P versus NP for Algorithm Design and Evaluation
Mirzakhmet Syzdykov
mspmail598@gmail.com
Satbayev University, Almaty, Kazakhstan

ABSTRACT
We present the difference of the “P versus NP” problem for polynomial and non-
polynomial classes on the example of two contest problems held by ACM ICPC NEERC
in 2004 and 2005.

INTRODUCTION

We give concise and clear comparison of P (polynomial) and NP (non-polynomial)
complexity classes on the example of two problems [1, 2, 3].
We also show that solution is feasible within NP-complete problem if the number of
elements in input data is very low (< 20) as per bit set definition so that 2N < 10°, which is
measured in performed as one second of processor operation cycle.
We will consider following problems to compare P and NP complexities:

e NP-complete: Problem "Box" [4];

e P-complete: Problem "Exploring Pyramids" [5].
The "P versus NP" theorem, which is still not proved, was formulated by Stephen Cook
[2] and implies the relation between these two classes of complexity.

P AND NP CLASSES OF COMPUTATIONAL COMPLEXITY
The problem "Box" is NP-complete, however, as the number of elements in input stream
is less than 6, it can be solved in almost polynomial time:

const int N = 6;

bool check (int *P, int bitmask) {
for (int i = 0; 1 < N; i++)
for (int j = 0; 3 < N; j++)
if (F[1]1031[0] != -1)
if (A[P[2]][F[i][31[0] © ((bitmask >> 1) & 1)]
'= A[P[JI]IF[i]1[3]1[1] © ((bitmask >> 3) & 1)])

return false;
return true;

}

void solve () {
int P[N];

= 0; 1 < N; ++1) {
i;

for (int
[1]

k-

(1
P
}


mailto:mspmail598@gmail.com

do {

for (int i = 0; 1 < (1L << N); ++1i) {
if (check (P, 1i)) {
puts ("POSSIBLE") ;
return;

}

}
} while (next permutation(P, P + N));

puts ("IMPOSSIBLE") ;
}

Solution for this problem is P-complete, where N = 6 and N! << 108, when the complexity,
however is O (2N * N! * N3), which is also much lower than average time of running the
program in few seconds on modern hardware.

And for the problem "Exploring Pyramids" [5], we use case marks in the global array in
order to save the time as per each case, when input is given in single file. We use the
dynamic programming approach with memaorization.

The complexity of this problem, thus, is also polynomial and is defined in big-O notation
as O (N3).

The code for this problem is as follows:

const int N MAX = 400;
typedef long long 11 t;

int S[N_MAX
int P[N_MAX

]
] [N_MAX];
11 t R[N _MAX

[N ]
] [N_MAX] ;

11 t F(int 1, int r) {

if (1 == r) return 1;
if (P[1l][r] == CaseNumber) return R[1l][r];
P[1l] [r] = CaseNumber, R[1l][r] = 0;
for (int i =1 + 1; 1 <= r; i++)
if (S[1i] == S[1])
R[1][r] = (R[1][r] + F(L + 1, 1 -1) * F(i, r)) % 1000000000;



The code for both problems can be obtained from repository [6].

CONCLUSION
Thus, we have devised that even NP-complete problems can be solved exactly with
respect to the computational volume of the state space without using dynamic
programming, as when the complexity fits into this volume.



REFERENCES

. Fortnow L. The status of the P versus NP problem //Communications of the ACM.
—2009. -T.52. —Ne. 9. - C. 78-86.

. Cook S. The importance of the P versus NP question //Journal of the ACM (JACM).
—2003.-T.50.—Ne. 1. - C. 27-29.

. Aaronson S., Is P. Is P versus NP formally independent? //Bulletin of the EATCS.
—2003. - T. 81. - Ne. 109-136. - C. 70.

. Problem “Box” /| UVA — 1587 /I https://vjudge.net/problem/UVA-1587 (accessed
11/11/2022).

. Problem “Exploring Pyramids” // UVA — 1362 // https://vijudge.net/problem/UVA-
1362 (accessed 11/11/2022).

. Syzdykov M. ACM Problem Solutions // https://github.com/mirzakhmets/ACM
(accessed 11/11/2022).



https://vjudge.net/problem/UVA-1587
https://vjudge.net/problem/UVA-1362
https://vjudge.net/problem/UVA-1362
https://github.com/mirzakhmets/ACM

