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Abstract

In this second part to [FW22a] we finish the proof of the one-to-one
correspondence of gradient flow lines of index difference one between the
restricted functional and the Lagrange multiplier functional for deforma-
tion parameters of the metric close to the singular one. In particular,
we prove that, although the metric becomes singular, we have uniform
bounds for the Lagrange multiplier of finite energy solutions and all its
derivatives. This uniform bound is the crucial ingredient for a compact-
ness theorem for gradient flow lines of arbitrary deformation parameter.

If the functionals are Morse we further prove uniform exponential de-
cay. We finally show combined with the linear theory in part I that if the
metric is Morse-Smale the adiabatic limit map is bijective.

We present a general overview of the adiabatic limit technique in the
article [FW22b].
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1 Introduction

We build on part I [FW22a] and use the notation conventions introduced there.
So M is a finite dimensional smooth manifold and F,H : M → R are two smooth
functions. We assume that zero is a regular value of H and H is locally proper

around zero, so that, in particular, the level set Σ := H−1(0)
ι
↪→ M , called the

base or the constraint, is a closed codimension one submanifold of M .
The Lagrange multiplier functional is defined by

FH : M × R→ R, (x, τ) 7→ F (x) + τH(x).

Since zero is a regular value of H, it holds that (x, τ) is a critical point of
the Lagrange multiplier functional FH if and only if x is a critical point of the
restriction f := ι∗F = F |Σ and τ = χ ◦ x for the smooth function χ defined by

χ := −
〈
∇H,∇F

〉
|∇H|2

, along Mreg := {p ∈M | dH(p) 6= 0} ⊃ Σ. (1.1)

Here ∇ is the gradient with respect to a Riemannian metric G on M . The graph
map of χ is called the canonical embedding and denoted by

i : Mreg →Mreg × R, p 7→ (p, χ(p)) . (1.2)

The graph map extends to spaces of paths with values in Mreg, same notation i.
For ε > 0 consider the family of Riemannian metrics hε := G ⊕ ε2 on the

product M ×R. Gradient flow trajectories of FH with respect to the metric hε,
called ε-trajectories, are smooth solutions z = (u, τ) : R→M×R of the ODE

∂su = −∇F (u)− τ∇H(u),

τ ′ = −ε−2H(u).
(1.3)

If one lets ε formally go to zero in this equation, one obtains H(u) = 0 and
τ = χ(u). So u takes values in Σ and is a gradient flow line of f = F |Σ with
respect to the restricted metric g := ι∗G = G|Σ, called a base trajectory or a
0-solution, namely a smooth solution q : R→ Σ ⊂M to the ODE

∂sq = −∇f(q), ∇f(q) = ∇F (q) + χ(q)∇H(q), (1.4)
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where ∇ is the gradient with respect to g. The energies of base trajectories q,
respectively ε-trajectories (u, τ), are given by the L2 norms

E0(q) = ‖∂sq‖2, Eε(u, τ) = ‖∂su‖2 + ε2‖τ ′‖2.

While the energy of every base trajectory is finite, in fact even uniformly finite
E0(q) ≤ max f −min f , for ε-trajectories finite energy

Eε(u, τ) <∞, ⇒ Eε(u, τ) ≤ max f −min f =: oscf <∞ (1.5)

not only implies uniformly finite in ε > 0, see [FW22a], but also boundedness
of (u, τ) and derivatives, uniformly in ε ∈ (0, 1], see Theorem 3.1.

Theorem A (Compactness). Assume that εν > 0 is a sequence converging to
zero and (uν , τν) is a sequence of finite energy εν-trajectories of (1.3). Then
(uν , τν) has a converging subsequence, on compact sets and with all derivatives,
to a downward gradient trajectory of f : Σ→ R with respect to the metric g.

Theorem B (Exponential decay). Suppose that FH , equivalently f , are Morse.
Then finite energy gradient flow lines of (1.3) for ε ∈ (0, 1] decay exponentially
with all their derivatives, uniformly for all ε.

Two critical points x∓ of f : Σ → R are called asymptotic boundary
conditions of a smooth map q : R→ Σ if lims→∓∞ q(s) = x∓ and of a pair of
smooth maps (u, τ) : R→M × R if

lim
s→∓∞

(u(s), τ(s)) =
(
x∓, χ(x∓)

)
= i(x∓), (1.6)

we also say that the map q, respectively (u, τ), connects x− and x+. We write
M0

x−,x+ andMε
x−,x+ for the sets of connecting base, respectively ε-, trajectories.

With asymptotic boundary conditions in place there are the energy identities
E0(q) = f(x−)− f(x+) whenever q ∈M0

x−,x+ and

Eε(u, τ) = ‖∂su‖2 + ε2‖τ ′‖2 = f(x−)− f(x+) =: c∗ (1.7)

whenever (u, τ) ∈Mε
x−,x+ . Here and throughout ‖·‖ denotes L2 norms.

Theorem C (Surjectivity). Assume that (f, g) is Morse-Smale. Let x∓ ∈ Critf
be critical points of Morse index difference one. Then there is ε0 > 0 such that
for all ε ∈ (0, ε0] the injective maps T ε : M0

x−,x+ → Mε
x−,x+ between moduli

spaces of connecting gradient flow trajectories, see [FW22a], are surjective.

Idea of proof: Suppose the theorem is not true. Then there are sequences
εi → 0 and (ui, τi) ∈Mεi

x−,x+ not in the image of T εi . By transversality∇H t Σ
we project the values of ui : R → M to Σ thereby obtaining maps qi : R → Σ
which almost solve the base equation (1.4). The base implicit function theorem,
Theorem A (IFT II), then provides true solutions qi ∈M0

x−,x+ nearby. Now the

ambient implicit function theorem (IFT I), the main result of part I [FW22a],
shows that (ui, τi) = T εi(qi(·+ σ)) for a suitable time shift σ. Contradiction.

Convention 1.1 (Notation). a) Conventions in [FW22a, Sec. 1]. b) Injectivity
radius ιΣ = ι(Σ, g) > 0 and ι(TΣM,G) > 0 is the one of (M,G) along TΣM → Σ.

Acknowledgements. UF acknowledges support by DFG grant FR 2637/2-2.
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2 Outline

In this section we give a detailed overview of this article. We also provide
formulas and enlist techniques that are used later on. Certain properties of the
ε-equations (1.3) hold true along the unit parameter interval ε ∈ (0, 1], while
others only work along a smaller interval (0, εκ].

Hypothesis 2.1.

(i) Zero is a regular value of H.

(ii) Local properness. There is κ > 0 such thatH−1[−κ, κ] ⊂M is compact.

(iii) The metric G on M is geodesically complete.

Remark 2.2. Parts (i) and (ii) assert that Σ := H−1(0) is a smooth compact
hypersurface in M . Part (iii) guarantees that closed and bounded is equivalent
to compact (Theorem of Hopf-Rinow; see e.g. [O’N83, Ch. 5 Thm. 21]).

