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Abstract: here is a simple explanation of the shape of an atom. Not so simple, but as simple as one 
can. 
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GENERAL VIEW 
 
What is following will have a mathematical proof.  
 
The orbitals n, or shells, are named by the 7 capital letters K, L, M, N, O, P and Q. 
So, n is the principal quantum number (from 1 on).  
Then there is the orbital quantum number, or azimuthal quantum number (l, “el”, from 0 to n-1 and 
recalls the sublevels and the shape of the orbitals). 
Then, there is the magnetic quantum number (m, from –l to +l and recalls the orientation of the 
orbitals). 
Finally, there is the spin quantum number (s, on the spinning of the electron around itself). 
The sublevels are also named by the four letters s, p, d and f and every one can contain respectively 
2, 6, 10 and 14 electrons, as a maximum. Such orbitals have shapes, 8-like, spherical etc.  Such 
shapes are given by graphs from Schrodinger’s Equation applied to the atom (nucleus-electrons 
system).  
 
The filling takes place in the following way:  
 
1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f-5d,6p,7s,5f-6d 
 
The first number is that of the orbital.   
 
It seems there is a geometric-mathematical plot behind all that, as such a series of filling can be 
obtained by writing one after the other all the items barred by the arrows in the triangle below, 
starting from the higher one, of course:  
 
 
1s 
2s,2p 
3s,3p,3d 
4s,4p,4d,4f 
5s,5p,5d,5f 
6s,6p,6d,6f 
7s,7p,7d,7f 
 
(Rule of the diagonal) 
 
Examples: 
 
Hydrogen H: 1s1    
 
 
Helium He: 1s2    
 
 
Nitrogen N: 1s2 , 2s2 , 2p3    
 
Then, there is also the Principle of Exclusion of Pauli, according to which in an atom it is not 
possible to have two electrons which have all four quantum numbers identical.  

1s 

1s 

1s 2s 2p 



And also the  Hund’s Rule is in force, according to which, in all groups of orbitals with the same n 
and l, the electrons will occupy the highest number of orbitals.  
Helium has got its two electrons which fill completely its orbital s and so it has reached, as to say,  
the “duet” and it is complete and will not link to any other atom to seek filling electrons. In fact, it 
is a noble gas.  Regarding all the other noble gases, they have not only the s orbital to be satisfied, 
as for the helium, but also the p orbital and also their p orbitals are complete (two electrons in s and 
six in p), so reaching the octect. And because of that, we also have the similarity in the chimical 
properties among elements in the same columns in the Periodic Table of Elements, as after that the 
atomic number Z increases, there is an increase of the orbitals to be filled and every time the same 
filling situation shows up, the same chemical properties show up as well.  
We said the sublevels s, p, d and f can contain, as a maximum, 2, 6, 10 and 14 electrons 
respectively. But why? Well, the magnetic quantum number m, whose values are from –l to +l 
(from minus el to plus el), which recalls the orientation of the orbitals (z component of the angular 
momentum), in case of orbital n=1, l=0 and m has a 0 value indeed, and no others, as l=0 and the 
available values for m are the 0 indeed, that is just one value.  
In case of n=2, l=0 or 1 and so m can have values  -1, 0 and +1 thet are 3 values. In case of n=3, l=0 
or 1, or 2 and so m can have values -2, -1, 0, +1 and +2, that are 5 values. At last, when n=4, l=0 or 
1, or 2, or 3 and so m can have values -3, -2, -1, 0, +1, +2 and +3, that are 7 values. 
Let’s sum up: as a highest number of possible values for m we have 1, 3, 5 and 7. But we know that 
an electron can tolerate a companion whose spin is opposite, so the above numbers must be 
multiplied by two, so having 2, 6, 10 and 14, before mentioned. The sum of the first two is 8, that is 
the octet indeed. 
The Schrodinger’s Equation for an electron gives such a wave function    which gives us infos on 
the probability to find the electron in points which have their own coordinates; more exactly, the 

square modulus of  , which is 
2

 , is the probability.  
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The wave function which describes such orbitals is:  
 

),()(),,( ,  m
llE Yrr                                                                                                (1) 

It is in polar coordinates ),,( r  because the calculations are easier than the cartesian(xyz), as we 

will show later. Such an equation will be proved below. Let’s start by reminding that the shape of 

the orbitals is given by ),( m
lY  as by this function we know how the probability to meet the 

electron changes with moving up and down and left and right ),(  .  The function )(, rlE  , on the 

contrary, just tells us how the probability changes with moving radially (r) (but keeping ),(   

unchanged) and so, how it increases or decreases in its intensity, so letting us draw by dots (with 
thicker or thinner density) the orbital along r.   

