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Abstract

This is a primer for Chapter 3 of Hadlock’s book Field Theory

and Its Classical Problems : Solution by Radicals. We take a rather

näıve perspective and consider the linear and quadratic cases afresh

and evolve what is really met by solving a polynomial by radicals.

There are what we consider to be several hidden premises that some

students might be subconsciously puzzled about.

Introduction

Consider solving the first degree polynomial ax + b = 0. What could be
simpler? There are however complexities that underlie such a concept. Are
there specific techniques or rules that are to be followed, other rules not
being allowed? This seems näıve to even consider; just isolate the x by doing
the same arithmetic operation to both sides; arrive at x = −b/a. But this
procedure embeds the assumption that one is to use arithmetic operations
on the coefficients of this polynomial whereas Galois theory we will show
doesn’t confine allowed procedures to be just these manipulations. We will
develop this hidden premise.

Another hidden premise resides in the difference between an expression
and a formula. We will show that all polynomials will have all roots that can
be given as expressions (ultimately this means elements of a final sequence
of field extensions). To give a flavor of what we are talking about consider
x − a = 0. The expression x = a gives a solution to this polynomial, but it
does not give a formula for all linear polynomials. It does give a formula for
linear polynomials of the form x − a = 0, a subset of all linear polynomials.
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We will show that solution by radicals means a general formula (not just
expressions) for all polynomials of a given degree.

Referring to the arithmetic steps used to solve (find a formula for all
degree one polynomials), we used a finite number of algebraic manipulations.
Does this mean that any method that can be executed in a finite number of
steps is allowed and if any such method yields a solution in all cases then
the polynomial with a given degree is solved or solvable? To once again
get the flavor of this idea, consider that the rational numbers are countable,
that is there exists a one-to-one and onto mapping between natural numbers
and rational numbers. There are explicit functions. So, given that a and b
are integers (a premise to general polynomials assumed in this context) for
all linear polynomials we can search for a solution by enumerating all p/q
rational numbers until we find the solution. This searching idea is true for
all polynomials; that is all roots to all polynomials will have roots that can
be found by enumeration of all possible solutions. We will show that in this
sense all polynomials can be solved and then we will clarify this seeming
puzzle.

Allowed Methods

One might assume that the rules (the methods allowed) are to start with the
coefficients and use arithmetic operations (field operations) and the taking of
roots, but this can’t be the case; it is too limiting. Indeed, as Hadlock devel-
ops in his problems, the solutions to a cubic polynomial involves substitutions
that reduce the cubic to a quadratic (page 126 and 279). Can substitutions
distill to operations? Not really. One can substitute the answer, a root, for
x but this is an absurdity.

Consider z5 = k, k a constant. The roots are just the fifth roots of k in the
complex plane. In specifying these roots, I will use trigonometric functions,
sin and cos, but where in the lexicon of allowed arithmetic operations do
these occur? The next sections resolves this puzzle.

Expressions Versus Formulas

It must be the case that every polynomial has all its roots in the form of
expressions that are defined by being elements of a field. The field is the final
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field in a nesting sequence of radical extensions from the rational numbers.
That is the roots of a polynomial of any degree must consist of expressions
that involve some sequence of arithmetic operations and radicals that could
involve any integers, not necessarily the coefficients: Sections 3.1 and 3.2.
Every polynomial has such a sequence, but the splitting field might not reside
in its final field.

It must be the case that whereas all roots have an expression (a right
hand side) of the equivalent of quadratic formula (one of its expressions),
the expressions do not yield a general formula for general degree five and
greater polynomials. One can also get this result from a combination of the
fundamental theorem of algebra, the root form (we’ll call it) of a polynomial,
and symmetric coefficients that relate these. So, by the FTA roots exists, so
p(x) = (x−r1)(x−r2) . . . (x−rn) and so the coefficients are the fundamental
symmetric functions that combine these roots to give integers, the coeffi-
cients. The only way an expression for a root could not involve arithmetic
combinations with radicals is if it was a transcendental number (see a later
section) – which by virtue of being a root of an integer polynomial it isn’t.