The equations

The ε-equation for smooth maps (u, τ) : R→M ×R and the first three deriva-
tives, for latter reference named u1, u2, . . . , τ1, τ2, . . . , are the following

∂su
u1
= −∇F (u)− τ∇H(u)

∇s∂su
u2
= −∇s∇F (u)− τ∇s∇H(u)− τ ′∇H(u)

∇s∇s∂su
u3
= −∇s∇s∇F (u)− τ∇s∇s∇H(u)− 2τ ′∇s∇H(u)− τ ′′∇H(u)

∇s∇s∇s∂su
u4
= −∇s∇s∇s∇F (u)− τ∇s∇s∇s∇H(u)− 3τ ′∇s∇s∇H(u)

− 3τ ′′∇s∇H(u)− τ ′′′∇H(u)

ε2τ ′
τ1
= −H(u)

ε2τ ′′
τ̂2
= −

〈
∇H(u), ∂su

〉
τ2
=
〈
∇H(u),∇F (u)

〉
+ τ

∣∣∇H(u)
∣∣2

ε2(τ ′)′′
τ̂3
= −

〈
∇s∇H(u), ∂su

〉
−
〈
∇H(u),∇s∂su

〉
τ3
=
〈
∇s∇H(u),∇F (u) + τ∇H(u)

〉
+
〈
∇H(u),∇s∇F (u) + τ∇s∇H(u)

〉
+ τ ′

∣∣∇H(u)
∣∣2

ε2(τ ′′)′′ = −
〈
∇s∇s∇H(u), ∂su

〉
− 2

〈
∇s∇H(u),∇s∂su

〉
−
〈
∇H(u),∇s∇s∂su

〉
τ4
= −

〈
∇s∇s∇H(u), ∂su

〉
− 2

〈
∇s∇H(u),∇s∂su

〉
+
〈
∇H(u),∇s∇s∇F (u) + τ∇s∇s∇H(u) + 2τ ′∇s∇H(u)

〉
+ τ ′′

∣∣∇H(u)
∣∣2

(2.8)
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pointwise at s ∈ R where 〈·, ·〉 := G(·, ·) with induced norm |·|. The relation
between the Levi-Civita connection ∇of (M,G) and the Levi-Civita connection
∇ of (Σ, g) := (H−1(0), ι∗G) is explained in part I [FW22a].

The first set of equations, those for the derivatives of u, translate the higher,
say k-fold, derivatives of u into products of ∂su and individual τ derivatives of
order up to k − 1. The second set of equations, those for the derivatives of τ ,
say the k-fold derivative, also produce products of ∂su with τ derivatives up to
order k − 2.

Remark 2.3 (Small parameters). The presence of the factor ε2 makes the
second set of equations not very useful to obtain estimates for derivatives of τ .
It is crucial to observe that τ also appears in the first ε-equation, even without
any ε factor, but unfortunately accompanied by a factor ∇H(u). However, since
zero is a regular value of H, the factor ∇H(u) is nonzero when u takes values
near Σ – which is true whenever ε > 0 is small for the following reason. We
shall see that τ ′ is L∞ bounded by a constant C, uniformly in ε ∈ (0, 1], thus
equation τ1 provides the estimate

|H(u)| ≤ ε2C.

Therefore the images u(R) of ε-solutions (u, τ) shrink to Σ = H−1(0), as ε→ 0.
So, whenever ε > 0 is small, one can resolve u1 for τ , as shown in (2.10) below.

On the other hand, even along the whole unit parameter interval (0, 1] 3 ε
the ε-equations (1.3) exhibit a number of important properties such as uniform a
priori bounds for u and τ and their derivatives, uniform gradient bounds for the
u component in terms of L2 intervals, which then leads to uniform exponential
decay of the derivatives of the u component.
There are corresponding results (gradient bounds and exponential decay) for the
τ component, but one has to consider separately the cases of small (0, εκ) and
large [εκ, 1] parameters. Moreover, these τ component results are not relevant
for the main goal of this article, to prove surjectivity of T ε in Theorem C. Hence
in the following outline we focus on the u component and the unit interval (0, 1].
Only in the end we briefly mention the τ component.

Unit parameter interval (0, 1]

Section 3 “Uniform a priori bounds”. By Hypothesis 2.1 fix a constant
κ > 0 such that the pre-image H−1[−κ, κ] is compact. In Theorem 3.1, part (i),
we show that any finite energy solution (u, τ) of the ε-equations (1.3) has the
property that the component u : R→M takes values in the compact subset

K = Kκ := {p ∈M | distG(p,H−1[−κ, κ]) ≤ oscf
κ }

and that τ and all derivatives of u and τ are L∞ bounded, uniformly in ε ∈ (0, 1].
The uniform C2 bounds already imply local convergence and also broken

trajectory compactness of fixed asymptotics solution sequences; see Section 3.2.
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Section 4 “Gradient bounds by energy intervals”. We derive an L∞

bound C for the derivative of u, uniformly in ε ∈ (0, 1], in terms of L2 norm
intervals about any given point s ∈ R, in symbols

|∂su(s)| ≤ C‖∂su‖L2[s−1,s+1]≤ CEε[s−1,s+1](u, τ).

By EεI (u, τ) we denote the energy of (u, τ) along an interval I ⊂ R. We use
the technique of proof from [SW06, Sec. 6] to establish inequalities of the form
f′′ − f′ ≥ −f for suitable C2 functions f : R → [0,∞). These imply bounds for
|f(s)| in terms of the integral of f over suitable intervals about s.

Motivated by [SW06, Sec. 6] one expects to get uniform pointwise bounds
for the sum |∂su(s)|2 +τ ′(s)2 in terms of ε-energy intervals by choosing for f the

ε-energy density 1
2 |∂su|

2 + 1
2ε

2τ ′
2
. This does not work at all. In the case at hand

one must not consider ∂su and τ ′ simultaneously. Instead we use f0 := 1
2 |∂su|

2

to estimate |∂su(s)| and f1 := 1
2 |∇s∂su|

2 to estimate |∇s∂su(s)|. As by-products
we get L2 estimates of ετ ′′, respectively ετ ′′′, in terms of ‖∂su‖.
To estimate |τ ′(s)| decompose the interval in two pieces (0, 1] = (0, εκ)∪ [εκ, 1].
On (0, εκ) just use (2.11). The second piece [εκ, 1] is compact and bounded away
from ε = 0. The expected standard approach via the ε-energy density works.

Section 5 “Uniform exponential decay”. Suppose f is a Morse function.
We derive exponential decay, uniformly in ε ∈ (0, 1], of the derivative ∂su of any
solution (u, τ) of the ε-equations (1.3) subject to given asymptotic boundary
conditions x∓ ∈ Crit f of Morse index difference 1; see (1.6). Here we use again

the density f0 := 1
2 |∂su|

2 and not 1
2 |∂su|

2 + 1
2ε

2τ ′
2
.

To deal with |τ ′(s)| we decompose again (0, 1] = (0, εκ)∪ [εκ, 1]. As in Section 4
the case (0, εκ) is again a free meal. Although [εκ, 1] is compact and bounded
away from the singularity ε = 0, this time the expected standard approach using
the ε-energy density does not work, in sharp contrast to Section 4. Unexpected
salvation arrives in the form of equation τ1 in (2.8), see (5.46).

To establish exponential decay there are two methods, see Appendix A.2, the
energy method (Section 5) and the action-energy inequality (Appendix A.2).