Let’s not forget that the true probability is not ),,( r , but, more exactly, 
2

),,( r . Here are 

the first values for Y:  
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through Euler, that  sincos ie i   , and after having shown for every one of them the m 

values and finally noticing around which axis the symmetry is developed: (as an example, if   

doesn’t appear, then the symmetry is around z, when   changes) 
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About the more complex f orbitals, similar reasonings can be carried out and we leave them to the 
reader, as an exercise. So, by changing   and   , the relevant orbits are described, with all the 

shapes shown in the above figures.  
 

APPENDIX 1 
The Bohr’s atomic model 
 

We know that: hE  ,   2mcE  . Afterwords, the balance between electric force and centrifugal 
one, in the nucleus-electron system, yields:  

r
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(Z is the atomic number, that is the number of protons (+) in the nucleus) then, obviously: 

mcchmc  2   >>>  


mc
c

mch  , from which  
mc

h
 . Now, for a particle whose rest mass 

is not zero, we have, on the contrary: 
mv

h
   (De Broglie wavelenght, 1923).  

The matter, too, has wave properties, as a shifty particle cannot be reduced to a point with no 
dimensions, but it is rather a little cloud in which the probability to find it is higher; mathematically 
speaking: a wave.  
If now we suppose that the circumference of the orbital run by the electron is n times λ, then:  

n
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mr

nh
v

2
  and here “n” is the principal quantum number.  

(by the way, the equation hxphmv   is here intended as a first sketch of the 

Heisenberg Uncertainty Principle). Now, starting from (1): 
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For the 1st orbital of the hydrogen (n=1), we have the Bohr’s radius ( Amr 529,010529,0 10   ). 

Considering now v=0 at an infinite distance from the nucleus, it follows that the work necessary to 
bring the electron from r to infinite is:  
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As a total energy: 
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Hence, by jumping from b to a, we have:  
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Now, as 
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As a Rydberg constant R, we have: 
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APPENDIX 2 
Schrodinger’s Equation 
 
We know the Planck/Einstein’s Equation: 

hE                                                                                                                                                (1) 
And we also know the relation between pulsation (angular velocity)  and frequency  : 

 2                                                                                                                                              (2) 
Then, for the energy of a particle:  
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 2
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and then the linear momentum: 
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0                                                                                                                                              (4) 

and, moreover, the general relations c (velocity is wavelength by frequency) 



2
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
(modulus of the wave vector kk ˆ2
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Now, from (1) and (3), we have: k
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Moreover: 
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And for a particle, 
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Now, as in order to locate a particle I have to interfere with it, by illuminating it, or perturbing it 
somehow, and as, simply speaking, the smaller a particle is, the more that perturbation disturbs it, 
diverts it, slows sit down, accelerates it etc, one is led not to imagine anymore it as a single point, 
but rather through a wave. 
With De Broglie, we can associate a wavelength to a particle, through (5):   

mV

h

p

h
 , where, now, V is the velocity of the particle and p is the modulus of Vmp


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For what has been just said, we are also led to introduce a wave function ),(),( txtr


  

which describes the particle when moving along ),,( zyxr


 (or ),,( zyxx


). 