The allowed methods are any methods including exhaustive searches of all
possible expressions of the right form. As algebraic numbers are countable,
these searches will always be successful, but (here it is) they will not yield
unique expressions that are general formulas for roots. Hadlock points this
out albeit in a round about way: he gives examples of solvable polynomials
and unsolvable polynomials in Section 3.7. A little caveat that could be
added is solvable in a certain way that applies to all polynomials of a given
degree – not using searches!

Finite Steps Clarified

Could we specify as our allowed step for solving all polynomials of arbitrary
degree the following: enumerate all possible algebraic numbers, feeding them
into our given polynomial and if a zero pops out we found a root? I say
yes. But here is a slight catch: we will not have in the end a finite list of
expressions for roots for degree greater than or equal to five. We will have
infinitely many expressions for roots – no formula.
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Other observations

Facts not given by Hadlock (and other books on solutions of polynomials
by radicals) are that non-transcendental, irrational numbers are countable –
they are all the irrational algebraic numbers and they have a certain form,
namely they are elements of the rational field extended using a radical, a n

√
m

or the last of a finite number of such extensions. Given any such number we
can make it the root of a polynomial. The reverse problem is the rub.

A historical note of interest: Galois (1811-1832), Cantor (1845-1918). In
1874 Cantor proved transcendental numbers are uncountable. Apparently,
Euler (1707-1783) was the first mathematician to coin algebraic numbers.
This is all to say that the following observations may be new – a easy update,
if correct.

The Table 1 gives all possible field extensions pertinent to Galois theory.
Each field extension Q[ n

√
m] is countable and can be nested in any other

such field extension. A method used to show rational numbers are countable
can be mimicked here to show all such field extensions and their nesting
combinations are countable. Starting at B2, spreadsheet referencing, and the
first number in this countable field, we next go to C2 next door and count the
first and second element of its field and add the second element of all previous
fields, then zig-zagging its down and over to B3 and we count the first three
of its field and re-tracing count the third element of all previous fields. This
seems to traverse all of these fields and provides a searching mechanism for
finding roots. Countable unions of countable sets are countable [3].

A B C D E F G
1 2 3 4 5 6 . . .

2 2
√

2 3
√

2 4
√

2 5
√

2 . . .

3 3
√

3 3
√

3 4
√

3 5
√

3 . . .

4 4
√

4 3
√

4 4
√

4 5
√

4 . . .
...

Table 1: All radical field extensions allowed in Galois theory.
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Shocking Transcendental Numbers

There appear to be algebraic looking numbers that can’t solve an integer
polynomial. So, for example, setting

r =

√√
5 +

3
√

7

and taking powers in an obvious way, one arrives at

(r2 −
√

5)3 − 7 = 0,

implying that r can’t be a root of an integer polynomial. It must be tran-
scendental! Shocker of shockers this may mean that π might be expressible
as a root of some such non-integer polynomial. These irrationals (expressions
with arbitrary combinations of radicals of various indices) are, in some books
(I think) referred to as surds [2]. No book that I’ve read has ever stated that
some surds are transcendental numbers.

Certain types of nesting do always give roots of integer polynomials. So,
for example, setting

r =

√

2 +

√

3 +
√

5,

and once again taking powers in an obvious way:

((r2 − 2)2 − 3))2 − 5 = 0,

implying that r is the root of an integer polynomial. We are using polyno-
mials of the same degree with different coefficients have different roots. This
follows as polynomials are well defined functions.

Bad Formulas

A formula (a bad one) for the roots of any nth degree integer polynomial is
r ∈ {1, 2, . . . , n}, that is the roots are just the natural numbers 1 through the
degree of the polynomial, n. This will be correct for some polynomials and
it will not involve the coefficients of that polynomial. Certainly we can show
the linear, quadratic, cubic, and quartic cases have formulas that encompass
these polynomials. We can also generate polynomials (rather trivially) that
have roots not given by this formula. At degree 5 if we can show that all
formulas that solve these polynomials can not also solve another of some type
then there is no formula for all. Maybe there is an easier way than Galois to
get this result.
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Conclusion

It is in no way mysterious that formulas for all roots of large degree poly-
nomials are possible. It is essentially that roots are deeply encrypted in
coefficients and no single method can pop them out. For degree n there are
n symmetric polynomials that are every more complicated. It is no wonder
that at some moderate degree like five, no single method can be used.

A quantum computer might be able to find expressions for roots of an
arbitrary degree polynomial via brute force searching.
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