Small parameter interval (0, εκ)

For a number of results, for instance local and global surjectivity of the map T ε,
we will need bounds for τ ′ and τ ′′ which do not come with a factor ε−2 as in
the τ1 and τ2 equations in (2.8), see (6.60) and (7.71). The way out is to note
that τ, τ ′, τ ′′ do also appear in the u1-u3 equations in which there is no ε at all.
However, each of them comes in product with ∇H(u) which, if vanishing, would
obstruct resolving for the τ derivative term. Since zero is a regular value of H
and Σ = H−1(0) is compact, the gradient is bounded away from zero along Σ.
Theorem 3.1 shows that this property persists, more precisely, given c∗, there
are cκ, εκ > 0 with

|∇H(u)| ≥ cκ, ∀ ε-solution with Eε(u, τ) <∞ and ε ∈ (0, εκ), (2.9)

As mentioned earlier the component u takes values in a compact subset K ⊂M .
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Now we can resolve equation u1 for τ , namely, scalar multiply by ∇H, then
divide by |∇H|2 and recall definition (2.3) of χ to get that

τ
u1
= χ(u)−

〈
∂su,∇H(u)

〉
|∇H(u)|2

(2.10)

pointwise at s ∈ R. Similarly, abbreviating H = H(u) and F = F (u) we obtain

τ ′
u2
= −〈∇H,∇s∂su+∇s∇F+τ∇s∇H〉

|∇H|2 , |τ ′| ≤ cF,H
cκ

(
|∇s∂su|+ |∂su|

)
, (2.11)

pointwise at s ∈ R and where cF,H depends on the C3(K) norms1 of F and H
and the uniform bound of τ . Furthermore, we obtain analogously the identity

τ ′′
u3
= −〈∇H,∇s∇s∂su+∇s∇s∇F+τ∇s∇s∇H+2τ ′∇s∇H〉

|∇H|2 (2.12)

and the estimate

|τ ′′| ≤ dF,H
cκ

(
|∇s∇s∂su|+ |∂su|2 + |∂su| · |τ ′|

)
(2.13)

both pointwise at s ∈ R and where dF,H depends on the C3(K) norms of F and
H and the uniform bound of τ .

Section 6 “Local Surjectivity of T ε– time shift”. Under the Morse-
Smale condition there is an interval (0, ε0] ⊂ (0, εκ) such that the following
is true. Given an ε-trajectory (uε, τε) between two critical points of index
difference one, then any sufficiently close connecting base trajectory q admits a
time shift qσ := q(σ + ·) which gets mapped under T ε to the given ε-solution.
What determines the value of σ is that the difference vector from i(qσ) to (uε, τε)
must be in the image of the adjoint linearized operator. One translates the image
property into being a zero θε(σ) = 0 of a suitably defined function.

Section 7 “Surjectivity of T ε”. The program to prove surjectivity is
described right after Theorem C.

Appendix A “Implicit function theorem II – detect base solutions”.
This section is independent of the others and provides the analysis for solutions
of the base equation (1.4), the well known case of the downward gradient flow on
a compact manifold. We prove the main tool to prove surjectivity of the map T ε,
the base implicit function theorem (IFT II), Theorem A.1. The theorem requires
the Morse-Smale condition for the base data. In this case the restriction function
f = F |Σ to the base Σ = H−1(0) is automatically Morse. Theorem A.1 asserts
that roughly speaking, if a map q : R → Σ with asymptotic limits x∓ ∈ Critf
almost solves the base equation and |∂sq(s)| decays like 1

1+s2 , then there is a
0-solution nearby. Exponential decay methods are discussed in Section A.2.

1 here C2 is enough, but for later reference in the proof of Theorem 5.1 we already ask C3
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3 Uniform a priori bounds

The following theorem is fundamental, not only for the present article II, but
also part I [FW22a] is built on (i).

Theorem 3.1 (Uniform a priori bounds). Assume Hypothesis 2.1 with constant
κ. Then there are, a compact subset K ⊂M , and constants c0, c1, c2, c3, cκ > 0
and εκ ∈ (0, 1], such that the following holds. Suppose that (u, τ) solves the
ε-equations (1.3) and is of finite energy Eε(u, τ) <∞.

(i) If ε ∈ (0, 1], then the component u takes values in K and there are bounds

|τ(s)| ≤ c0, |∂su(s)|+ |τ ′(s)| ≤ c1,
∣∣∇s∂su(s)

∣∣+ |τ ′′(s)| ≤ c2,

and
∣∣∇s∇s∂su(s)

∣∣ ≤ c3, at every instant s ∈ R.

(ii) If ε ∈ (0, εκ], then
∣∣∇H(u(s))

∣∣ ≥ cκ at every instant s ∈ R.

3.1 Proof of Theorem 3.1

Let ε ∈ (0, 1] and let z = (u, τ) be a solution of the ε-equations (1.3) of finite
energy, thus Eε(u, τ) ≤ oscf by (1.5). Abbreviate zs := z(s), similarly for us, τs.
Assume Hypothesis 2.1 with constant κ > 0.

Step 1. There exists a compact subset K = Kκ ⊂M such that if ε ∈ (0, 1] and
z = (u, τ) : R→M ×R is a finite energy solution of the ε-equations (1.3), then
u takes values in K, in symbols us ∈ K for every s ∈ R.

To prove this we abbreviate ∇ε = ∇hε and |·|ε = |·|hε . For α ∈ (0, 1] consider
the set of times s where the gradient is very large or wild

Sκ := {s ∈ R : |∇εFH(zs)|hεzs ≥
κ
εα }. (3.14)

Given a wild time s ∈ Sκ, we denote the last entry time into the wild set Sκ
before time s by

s0 = s0(s) := sup{s′ < s | s′ /∈ Sκ}. (3.15)

Note that [s0, s] ⊂ Sκ and

|∇εFH(zs0)|hεzs0 =
κ

εα
. (3.16)
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Now we estimate the distance in terms of the energy, namely√
distG (us, us0)

2
+ ε2 |τs − τs0 |

2 (1.3)
= disthε (zs, zs0)

(1.3)

≤
∫ s

s0

|z′σ|ε dσ

(1.3)
=

∫ s

s0

|∇εFH(zσ)|2ε
|∇εFH(zσ)|ε

dσ

(1.3)

≤ εα

κ

∫ s

s0

|∇εFH(zσ)|2ε dσ

(1.3)

≤ εα

κ

∫ ∞
−∞
|∇εFH(zσ)|2ε︸ ︷︷ ︸
|∂suσ|2+ε2τ ′σ

2

dσ

(1.5)
= εα

κ E
ε(z)

(1.3)

≤ oscf
κ εα.

(3.17)

where step three is by (1.3) in the form z′σ = −∇εFH(zσ). This shows that

distG (us, us0) ≤ oscf
κ εα

α= 1
2= oscf

κ

√
ε. (3.18)

On the other hand at time s0 there are, by (3.16) and (1.3), the two identities

κ2

ε2α = |∇εFH(ws0)|2ε =
∣∣∇F (us0) + τs0∇H(us0)

∣∣2 + ε−2H(us0)2. (3.19)

This shows that

|H(us0)| ≤ κε1−α α= 1
2= κ
√
ε. (3.20)

Estimates (3.18) and (3.20) suggest to choose α = 1
2 . Since ε ∈ (0, 1] we obtain

|H(us0)| ≤ κ, distG (us, us0) ≤ oscf
κ . (3.21)

Now we define the set

K = Kκ := {p ∈M | distG(p,H−1[−κ, κ]) ≤ oscf
κ }.