wave function: 
for all what previously said, the particle isn’t anymore a dimensionless point, but rather something 
like a cloud which is the space in which the probability to find the particle is higher; if we put 

xdtx 3),(


  the probability to find the particle in the volume between x


 and xdx 3


 ( xd 3  as we are 

thinking in three dimensions), it must be proportional, through a proportionality constant, to the 

square modulus 
2

),( tx


  of the wave function ),( tx


 . We are talking here about a square 

modulus, as, in general, we can express a wave through trigonometric functions, and so also in a 
complex form, that is, with complex numbers and we have quantifiable quantities in the real field, 
as long as we take their moduli: 
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complex conjugated of ),( tx
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 is typical of every single electron. Now, by the definition of probability, the integration over all 
the space must yield the maximum probability: 
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Let’s normalize the function  so that 1),( 32
 xdtx


, and we have: 

),(
1

),( tx
N

txN


  

Let’s write down a list of some of the properties  must have: 
 
-it must be continuous, as the probability to find the particle, for instance, in x0, must be the same, 
whatever you tend to x0 , whether from left or from right.  
 
-it must be limited everywhere, as well as the probability to find the particle in a certain place is. 
 
-for a particle which is localized in a region Ω, we must have 0 for x .  
 
-it must be a monodrome function (just one value) 
 
-wave functions which differs just by the normalization describe the same physical system (and 

 0 Vacuum) 
 
-if a system can stay in a state 1  and also in a state 2  , then it can stay also in a generic state 

21   .  

 
wave function of a free particle: 
we know from wave physics that, of course, a wave propagating through time and through x, must 
have, as an argument, a function like: 

txkvtxk 
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




 2ˆ2
, as if we fix a point in time (as: t=0) we have a variability with x and 

fixing x we have a variability in time, that is a real wave. 

Now, according to (5) and (6) we have: t
E

x
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txk
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   and so the wave function must be 

like: 
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We notice that deriving (9) over t means to factor ω, while deriving it over x means to factor k.  

Now, as according to (8): 
m
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  , we understand, for all what has been just said, that we have to 

take a t-first order wave equation which is also an x-second order: 
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Now, Fourier should suggest to propose base functions as candidates to be solutions of (10), the 
following four: 
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So, we notice that (11) and (12), in their monodimensional form, (x in place of x


 etc), cannot 

satisfy (10), while (13) and (14) can, provided that we consider: 
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from dynamic quantities as p, therefore it works for us. 

If, on the contrary, if we chose the d’Alembert wave equation  
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inside, so such an equation would have changed its characteristics with p. 
So, we put (13) in our good candidate (10), so getting: 
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(Schrödinger’s Equation for a free particle and on a monodimensional motion) 
 
If now we put the expression for ),( tx ((13) monodimensional) in (15), we get: 
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in fact, we already had: 
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Now, we rewrite, one close to the other, (15) and (16): 
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By a comparison side to side, we see that it is possible to make the following associations of 
operators: 



t
iE




   and 

2

2
22

x
p




   >>>

x
ip



   

In three dimensions, (15) becomes:  
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which is the three-dimension Schrödinger’s equation for a free particle, where 
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We notice that the velocity of the wave is 
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case, and this quantity corresponded to: 
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if the particle is also in a potential V, we’ll have, in place of the mere kinetic energy, the total 

energy H=T+V=Ek+V (H is the Hamiltonian) and (17) will become:  ( )(),( txkiCetx 
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      Complete  Schrödinger’s Equation!                                                 (19) 

 
As an alternative, according to (18) we can write:   
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and also: 
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that is : 0)(
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 An alternative for the complete Schrödinger’s Equation! (22) 

 
Regarding phase and group velocities, for a photon, which is monocromatic and follows the 
d’Alembert equation, those two velocities are the same ( cvv gf  ), and all this shows us once 

again that Schrödinger’s Equation is not the same as the d’Alembert wave equation and for it we 
have: gf vv  .  

The Schrödinger’s Equation sounds like a tied wave, standing like. As chance would have it. 
Wanna see the Schrödinger’s Equation, in the formulation of the (22), is a standing wave 
equation??? 



Let’s try and see: 
first of all, we notice that (22) really looks like the equation of standing waves:  
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Out of simplicity, we consider (22) in a monodimensional form: 
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
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m

x 
; well, it’s exactly the same. 

