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Abstract 

We argue here that the high-energy behavior of fundamental interactions can be 

interpreted as manifestation of Kolmogorov (-K) entropy. The conventional classification 

of fields based on Poincaré symmetry appears to be rooted in the chaotic regime of 

nonlinear dynamics far above the Standard Model scale. 
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1. Introduction 

Ergodic behavior occurs in a variety of physical contexts. For example, in 

isolated systems, ergodicity reflects the onset of thermodynamic 
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equilibrium, whereby all the accessible microstates of the phase-space are 

equiprobable over a sufficiently long period of time [1-2]. 

It is known that Hamiltonian systems are universal models of classical and 

quantum physics. A remarkable property of these systems is that they can 

be described as geodesic flows on Riemannian manifolds [3-5]. It is also 

known that the ergodic regime of Hamiltonian dynamics arises from the 

divergence of geodesics on manifolds with negative curvature (so-called 

hyperbolic manifolds), which drive the transition from integrability to chaos 

[3-8]. Research shows that Hamiltonian chaos is not restricted to hyperbolic 

manifolds, but that it extends to large N -body systems analogous to fluid 

flows ( →N ) and to systems displaying parametric instability [3-5]. 

Although many aspects of chaos in classical field theory remain to be settled, 

several facts are well understood. For instance, it is known that,    

a) sensitivity of geodesics to initial conditions is a universal marker of 

the transition from integrability to chaos. 

https://en.wikipedia.org/wiki/Hyperbolic_manifold
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b) natural signatures of chaotic behavior include topological mixing 

and the existence of a non-zero K-entropy.  

c) The N-body problem of Newtonian gravitation ( 2N ) and the 

dynamics of non-abelian gauge fields have non-vanishing K-entropies 

and exhibit chaotic behavior [5, 8]. 

d) far above the Fermi scale of particle physics, open quantum systems 

are likely to undergo decoherence, which is triggered by entanglement 

with an ever-fluctuating environment. As irreversible loss of phase 

information, decoherence causes the transition from quantum to 

classical behavior and favors the onset of Hamiltonian chaos.   

In view of a)-d), the goal of this work is to explore whether the high-energy 

sector of fundamental interactions may be interpreted as manifestation of K-

entropy. We base our approach on a two-fold rationale: 

1) The high energy regime of field theory falls outside thermodynamic 

equilibrium and is manifestly unstable, 
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2) Dynamical instability generated by out-of-equilibrium conditions is 

universal and, as such, it underlies both Hamiltonian chaos and multi-

body gravitational physics. Critical phenomena of statistical physics 

support this assumption, based on (at least) two premises [9-11]: 

2.1) The universal route to chaos of dissipative nonlinear maps, 

2.2) Universal critical exponents of second-order phase transitions. 

This contribution is divided into two parts, and follows a step-by-step 

approach, with emphasis on concision and clarity. The first part includes 

section 2, which briefly surveys the geometrization of Hamiltonian 

dynamics.  In the second part of the paper, sections 3 to 4 bridge the gap 

between the evolution of classical fields, K-entropy, and its corresponding 

information dimension. Section 5 reveals the current limitations of 

Hamiltonian chaos in dealing with fermion fields.  Section 6 builds upon the 

conjecture that Hamiltonian chaos lies behind the conventional classification 

of fields based on the Poincaré symmetry. Concluding remarks are 

summarized in section 7.  
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The reader is cautioned upfront on the preliminary nature of this 

investigation, which requires independent validation and further 

consolidation of ideas. 

2. Geometrization of Hamiltonian dynamics 

A conservative system of classical fields is defined by the Hamiltonian [3-4] 

 1 2
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2
    = + Nij i jH a V  (1) 

where =H E  is a constant of motion. The configuration space M  of the 

system consists of N  local coordinates ( )1 2, ,...,  N  and can be associated 

with a Riemannian metric using the substitution 
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where integration is performed along the path ( )t . The kinetic energy of the 

system takes the form 
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(3) becomes, accordingly 

 
( ) ( ) ( )

2 0
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Wdt g dt ds  (5) 

It follows from (5) that natural motions of the Hamiltonian system are 

geodesics of M , whose differential arclength is ds . The corresponding 

geodesic equation is given by 
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in which  i
j k  stand for the Christoffel coefficients of the metric. Let  i  denote 

the distance separating two adjacent geodesics on M . The Jacobi equation 

represents the evolution of  i  in the original time coordinate t  and, for low-

dimensional systems ( 2=N ), can be presented as [4]  
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in which RK  is the local curvature of the manifold. The local curvature of 

Hamiltonian systems described by (1) can be evaluated in closed form 

according to  
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Chaos unfolds when the separation of adjacent geodesics grows 

exponentially on hyperbolic manifolds ( 0RK ), as in  

 ( ) (0)exp[ ( ) ]  = i i it t t  (9) 

where ( ) 0 i t  are positive Lyapunov exponents. However, as mentioned in 

the Introduction, chaos can also develop from a fluctuating positive 

curvature RK  along the geodesics. This type of instability occurs when 

certain system parameters become time dependent. An elementary example 

of parametric instability is a harmonic oscillator acted upon a periodically 
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modulated frequency. The mean and variance of curvature fluctuations of 

this unstable regime are, respectively,  

 0

RK

N
 =  (10) 

 
2
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)( R RK K

N
−

=  (11) 

Assuming that the system is defined by a single maximal Lyapunov 

exponent (MAX ) and considering the limit 0  , leads to the following 

approximation   

 2 MAX k  (12) 

As it will become apparent later, relations (8-12) can be used to study the 

unstable sector of field theories operating above the Standard Model scale. 

Here are few elementary examples of such theories:   

a) Complex scalar field in a Higgs-like potential 

 2 2 2 2 2 2
1 2 1 2 1 2( , ) ( ) ( )       = + + +V  (13) 
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b) Newtonian gravity of multi-body systems 

 ( )


= −
−


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m m
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x x
 (14) 

c) Two-dimensional classical Yang-Mills theory [8] 

 2 2
1 2 1 2

1
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2
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 2 2 2
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( , )

2
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d) Scalar electrodynamics in four dimensional spacetime ( 0,1, 2,3 = ) 
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( , )
2
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e
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where the scalar current is 

 , ,( )
2      = − −
ie

j  (18) 

e) Fermion current coupled to the electromagnetic field 

 ( , ) 
  =V A e A  (19) 
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There is a key caveat in using (19), in that (19) works in connection with the 

relativistic Lagrangian  

 ( ) 
   =  +DL i m  (20) 

which fails to be quadratic in field velocities, as demanded by (1). This issue 

will be revisited in the second part of the paper. 
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