By (3.21) we see that us0 ∈ H−1[−κ, κ] and us ∈ K. Hence u(Sκ) ⊂ K.
For a non-wild time s /∈ Sκ we have the inequality

κ2

ε2α > |∇
εFH(ws)|2ε =

∣∣∇F (us) + τs∇H(us)
∣∣2 + ε−2H(us)

2. (3.22)

Thus |H(us)| < κ
√
ε ≤ κ, hence us ∈ H−1[−κ, κ], and therefore us ∈ K.

The set K is closed and bounded. Thus, since G is geodesically complete,
the set K is compact by the Theorem of Hopf-Rinow; see e.g. [O’N83, Ch. 5
Thm. 21]. This proves Step 1.
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Step 2 (εκ). There exists εκ ∈ (0, 1] and cκ > 0 such that
∣∣∇H(us)

∣∣ ≥ cκ
whenever s ∈ R and z = (u, τ) is a finite energy ε-solution with ε ∈ (0, εκ].

We prove Step 2. Since 0 is a regular value of H and Σ = H−1(0) is compact
there exists a constant cκ > 0 such that

∣∣∇H(x)
∣∣ ≥ 2cκ for every point x ∈ Σ.

Hence there exists µ > 0 such that if distG(x,Σ) ≤ µ with x ∈ M , then∣∣∇H(x)
∣∣ ≥ cκ.

Claim. Since H−1[−κ, κ] is compact there exists εκ ∈ (0, 1] such that if a point
x ∈M satisfies |H(x)| ≤ κ√εκ, then distG(x,Σ) ≤ µ

2 .

To prove the claim suppose by contradiction that there are sequences εν → 0 and
xν ∈ H−1[−κ√εν , κ

√
εν ], but distG(xν ,Σ) > µ

2 . By compactness of H−1[−κ, κ]
there is a subsequence xνj and a point x ∈ H−1(0) such that xνj → x, as
j →∞. By the corresponding property of each point xν the limit point x also
satisfies distG(x,Σ) ≥ µ/2. But x ∈ H−1(0) = Σ. Contradiction.

With the notation from Step 1 we see from (3.20) that |H(us0)| ≤ κ
√
εκ, thus

by the claim distG(us0 ,Σ) ≤ µ
2 . Choose εκ smaller, if necessary, such that

µ
2 ≥

oscf
κ

√
εκ where oscf

κ

√
εκ ≥ distG (us, us0) by (3.18). Hence we have

distG(us,Σ) ≤ distG(us, us0) + distG(us0 ,Σ) ≤ µ
2 + µ

2 = µ.

Therefore by construction of µ prior to the claim it follows that
∣∣∇H(us)

∣∣ ≥ cκ.
This proves Step 2.

Recall that the map u takes values in the compact set K, by Step 1, and that∣∣∇H ◦ u∣∣ ≥ cκ whenever ε ∈ (0, εκ], by Step 2.

Step 3 (εκ). Every ε-solution (u, τ) with ε ∈ (0, εκ] admits the a priori bound

|τ(s)| ≤ 1
c2κ

maxK
∣∣〈∇F,∇H〉∣∣

for every s ∈ R.

We prove Step 3. Case τ(s) > 0: By identity τ2 in (2.8) we get the estimate

ετ ′′(s)
τ2
≥ −max

K
|b|+ c2κτ(s), b(p) :=

〈
∇H(p),∇F (p)

〉
for every s ∈ R. If τ(s) > 1

c2κ
maxK |b|, then ετ ′′(s) > 0, hence in this range no

s can be a maximum.
Since z = (u, τ) has finite energy, it has a non-empty ω-limit set consisting

of critical points of FH , namely pairs (x, τx) ∈ Σ × R that satisfy the critical
point equation ∇F (x) + τx∇H(x) = 0. Take the inner product with ∇H to get

|τx| =
|
〈
∇F (x),∇H(x)

〉
|

|∇H(x)|2
≤ maxΣ|b|

c2κ
.

Thus it follows that
τ(s) ≤ 1

c2κ
maxK |b|

10



for every s ∈ R; otherwise τ(s) would have to return to its asymptotic limits
and therefore there would be a maximum in the above range, contradiction.

Case τ(s) < 0: Similarly, if τ(s) < 0 is negative, then we obtain the estimate

ετ ′′(s)
τ2
≤ max

K
|b|+ c2κτ(s), b(p) :=

〈
∇H(p),∇F (p)

〉
for every s ∈ R. If τ(s) < − 1

c2κ
maxK |b|, then ετ ′′(s) < 0, hence in this range

no s can be a minimum. Thus

τ(s) ≥ − 1
c2κ

maxK |b|

for every s ∈ R; otherwise there is a minimum, contradiction.

Step 4. There is a constant C0 > 0 such that every ε-solution (u, τ) has bounds

|τ(s)| ≤ C0, |∂su(s)| ≤ max
K

∣∣∇F ∣∣+ C0 max
K

∣∣∇H∣∣ =: D1

for all s ∈ R and ε ∈ (0, 1].

We prove Step 4. For τ the case ε ∈ (0, εκ] was already proved in Step 3.
Thus let ε ∈ (εκ, 1]. Recall that κ is the constant from Hypothesis 2.1 on local
properness of H. For κ0 ∈ (0, κ] we define the wild set Sκ0

by (3.14). For
s ∈ Sκ0

let s0 be the last entry time into the wild set Sκ0
before s; see (3.15).

From (3.17) with α = 1
2 we get the estimate ε2 |τs − τs0 |

2 ≤ ε(oscf)2/κ2
0, hence

|τs − τs0 | ≤
oscf√
εκ0
≤ oscf
√
εκκ0

. (3.23)

Equation (3.19) for κ0 is of the form

κ2
0

ε
=
∣∣∇F (us0) + τs0∇H(us0)

∣∣2 + ε−2H(us0)2. (3.24)

Therefore H(us0)2 ≤ κ2
0ε ≤ κ2

0, hence |H(us0)| ≤ κ0. As in the claim in the
proof of Step 2 choose κ0 > 0 so small that if x ∈M satisfies |H(x)| ≤ κ0 then∣∣∇H(x)

∣∣ ≥ cκ. By this choice of κ0 it follows that
∣∣∇H(us0)

∣∣ ≥ cκ. Firstly,

by (3.24) we have
∣∣∇F (us0) + τs0∇H(us0)

∣∣ ≤ κ0/
√
ε ≤ κ0/

√
εκ. Secondly∣∣∇F (us0) + τs0∇H(us0)

∣∣ ≥ ∣∣τs0∇H(us0)
∣∣− ∣∣∇F (us0)

∣∣ ≥ cκ |τs0 | −max
K

∣∣∇F ∣∣ .
Combining these two facts we obtain

|τs0 | ≤
1

cκ

(
κ0√
εκ

+ max
K

∣∣∇F ∣∣) .
Therefore, by (3.23), we obtain the bound

|τs| ≤ |τs − τs0 |+ |τs0 | ≤
1

cκ

(
κ0√
εκ

+ max
K

∣∣∇F ∣∣)+
oscf
√
εκκ0

=: c0

11



for all s ∈ R and ε ∈ (εκ, 1]. Hence, by Step 3, we obtain the uniform bound

|τ | ≤ max{CStep3, c0} =: C0

whenever ε ∈ (0, 1]. Thus by (2.8) we get

|∂su|
u1
≤ max

K

∣∣∇F ∣∣+ C0 max
K

∣∣∇H∣∣
whenever ε ∈ (0, 1]. This proves Step 4.