(23) is the standing wave equation, indeed; as a matter of fact, if a generic 1 propagates in a 

limited mean, the superposition of it with its reflection 2  makes a standing wave 21  :     

)sin(1 tkxA   ,     )sin(2 tkxA  . 

The difference in sign in the arguments shows that those two waves propagate in opposite 
directions; moreover, the term tt  2  tells us that, if you fix a point x, you have an oscillation 

in time, while the term kx  tells us that if you fix a time t, you’ll see an oscillation when you move 
along x. 
 , therefore, oscillates in time and along the direction of propagation. 
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after that we have used the following trigonometric identity: 
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Now, if you fix t in (24), you’ll have: kxconst sin  , from which: 
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, so the (23), that is, the 

standing wave equation! 
Therefore, as a further intuitive proof of the Schrödinger’s Equation, we give the following: 

let   be the wave function; it must withstand the following wave equation: 02
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then we know from the previous pages that kp  , from which: 
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Then, we know through (20) that: 
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p
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 so really the (22) monodimensional! 

Naturally, also the case of a vibrating string brings u sto the Wave Equation:  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

τ is the tension of the string, dm is the infinitesimal element of mass and μ is the linear density of 
the string.  
 
On the y axis, we have:   
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   ; now, for small angles, both sine and tangent are 

approximated by the angle:  dx
t
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Moreover, if in the Wave Equation 
2

2
2

2

2

x
v

t 







  we put a wave function in which the space 

coordinates and the time coordinate are separated, i.e. they are not together in the same argument, 

so not like that ( )( txk 


), but like that txtx  sin)(),(  , then we get again the 

Schrodinger’s Equation: 
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preamble on the mean value of an operator: 

we know that by ),(   we mean the following: xdtxtx 3),(),(* 


, which is 1 for normalized 

Ψ. 
Before, we talked about probability P as a function of the space (x or x


) and proportional ro the 

square modulus of the wave function: 
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 , where ),(* tx


  is the complex conjugated of ),( tx


   

(i swapped with –i). If then you want to calculate the mean value (over the space) for an operator F, 
we can use the weighed mean value calculation, where the weight evaluated for every point where 
you want to calculate the mean value, is ),(*),( txtx


 : 

xdtxFtxFF 3),(),(*),(  
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                                                                                         (26) 

preamble on fundamental commutators: 
we define the commutator of the operator A with the operator B: BAABBA ],[ . Now, in case A 

and B are just numbers, their commutator will be zero, but if they are operators, then things can be 
different. 
For fundamental commutators, we have: 

0],[  ijjiji xxxxxx                  (x=position) 
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in fact, if you apply the commutator to an auxiliary and generic operator φ: 
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where ij  is the Kronecker’s Delta, and is 0 if ji   and 1 if ji  . In fact, as xi and xj are ortogonal 

and linearly independent (as x, y and z are), we really have ij

j
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
.  



About the commutator ],[ Et :  (as 
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preamble on the eigenvalue equation and on deviations: 
as xi is a certain position on a certain axis (for instance, x1=x, x2=y, x3=z), then also Ψi is a certain 
state i, considered as a component i of a wave functio Ψ in a maybe infinite-dimension space 
i=infinite). 
If states “i” exist, where an operator F (which can be simply a real number f) has a well defined 

value, then we have: ii
fF  .  

F should be an ”observable”, likely. Then, we know the definition of mean square deviation F  for 
F and we want it becomes zero: 

0
22 
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FFF . We also define the “simple deviation” F : 

iF FF  . Then, we have: 

2222222 )(2)( FFFFFFFFF
iiiiiiiiiF  . Now, the request 

according to which: 0F , becomes as follows: 0),(0 22  iFiiF . And as F is an 

observable, then hermitian (F*=F), also F will be hermitian, and so we can write: 
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22   diFiFiFiFiiF , from which: 0 iF , that is: iii fF  , 

which is the eigenvalue equation for F. 
 

APPENDIX 3 
Links among all the wave functions 
 
This is a proof that the d’Alembert’s Wave Equation, that of Schrodinger, of Klein-Gordon and of 
Dirac are all related one another and show the oscillation of the universe. Moreover, the Klein-
Gordon’s Equation gives us a three dimensional interpretation of either all relativistic fourth 
components  or the rest energy.  
 
