price data, i.e.,
open, high, low, close, and volume. These are normalized by
dividing the volume column by the first non zero volume at
the beginning of the episode and the rest by dividing by the
close price at beginning of the episode. These normalized
values are then used to compute technical analysis indicators
such as simple moving averages, relative strength indicator,s
etc. We use a total of 15 such technical analysis features in
addition to open, high, low, close prices and volume.

Results

The agent is trained on n symbols for m days and test scores
on the day m + 1 are calculated. The results averaged over
multiple non-overlapping subsets of symbols and days are
as shown in Table 1 and Table 2. Each table entry indicates
the % average daily return achieved on the test day when
trained using the data of the given number of symbols and
previous days. Table 1 shows the performance of vanilla re-
inforcement learning (i.e., wherein the previous action and
reward is not fed back into the neural network, vs meta re-
inforcement learning, and Table 2 shows the performance

when using different sets of features as inputs to the RL-
agent’s neural network.

1 symbol | 3 symbols | 6 symbols
Sdays | 0.26 -0.23 0.36
Meta RL 10 days | -0.06 0.11 0.27
15 days | 0.11 0.04 0.09
Sdays | -0.12 -0.33 -0.45
Vanilla RL | 10 days | -0.17 -0.31 -0.52
15 days | -0.27 -0.22 -0.38

Table 1: Avg. % returns on test day using vanilla/meta RL.

1 symbol | 3 symbols | 6 symbols

Technical Sdays | 0.26 -0.23 0.36
Indicator 10 days | -0.06 0.11 0.27
features 15 days | 0.11 0.04 0.09

5days | 0.32 -0.16 0.41
HHanderafted! 1 qays [0.07 021 0.19

15 days | 0.15 0.12 0.14
+Learned S5days | 0.31 0.27 0.45
logical 10 days | 0.17 0.39 0.21
features 15 days | -0.1 0.23 0.11
+Handcrafted| 5 days | 0.33 0.36 0.29
+logical 10 days | 0.19 0.29 0.25
features 15 days | -0.04 0.27 0.05

Table 2: Avg. % returns on test day for different feature sets.

Discussion

We draw the following indicative conclusions from the re-
sults presented above:

1. Meta reinforcement learning improves over vanilla rein-
forcement learning, indicating that distribution shift may
be impacting the former.

2. Logical features, both hand-crafted as well as learned,
improve performance vs using primary features alone.

3. Learned logical features add value over and above
hand-crafted features alone.

4. Training using too much past data (15 days) is inferior to
training using a moderate amount of past data (5 or 10
days). This may be further evidence of distribution shift
over longer time periods.

5. Training on more symbols is better, indicating that distri-
bution shifts take place more over days rather than across
different symbols.

Conclusions and Future Work

We submit that meta reinforcement learning is a promising
direction to explore for building trading agents using deep
learning. Also, logical features learned using meta-patterns
inspired by hand-crafted features may be useful.

Many recent advances in deep learning are worthwhile ex-
ploring in the context of building trading agents: Language

models have proven to be few-shot learners even for numer-
ical data expressed symbolically (Hegselmann et al. 2022);
could logical features as we have used here form the basis
for exploring whether these systems could be applied in the
trading arena? Recently de-noising diffusion models have
also been used for planning (Janner et al. 2022); trying such
approaches in trading may be worth exploring as well.

References

Dehaspe, L.; and Raedt, L. D. 1997. Mining association
rules in multiple relations. In International Conference on
Inductive Logic Programming, 125-132. Springer.

Duan, Y.; Schulman, J.; Chen, X.; Bartlett, P. L.; Sutskever,
I.; and Abbeel, P. 2016. RI 2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In In-
ternational conference on machine learning, 1126-1135.
PMLR.

Hegselmann, S.; Buendia, A.; Lang, H.; Agrawal, M.; Jiang,
X.; and Sontag, D. 2022. TabLLM: Few-shot Classifica-
tion of Tabular Data with Large Language Models. arXiv
preprint arXiv:2210.10723.

Janner, M.; Du, Y.; Tenenbaum, J. B.; and Levine, S. 2022.
Planning with Diffusion for Flexible Behavior Synthesis.
arXiv preprint arXiv:2205.09991.

Lim, B.; Zohren, S.; and Roberts, S. 2019. Enhancing time-
series momentum strategies using deep neural networks. The
Journal of Financial Data Science, 1(4): 19-38.

Madondo, M.; and Gibbons, T. 2018. Learning and mod-
eling chaos using Istm recurrent neural networks. In MICS
2018 proceedings.

Muggleton, S.; and Raedt, L. D. 1994. Inductive Logic Pro-
gramming: Theory and Methods. J. Log. Program., 19/20:
629-679.

Muggleton, S. H.; Lin, D.; and Tamaddoni-Nezhad, A. 2015.
Meta-interpretive learning of higher-order dyadic datalog:
Predicate invention revisited. Machine Learning, 100(1):
49-73.

Shah, V.; and Shroff, G. 2021. Forecasting Market Prices
using DL with Data Augmentation and Meta-learning:
ARIMA still wins! In [(Still) Can’t Believe It’s Not Bet-
ter! NeurIPS 2021 Workshop.

Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.; et al.
2016. Matching networks for one shot learning. Advances
in neural information processing systems, 29.

Wang, L.-X. 2014. Dynamical Models of Stock Prices Based
on Technical Trading Rules—Part II: Analysis of the Model.
IEEE Transactions on Fuzzy Systems, 23(4): 1127-1141.
Wood, K.; Giegerich, S.; Roberts, S.; and Zohren, S.
2021. Trading with the Momentum Transformer: An In-
telligent and Interpretable Architecture. arXiv preprint
arXiv:2112.08534.

Zhang, Z.; Zohren, S.; and Roberts, S. 2020. Deep rein-
forcement learning for trading. The Journal of Financial
Data Science, 2(2): 25-40.