Step 5 (εκ). There is a constant C̃1 > 0 such that every ε-solution (u, τ) with
ε ∈ (0, εκ] admits the a priori bound

|τ ′(s)| ≤ C̃1

for every s ∈ R.

We prove Step 5. The proof follows the same scheme as Step 3 just for τ ′ instead
of τ and using in (2.8) the identity τ3. For instance, one gets the estimate

ε(τ ′)′′(s)
τ3
≥ −max

K
|b̃|+ c2κτ

′(s)

for every s ∈ R where, however, the definition of b̃ incorporates more terms as
in Step 3 and the estimate for b̃ uses the a priori bounds |τ | and |∂su| obtained
in Step 4. Now proceed as in Step 3. This proves Step 5.

Step 6. There are constants C1, D2 such that every ε-solution (u, τ) is bounded

|τ ′(s)| ≤ C1,
∣∣∇s∂su(s)

∣∣ ≤ D2

for all s ∈ R and ε ∈ (0, 1].

We prove Step 6. Recall from (2.8) the gradient flow equation τ1, namely

τ ′(s) = − 1

ε2
H(u(s)).

Therefore |τ ′| ≤ 1
ε2 maxK |H| ≤ 1

ε2κ
maxK |H| in case ε ∈ [εκ, 1]; here we used

that u takes values in K by Step 1. Therefore the a priori bound for τ ′, uniformly
for ε ∈ (0, 1], follows together with Step 5.

The uniform a priori bound for∇s∂su follows from the gradient flow equation
u2 in (2.8) together with the uniform bounds for τ, τ ′, ∂su which were already
established. This proves Step 6.

Step 7. There are constants C2, D3 such that every ε-solution (u, τ) is bounded

|τ ′′(s)| ≤ C2,
∣∣∇s∇s∂su(s)

∣∣ ≤ D3

for all s ∈ R and ε ∈ (0, 1].

The proof of Step 7 follows the same scheme as the proof of Step 6 using equation
τ4 in (2.8), together with the estimates established in Step 6. This proves Step 7.
The proof of Theorem 3.1 is complete.

Remark 3.2 (Higher order bounds in Theorem 3.1). Bootstrapping further one
gets bounds for all derivatives of τ and u, uniformly in ε ∈ (0, 1].
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3.2 Compactness

Local convergence of a sequence (ui, τi) of εi-connecting trajectories, given a
sequence εi → 0, follows already from the a priori L∞ bounds of (ui, τi) and
its first and second derivatives, as provided by Theorem 3.1. Here not even the
Morse condition is needed.

Corollary 3.3 (Local convergence). Let (εν)ν∈N ⊂ (0, 1] be a sequence with
limit zero limν→∞ εν = 0. Suppose (uν , τν) : R→M × R is a sequence of finite
energy solutions of the εν-equation (1.3). Then there is a subsequence νj and a
solution q : R → Σ of the 0-equation (1.4) such that uνj converges in C∞loc to q
and τνj in C∞loc to χ ◦ q.

Proof. Iterating the arguments in the proof of Theorem 3.1, using recur-
sively (2.8), we obtain that τν and uν , with all derivatives, are uniformly
bounded for all ν and all times. Therefore by the Theorem of Arzelà-Ascoli
there exists a subsequence νj such that (uνj , τνj ) converges in the C∞loc topology.
Since (uνj , τνj ) is a solution of the ενj -equation the limit q := limj→∞ uνj has
to be a finite energy solution of the 0-equation. Since for the 0-equation the
Lagrange multiplier τ is uniquely determined by q, namely as composition χ◦q,
we further have limj→∞ τνj = χ ◦ q.

If one prescribes asymptotics of index difference one, then the Morse-Smale
condition leads to compactness, in C∞, of the space of connecting trajectories.

Lemma 3.4 (Compactness for fixed index difference one asymptotics). Assume
that (f, g) is Morse-Smale. Suppose that x∓ ∈ Critf are critical points of Morse
index difference one. Let (uν , τν) : R→M ×R be a sequence of solutions of the
εν-equation with fixed asymptotics lims→∓∞ (uν(s), τν(s)) = (x∓, χ ◦ x∓)) and
such that εν → 0, as ν →∞. Then there exists a subsequence uνj and a solution
q of the 0-equation with asymptotics x∓ such that uνj converges in C∞ to q and
τνj converges in C∞ to χ ◦ q.

Proof. It is well known, see e.g. [Sal90, Sch93] or [FN20, §4.7], that in view of
the local convergence from Corollary 3.3 the sequence uν has a subsequence uνj
which converges in the sense of Floer-Gromov to a broken gradient flow line
q = (q1, . . . , qm) from x− to x+. Since the index difference of x− and x+ is 1
and the metric g is Morse-Smale the limit q is unbroken, that is m = 1, i.e.
q = q1 is a gradient flow line from x− to x+. This proves Lemma 3.4.

Compactness under the Morse condition

In Section 7 the proof of Theorem C, which asserts surjectivity of the map T ε,
uses the following two refined compactness results.

Lemma 3.5 (Local convergence). Assume that f is Morse. Let x∓ ∈ Critf
and (ui, τi) ∈Mεi

x−,x+ where εi > 0 is a real sequence converging to zero. Then
there is a pair of critical points x0, x1 ∈ Crit f , a connecting base trajectory q ∈
M0

x0,x1
, and a subsequence, still denoted by (ui, τi), such that the following hold:

13



(i) (ui, τi) converges to i(q) = (q, χ(q)) strongly in C1 and weakly in W 2,2 on
every compact subset of R. Moreover, the difference τi − χ(ui) converges
to zero in the C1 norm on every compact subset of R.

(ii) For each s ∈ R and each T > 0 the following limits exist and are given by

f(q(s)) = lim
i→∞

FH(ui(s), τi(s)),

E0
[−T.T ](q) = lim

i→∞
Eεi[−T.T ](ui, τi).