We know from the relativity that the total energy E is:  

42
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222 cmcpE                                                                                                                                                  (1) 

This is the most general formula we have for the energy and is suitable for a relativistic particle 
indeed.  

Now, for a photon (a particle whose rest mass is equal to zero), we have: 
222 cpE  , and: 

pcE                                                                                                                                              (2) 

For a non relativistic particle, we know its kinetic energy is: 
2

0
2

1
vmEk  , but this is hidden in 

(1), which is more general, indeed. In fact, (1) can be rewritten in this way:  
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and for the developments of Taylor, we have: 
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cmE  and, for the kinetic energy, we 

have:  
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Now, let’s take the general expression for a wave:  
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Such a wave simultaneously propagates in space (x) and oscillates in time t; in fact, if we fix t=0, 

we see we have an oscillation along x ( )( xkieA

 ) and if we fix x=0 we have an oscillation in 

time ( )( tieA  ).  
We also know that:  
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and being (2) standing, we have:                                                        
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and (4) becomes: 
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By simply putting such a Ψ in the following equations:  
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we have that they give identities, sot they are correct.  

In one dimension:    
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So, we can deduce the following operatorial identities:  
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As (2) stands: 
222 cpE  , we have: 
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which is the d’Alembert’s Wave Equation. 
Please notice such an equation, derived in a ‘’ relativistic’’ environment (photon, i.e. a particle 
propagating by speed c and with a zero rest mass) is invariant under a Lorentz’s Transformation.  
If now we consider non relativistic particles (atoms are like that, ordinarily), we will get a non 
relativistic ‘’wave’’ equation, which is the Schrodinger’s Equation. In fact, if in (7) we no longer 

consider pcE  , but 
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vmEk  (a non relativistic equation, indeed), we get: 
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and as well as we got (12), by a direct use of (14) in the following equation: 
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(which is the Schrodinger’s Equation)  
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we get an identity. Therefore, (15) is true. Please notice that in (14) we have no longer used a total 
E, but just an Ek, and we are going to take that into account.  

The left side of (15) is 
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
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t
i )(   , but we know that Ek=H-V, so, still in force of the (15): 

 )(
2 0

2

VH
m


  , that is: 

0)(
2

2

0  VH
m


                                                                                                                              (16) 

which is again the Schrodinger’s Equation.  
Let’ get into a more general situation, where we have a relativistic particle with a rest mass not 
equal to zero. 

As well as we did before, as for (1) we have: 
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and, as usual, still by introduction of an equation into another, we see that such a Ψ is a solution for 
the following: 
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which is nothing but the Klein-Gordon’s Equation and it is similar to that of d’Alembert, but has 
an item more. Let’s really carry out the introduction of (17)  in (18), to see that all this really stands. 

We have:  
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Let’s set 


cm
l 0 ; such an l is dimensionally like the wave vector k. By such an l, we have that (17) 

and (18) can be rewritten as follows: 
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where  clk )(' 22 . 

Relativity says that a body with a zero speed, with respect to us, has, on the othe hand, a spatial 

fourth component ct, a fourth 4-momentum component mc and an intrinsic rest energy 2
0cm . 

Hence, in jumping from a photon, whose m0 is zero, to a relativistic particle with a rest mass m0 , 
the wave equation jumps from the d’Alembert’s (13) to the Klein-Gordon’s (20), with a wave 
function (19), instead of the (4) and the difference is that the rest mass component m0 , which 

causes the existence of a “rest” energy 2
0cm (whose essence is “four-dimensional” and shows up 

with Relativity and with the energy-momentum vector) is nothing but an increase of time 

oscillation, where we go from an angular frequency ω to clk )(' 22  higher! This is a three-

dimensional interpretation of an entity whose nature is allegedly four-dimensional.  
Let’s rewrite the Klein-Gordon’s Equation (20) in the following way: 
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and after taking into account that 12 i  and 22))(( bababa  , we have that such an 

equation can be rewritten like this:  
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or also: 
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and (22) can be developed as:  
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This equation is equal to the (21) if:   
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The last two conditions on alphas make us have only 2 and not mixed terms in  . (23), here 
reported: 

0)( 0 



mi

t
i                                                                                                                 (25) 

can be considered as the Dirac’s Equation, which is usually provided in the following form, in 
natural units ( 11  c ):  
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APPENDIX 4 
Spherical Polar Coordinates 
 
We are going to work with spherical polar coordinates (  ,, ) as so doing calculations will be 

much easier, opposite to the Cartesian ones x,y,z.  
 