(3.25)

Proof. (i) By the a priori Theorem 3.1 there is a constant c > 0 such that

‖τi‖∞ + ‖∂sui‖∞ + ‖τ ′i‖∞ + ‖∇s∂sui‖∞ + ‖τ ′′i ‖∞ ≤ c (3.26)

for every i ∈ N. Since |H ◦ ui| = ε2
i |τ ′i | ≤ ε2

i c the sequence ui is bounded in
C0; compare Hypothesis 2.1. Thus, by (3.26), the sequence (ui, τi) is bounded
in C2 and hence in W 2,2([−T, T ]) for each T > 0. Thus, by the Arzelà-Ascoli
theorem and the Banach-Alaoglu theorem, there is a subsequence, still denoted
by (ui, τi), that converges strongly in C1 and weakly in W 2,2 on every compact
subset of R to some W 2,2

loc -function (q, τ) : R→M×R. As ‖τ ′i‖∞ ≤ c, by (3.26),
the sequence H ◦ui = −ε2

i τ
′
i converges to zero in the C0 norm. Hence H(q) ≡ 0

which shows that q : R→ Σ actually takes values in Σ = H−1(0). We get that

τi
(2.10)

= χ(ui)−
〈
∂sui,∇H(ui)

〉
|∇H(ui)|2

i→∞−→ χ(q)−
〈
∂sq,∇H(q)

〉
|∇H(q)|2

= χ(q) (3.27)

where the limit is pointwise at s ∈ R and where we used that ∇H(q) is pointwise
orthogonal to ∂sq ∈ TqH−1(0). This proves that τ = χ(q). Observe that both
differences, namely τi − χ(ui) and also

τ ′i − (χ(ui))
′ = − d

ds

〈
∂sui,∇H(ui)

〉
|∇H(ui)|2

,

converge to zero in C0
loc. The latter holds by weak W 1,2

loc convergence ∂sui ⇀ ∂sq.
Since ui → q and τi → χ(q), both in C1 on every compact subset of R, we obtain

0
(1.3)
= ∂sui +∇F |ui + τi∇F |ui

i→∞−→ ∂sq +∇F |q + χ|q∇F |q
(1.4)
= ∂sq +∇f |q

on every compact subset of R. So the limit q : R → Σ satisfies the base equa-
tion (1.4). Thus q is smooth, by regularity in part I [FW22a], and so is τ = χ◦q.

(ii) The fact that ui → q in C1
loc, as i→∞, proves the first equality in

E0
[−T,T ](q) = lim

i→∞

∫ T

−T
|∂sui|2 ds

= lim
i→∞

∫ T

−T

(
|∂sui|2 + ε2

i (τ
′
i)

2
)
ds

= lim
i→∞

Eεi[−T,T ](ui, τi)

(3.28)
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and this is true for any T ≥ 0. Equality two holds since ‖τ ′i‖∞ ≤ c is uniformly
bounded and εi → 0. Equality three is by definition of εi-energy. Hence the limit
q has finite energy c∗ := f(x−)− f(x+) by the εi-energy identity (1.7), and so,
by Proposition A.5, belongs to a moduli spaceM0

x0,x1
for some x0, x1 ∈ Crit f .

Pick s ∈ R, then since ui → q in C0
loc we get pointwise convergence

f(q(s)) = F (q(s)) = lim
i→∞

(F (ui(s)) + τi(s)H(ui(s)))

due to H ◦ q ≡ 0, since q takes values in H−1(0). This proves Lemma 3.5.

Lemma 3.6 (Convergence with fixed asymptotics – broken trajectory limit).
Assume f is a Morse function. Let x∓ ∈ Critf and (ui, τi) ∈ Mεi

x−,x+ where
εi > 0 is a real sequence converging to zero. In this case there are critical points
x− = x0, x1, . . . , x` = x+ ∈ Crit f , connecting base trajectories qk ∈M0

xk−1,xk

for k ∈ {1, . . . , `}, a subsequence, still denoted by (ui, τi), and time shift se-
quences ski ∈ R, k ∈ {1, . . . , `}, such that the following hold true:

(i) For each k ∈ {1, . . . , `} the sequence s 7→
(
ui(s

k
i + s), τi(s

k
i + s))

)
con-

verges to (qk, χ(qk)) as in the local convergence Lemma 3.5.

(ii) For each k ∈ {1, . . . , `} it holds ∂sq
k 6≡ 0, hence xk−1 6= xk, and, further-

more, each difference sequence ski − s
k−1
i diverges to infinity.

(ii) For any k ∈ {1, . . . , `} and any ρ > 0 there is a constant T > 0 such that,
for all i and s ∈ R, it holds ui([s

k
i + T, sk+1

i − T ]) ⊂ Bρ(xk), equivalently

ski + T ≤ s ≤ sk+1
i − T ⇒ dist(ui(s), x

k) < ρ.

Here we set s0
i := −∞ and s`+1

i :=∞ and dist is the Riemannian distance.

Note that while Morse is essential in the lemma, Morse-Smale is not required.

Proof. The proof in [SW06, Le. 10.3] carries over literally. Let us just add the
argument that the difference s2

i−s1
i diverges to infinity: Abbreviate zi := (ui, τi).

By (i), the sequence (s1
i )∗zi converges to (q1, χ(q1)), as in the local convergence

Lemma 3.5, and (s2
i )∗zi converges to (q2, χ(q2)). Assume by contradiction that

the sequence s2
i − s1

i is bounded. Then there is a subsequence, same notation,
which converges to some time T ∈ R. Since (s2

i )∗zi = (s2
i − s1

i )∗(s
1
i )∗zi, we get

(q2, χ(q2)) = lim
i→∞

(s2
i )∗zi = lim

i→∞
(s2
i − s1

i )∗(s
1
i )∗zi = T∗(q

1, χ(q1)).

Therefore q1 is just a reparametrization of q2, hence their upper asymptotics,
namely x0 for q1 and x1 for q2, must be equal. But this contradicts x0 6= x1.

4 Uniform gradient bounds by energy intervals

The following result refines the a priori Theorem 3.1 for |∂su(s)| in the sense
that on the right hand side it brings in energy intervals about s ∈ R. The latter
decay exponentially in s, uniformly in ε ∈ (0, 1], as we shall prove later on in
Theorem 5.1 under the Morse condition for f .
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Theorem 4.1 (Gradient bounds for u). There is a constant C > 0 such that
the following holds. If ε ∈ (0, 1] and (u, τ) is a finite energy ε-trajectory, then

|∂su(s)|2 ≤ C‖∂su‖2L2([s−1,s+1]) (4.29)

and

‖∇s∂sus‖L2([s− 1
4 ,s+

1
4 ]) + ε‖τ ′′‖L2([s− 1

4 ,s+
1
4 ]) ≤ C‖∂su‖L2([s−30,s+30]) (4.30)

for every s ∈ R. Moreover, it holds that

|∇s∂su(s)|2 ≤ C‖∂su‖2L2([s−30,s+30]) (4.31)

and

‖∇s∇s∂sus‖L2[s− 1
4 ,s+

1
4 ] + ε‖τ ′′′‖L2[s− 1

4 ,s+
1
4 ] ≤ C‖∂su‖L2[s−60,s+60]

for every s ∈ R.

Where are the gradient bounds used? We use the L∞ gradient bounds to
prove exponential decay of ∂su and ∇s∂su, see (5.43) and Corollary 5.2. We use
the L2(R) bound for ετ ′′ in the global surjectivity Theorem C, see (7.71).