 
 

 cossinrx   

 sinsinry   

cosrz   

 
  spans between 0 and 2 , while   does between 0 and  . In fact, as an example, on the polar 

plane the equation of the circle with its center in the origin is R  (no matter how   and   are), 

whilw in Cartesian coordinates we have to start from the implicit equation 222 Ryx  , from 

which, for the first quadrant xy, we have: 
22 xRy                (much more difficult)                                                                                    (1) 

and in order to calculate the surface of the circle, in polar coordinates we consider the thin crown as 
thick as d  and at a distance   from the center, whose surface is  ddA  2  and by integrating 

between 0 and R, we get: 
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    ,   while with the Cartesian coordinates, we should integrate (1) between 0 

and R to have a quarter of A (area below the curve), from which: 
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But now let’s jump to the shape of the orbitals and to the understanding why they are like they are 
and why they are exactly how many they are. Change of coordinates from Cartesian to polar. We 
know that:  
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Now let’s differentiate the (3): zdzydyxdxrdr                                                                        (9) 

On the contrary, by differentiating (4): dy
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(the 
sin

1
 , then brought to the left side, is the derivative of the arccos)   

Now, by keeping into account (2) and (9), (10), plus (11), we have: 
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In fact, about the first system of equations, say (12) is (9) where dy=dz=0 and by considering that in 
order to get x we have to multiply r by sin  first, to project it on the xy plane, so getting the 
projection rp and then such a projection has to be multiplied by cos  to get x indeed. In other 

words, (9) with dy=dz=0 tells us that 
r

x

dx

dr
 , which is really )cos(sin  , according to the 

projection reasoning just carried out. About the second system, (15) would be (10) with dy=0 and 
once again upon the above projection reasoning.  

{ { 

{ { 
{ 



At last, about the third system, (18) would be (11) with dy=dz=0 and ( cosrz  ) and  
(  cossinrx  ). 

Finally, let’s recall gradient and laplacian in polar coordinates:  

By definition, we have:  k
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from which, to sum up, we have the components of the gradient in spherical polar coordinates:  
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In order to achieve the scalar laplacian, its definition in Cartesian coordinates is:  
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  and in order to calculate every one of those terms, we will first derivate 

again (6), (7) and (8) and use the results in the above formula for the laplacian, so obtaining:   
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APPENDIX 5 
The angular momentum in the atom 

We saw that 





ip  and 
mm

p
E

22

22 
. Now, about the angular momentum L=mvr we know 

that if a mass point m orbits at r distance from a center point and does it by speed v, we have: 
(p=mv): 
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By taking into account the above expression for Lz and considering (1) and (12)……(20) in 
Appendix 4, we get:  
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 , which reduces a lot by mutual elimination of terms, so yielding:  
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Appendix, we calculate:   
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The last equality is due to the obvious development:  
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To reach (2), we just show, as an example, the calculation for 2
xL  and we will carry out all products 

one by one, without using ready-to-use formulas on square a+b and so on, as here we are dealing 
with operators:  
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and a similar expression for 2
yL and a short one for 2

zL . Later, by summing up all the terms, many of 

them will join or cancel, so leading us to (2) indeed. 
Please note that iLz ],[ .  
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APPENDIX 6 
Schrodinger’s Equation for the atom 
 
We are obviously in a field of forces with a central symmetry generated by the nucleus, so:  
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pp r   and, according to Schrodinger, 
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where (let’s remind it): 
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Let’s find solutions for (1) with separated variables:  ),()()( Yrr 
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; by introducing it into (1) 

and after naming by )])((2[ 22 ErVmprR r   the f(r) factor of (1) itself, we have: 
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which is the eigenvalue equation for 2L . As already stated, the ),( Y will give us infos on the 

shapes of orbitals, while the other function in r, that is )(r , which will be expressed by us as well, 

will tell us just how high is the probability to find the electron in the orbital, when we get far away 
from the center or when we get closer to the center along r, without changing   and  . 