Corollary 4.2 (Gradient bounds τ). Under the assumptions of Theorem 4.1

|τ ′(s)|2 ≤

{
C‖∂su‖2L2([s−30,s+30]) , ε ∈ (0, εκ],

CEε[s−1,s+1](u, τ) , ε ∈ [εκ, 1],
(4.32)

for every s ∈ R where EεI (u, τ) is the energy of (u, τ) along an interval I ⊂ R.

On (0, εκ] obtain the corollary by inserting (4.29) and (4.31) into (2.11). On
[εκ, 1] the factor ε2 in τ̂3 in (2.8) becomes irrelevant and a simple version of the
technique in the proof of the theorem will do, so we do the proof in the end.

The proof of the pointwise bounds uses the following inequality of mean value
type whose proof in [SW06] relies on Gruber’s parabolic mean value inequality.

Lemma 4.3 (Le. B.3 [SW06]). There is a universal constant d > 0 such that the
following is true. Fix two constants r ∈ (0, 1] and δ ≥ 0. If f : [−r2−δr, δr]→ R
is a C2 function, C1 suffices in case δ = 0, that satisfies

δ2f′′ − f′ ≥ −µf, f ≥ 0,

for some constant µ ≥ 0, then

f(0) ≤ 4deµr
2

r2

∫ δr

−r2−δr
f(s) ds.

Concerning L2 estimates there is the following tool.
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Lemma 4.4 (Le. B.6 [SW06]). Fix constants r,R, δ > 0 and three functions
f, g, u : [−(R+ r)2 − δ(R+ r), δ(R+ r)]→ R with f ∈ C2 and g, u ∈ C0. If

δ2f′′ − f′ ≥ g− u, f ≥ 0, g ≥ 0, u ≥ 0,

then ∫ −δR2
−(R2 )2+δR2

g(s) ds ≤ 4
(
1 + r

R

)2 ∫ δ(R+r)

−(R+r)2−δ(R+r)

u(s) ds

+ 4
(
1 + r

R

)2 ( 4
r2 + 1

Rr

) ∫ δ(R+r)

−(R+r)2−δ(R+r)

f(s) ds.

Proof of Theorem 4.1. Let ε ∈ (0, 1]. Let (u, τ) be a finite energy solution of
the ε-equations (1.3). Define 2f0 := |∂su|2 and 2g0 := |∇s∂su|2. We have

f′′0 − f′0 = 2g0 +
〈
∂su,∇s∇s∂su−∇s∂su

〉
. (4.33)

To estimate the inner product use u3 and τ̂2 in (2.8) to get〈
∂su,∇s∇s∂su−∇s∂su

〉
=
〈
∂su,−∇s∇s∇F − τ∇s∇s∇H − 2τ ′∇s∇H

〉
+ ε2τ ′′

2 −
〈
∂su,∇s∂su

〉
.

Theorem 3.1 requires the finite energy hypothesis and asserts that there are
uniform L∞ bounds for τ , τ ′, ∂su and that u takes values in a compact subset
K of M . By Young’s inequality and (4.33) we get the inequality f′′0 − f′0 ≥
2g0 + ε2τ ′′

2 − µf0 − g0 pointwise at s ∈ R for a suitable constant µ1 > 0, so 2

f′′0 − f′0 ≥ g0 + ε2τ ′′
2 − µ1f0 ≥ −µ1f0. (4.34)

Now pick a number s0 ∈ R and apply Lemma 4.3 with δ = 1 and r = 1
3 to the

function w(s) := f0(s0 + s) to obtain

1
2 |∂su(s0)|2 = w(0) ≤ 4de

µ1
9

9

∫ 1
3

− 4
9

f0(s0 + s) ds ≤ de
µ1
9 ‖∂su‖2L2([s0− 1

2 ,s0+ 1
2 ]).

This proves the pointwise estimate (4.29). By (4.34), Lemma 4.4 with δ = 1,
R = 2 +

√
6, r = −3−

√
6 +
√

30 applies to the function w(s) := f0(s0 + s), thus∫ s0−1−
√

3
2

s0− 3
2−
√

3
2

(
|∇s∂su|2 + ε2τ ′′

2
)
ds ≤ C̃1

∫ s0+
√

30−1

s0+
√

30−30

|∂su|2 ds (4.35)

for a constant C̃1 = C̃1(R, r) > 0.

2 To get the key estimate (4.34) it is crucial, and in sharp contrast to [SW06, Sec. 6], not
to use ∂su together with τ ′ in the function f0.
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Define 2f1 := |∂su|2 + |∇s∂su|2 and 2g1 := |∇s∂su|2 + |∇s∇s∂su|2. We prove
estimate (4.31) and its successor. By Young’s inequality we obtain

f′′1 − f′1

= 2g1 +
〈
∂su,∇s∇s∂su−∇s∂su

〉
+
〈
∇s∂su,∇s∇s∇s∂su−∇s∇s∂su

〉
≥ 2g1 +

〈
∂su,∇s∇s∂su

〉
+
〈
∇s∂su,∇s∇s∇s∂su

〉
− f1 − g1.

(4.36)

To estimate the first inner product use u3 and τ̂2 in (2.8) to get〈
∂su,∇s∇s∂su

〉
=
〈
∂su,−∇s∇s∇F − τ∇s∇s∇H − 2τ ′∇s∇H

〉
+ ε2τ ′′

2
.

For inner product two in (4.36) use u4 in (2.8) and τ̂3 in (2.8) to get〈
∇s∂su,∇s∇s∇s∂su

〉
= −

〈
∇s∂su,∇s∇s∇s∇F + τ∇s∇s∇s∇H + 3τ ′∇s∇s∇H + 3τ ′′∇s∇H

〉
−
〈
∇s∂su,∇H

〉
τ ′′′

= −
〈
∇s∂su,∇s∇s∇s∇F + τ∇s∇s∇s∇H + 3τ ′∇s∇s∇H + 3τ ′′∇s∇H

〉
+ ε2τ ′′′

2
+
〈
∇s∇H, ∂su

〉
τ ′′′.

Theorem 3.1 uses the finite energy hypothesis and asserts that there are uniform
L∞ bounds for τ , τ ′, τ ′′, τ ′′′, ∂su, ∇s∂su and that u takes values in a compact
subset K of M . By Young’s inequality and (4.36) we get the inequality

f′′1 − f′1 ≥ g1 + ε2τ ′′
2

+ ε2τ ′′′
2 − µ2f1 ≥ −µ2f1 (4.37)

pointwise at s ∈ R and for a suitable constant µ2 > 0. Now proceed as for f
and g in (4.34) to obtain

|∇s∂su(s)| ≤ C2

(
‖∂su‖L2([s− 1

2 ,s+
1
2 ]) + ‖∇s∂su‖L2([s− 1

2 ,s+
1
2 ])

)
and

‖∇s∇s∂sus‖L2[s− 1
4 ,s+

1
4 ] + ε‖τ ′′′‖L2[s− 1

4 ,s+
1
4 ]

≤ C3

(
‖∂su‖L2[s−30,s+30] + ‖∇s∂su‖L2[s−30,s+30]

)
for every s ∈ R. But ‖∇s∂su‖L2[s− 1

4 ,s+
1
4 ] ≤ C4‖∂su‖L2[s−30,s+30], by (4.30),

and therefore ‖∇s∂su‖L2[s−30,s+30] ≤ C5‖∂su‖L2[s−60,s+60], by additivity of the
integral. This proves Theorem 4.1.