Well, after making (3) explicit, we get:   
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Out of convenience, let’s define )1(2    , where   is constant, as well as  , of course. This 

will be more clear later on. From all this: 
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As well as before, here we look for solutions with separated variables: )()(),(  BAY  ; after 

inserting this into (4): 
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Because of a dimensional matter, we immediately notice that it must be const
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only item to depend on just  , while all the other terms depend on just  . Therefore, after having 
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z   , which is an eigenvalue equation for Lz , from 

which we have the reference to Lz of the quantum number m. The value found for B’’/B, if put into 
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known as Legendre Differential Equation; it has three singularities (fuchsian ones) in x0= 1 (and at 

infinite). Those on x0= 1 are due to the “dangerous” tending to zero of the denominator of 
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(about the point at the infinite, we will not care much). 
Let’s write (6) as follows: 
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and let’s start by considering the easiest case m=0: 
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We look for solutions as a series of powers, like:   
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Function A is limited in x=1 (that is 0 ), so we sooner or later must have: 
0)1())(1(  snsn  in order not to have a divergence, with all coefficients an not equal to 

zero, and as n and s are integer, such must be  , which will be now called l  , and so: )1(2  ll . 

Then, as  +m and –m play a role of symmetry, we will have: lml  , or lm  . 

Moreover, by a direct use of it, we realize that a solution of (8) is the following: 

l

l

l

ll x
dx

d

l
xA )1(

!2

1
)( 2                                                                                                                       (9) 
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As an example, when l=1 and m=1, (10) becomes: )1()1()1(
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and if we put it into (7), we get 0=0. 



After recalling that we had )()(),(  BAY  , we say: )()(),(  m
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m
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Let’s evaluate, through (10), the first )(xAm
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and so on, so having all the Y on pages 4 and 5, here reminded:      (  im
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But now we ask ourselves why do we have those particular constants? (
4

1
,
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3
, etc) Well, you 

recall (page 7) that the highest probability all over the space must be 1, from which we get the 
normalization to 1. So, as an example on case: 
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reference to the figure on page 16 on polar coordinates,   is spanned by r, while   is spanned by 

the projection of r over the plane x-y, that is sinr , the infinitesimal solid angle d  is given, as 
we know, by the ratio between the infinitesimal spherical susface dS and r2, that is: 
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The shapes of the orbitals would be explained just by what has been explained so far. Out of 
completeness, as the complete solution of Schrodinger’s Equation for the atom is (see above): 
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, we just have to give a representation of the pure radial function )(r . 
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and we also realize that the following functions are solutions for (11):   
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Polinomials ). Let’s give some of them: 
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The normalization has been carried out in the following way:  
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above) were normalized over 
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to dV we have to multiply d  by r2dr, as d  x r2  gives dS and dS x dr gives dV and so the 
remaining part of the normalization, that is r2dr is taken by )(rnl  indeed, as it is the radial 

function. As a simple crosscheck, you can see that (12) is really a solution for (11); in other words, 
put one by one every (13) in (11) (and by respecting, time by time, values of n and l ) and you will 
see you will always get 0=0. Finally, by considering the example on the s orbital (n=1, l=0, m=0),  
 
 
 
 
 
 
 
 

it is a sphere, as its function  41),( 0
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l  is constant, so   and   don’t show up , and so 

the “angular” probability Pa (
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function is 0
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 , that is a constant by an exponential, so telling us that 

the radial “probability” Pr (
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)(rnl ) to find the electron is not in the thin peel of that perfect 



spherical surface, but it’s cloud-like spread and goes dimming as long as one gets away from the 
centre.  
Schrodinger’s Wave Function for the atom: 
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