Proof of Corollary 4.2. Pick ε ∈ [εκ, 1]. Define 2f2 := |∂su|2 + ε2τ ′
2

and 2g2 :=

|∇s∂su|2 + ε2τ ′′
2
. Straightforward calculation (step 1) and using u3, τ̂3 in (2.8)
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(step 2) gives

f′′2 − f′2 = 2g2 +
〈
∂su,∇s∇s∂su−∇s∂su

〉
+ τ ′ε2τ ′′′ − ε2τ ′τ ′′

≥ g2 − f2 −
〈
∂su,∇s∇s∇F + τ∇s∇s∇H

〉
− 2τ ′

〈
∂su,∇s∇H

〉
+ ε2τ ′′

2 − τ ′
〈
∇s∇H, ∂su

〉
− τ ′

〈
∇H,∇s∂su

〉
− ετ ′ετ ′′

≥ g2 + 1
2ε

2τ ′′
2 − 1

2 |∇s∂su|
2 − µ1f2 − 1

2‖∇H‖
2
L∞(K)τ

′2 ε2
ε2κ

≥ ε2τ ′′
2 − µf2.

(4.38)

In step 3 we used the a priori bounds for τ, τ ′, ∂su from Theorem 3.1 and the
fact that u takes values in a compact subset K of M , so the gradients of H and
F are uniformly L∞ bounded. All bounds go into a suitable constant µ1 > 0.
We multiplied a negative term with ε2ε2

κ ≤ 1. Pick a number s0 ∈ R and apply
Lemma 4.3 with δ = ε and r = 1

3 to the function w(s) := f2(s0 + s) to get

ε2

2 τ
′(s0)

2 ≤ w(0) ≤ 4de
µ1
9

9

∫ ε
3

− 1
9−

ε
3

f2(s0 + s) ds ≤ de
µ1
9 Eε[s0− 1

2 ,s0+ 1
2 ].

Divide by ε2 and use that 1
ε2 ≤

1
ε2κ

.

5 Uniform exponential decay

In the proof of the global surjectivity Theorem C, in (7.70), we will need to
verify for approximate base solutions q : R → Σ – associated to ε-solutions
(u, τ) : R→M × R via suitable projection to Σ – the decay assumption (A.74)
that appears in the base implicit function theorem. It is for this purpose that
we now establish exponential decay (5.40) for ∂su and τ ′, uniformly in ε ∈ (0, 1].

Theorem 5.1 (Exponential decay – ∂su). Let f be Morse and x∓ ∈ Critf .
Then there are constants δ, c, c̃, ρ > 0 such that the following holds. Let ε ∈ (0, 1]
and (u, τ) ∈Mε

x−,x+ . Given a time T0 > 0 of δ-small asymptotic energy

EεR\[−T0,T0](u, τ) < δ, (5.39)

then there is pointwise and slicewise exponential decay

|∂su(s)| ≤ ce−ρ(|s|−T0−1),

‖∂su‖2L2(R\[−T,T ]) ≤ ce
−2ρ(|T |−T0)‖∂su‖2L2(R\[−T0,T0]),

(5.40)

whenever |s|, |T | ≥ T0 + 1.

The L2 norms are uniformly bounded ‖∂su‖2 ≤ Eε(u, τ) = f(x−)−f(x+) =: c∗.

Corollary 5.2 (Exponential decay). Under the assumptions of Theorem 5.1

|∇s∂su(s)|2 ≤ de−2ρ|s|‖∂su‖2L2(R\[−T0,T0]) (5.41)
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for every |s| ≥ T0 + 31 and

τ ′(s)2 ≤

{
de−2ρ|s|‖∂su‖2L2(R\[−T0,T0]) , ε ∈ (0, εκ],

c̃e−2ρ(|s|−T0−1) , ε ∈ [εκ, 1],
(5.42)

for every |s| ≥ T0 + 2. Here d := cCe60+2T0 where C > 0 is from Theorem 4.1.

Proof. Given Theorem 5.1 and a real |s| ≥ T0 + 31, combine estimate (4.31) for
|∇s∂su(s)|2 with the L2 norm exponential decay estimate (5.40) for T := s− 30
to get (5.41). Given (4.32), the same argument proves the estimate for τ ′(s)2

along the small parameter interval (0, εκ]. The proof for the large parameter
interval [εκ, 1] will be given at the end of the section.

Tools: Stability and Critical point detection

The proof of Theorem 5.1 relies on the following two lemmas. Note that they are
about points and vectors, not maps and vector fields, despite the same notation.

Lemma 5.3 (Critical point detection). Let f be Morse and K ⊂M a compact
neighborhood of Σ. Then, for any δ0 > 0, there is a constant δ1 > 0 such that
the following holds. Let (u, τ) ∈ K×R be an almost critical point of FH , namely

|∇F (u) + τ∇H(u)|+ |H(u)| < δ1.

Then there is a critical point x0 ∈ Crit f and a δ0-short difference vector towards
i(x0) = (x0, χ(x0)), more precisely, there is a pair (X0, `0) ∈ TuM×R such that

u = Expx0
X0, τ = χ(x0) + `0, |X0|+ |`0| ≤ δ0.

Proof. Suppose by contradiction that the assertion is wrong. Then there is a
constant δ0 > 0 and sequences δ1,ν → 0 and (uν , τν) ∈M × R satisfying

|∇F (uν) + τν∇H(uν)|+ |H(uν)| < δ1,ν −→ 0, as ν →∞,

but not the conclusion of the lemma for the given constant δ0. By compactness
of K there is a subsequence of uν , still denoted by uν , such that uν → q ∈ M ,
as ν →∞. But H(q) = 0, by the second summand in the limit, thus q ∈ Σ. By
the first summand in the limit, using that uν → q and ∇H(q) 6= 0, the sequence
τν has a unique limit τ ∈ R. Since the limit of the first summand is zero and
by definition (1.1) of χ we have firstly that τ = χ(q), thus `0 = 0, and secondly
that 0 = ∇F (q) + χ(q)∇H(q) = ∇f(q); here identity two is (1.4). So x0 := q is
a critical point of f . For each ν the pair (Xν , `ν) is determined by

ExpqXν = uν → q, χ(q) + `ν = τν → χ(q).

Thus Xν → 0 and `ν → 0 in contradiction to |Xν |+ |`ν | > δ0 for every ν.
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Lemma 5.4 (Stability). Let f be Morse. Then there are positive constants δ0
and c such that the following is true. Given a base critical point x0 ∈ Crit f and
a point (u, τ) ∈M ×R which is δ0-close to i(x0) = (x0, χ(x0)) in the sense that

u = Expx0
X0, τ = χ(q) + `0, |X0|+ |`0| ≤ δ0,

then

|X|+ |`| ≤ c
(
|∇X∇F (u) + τ∇X∇H(u) + `∇H(u)|+ |dH(u)X|

)
for all (X, `) ∈ TuM × R.

Proof. The covariant Hessian operator A1
u,τ for ε = 13 acts on TuM × R by

A1
u,τ

(
X
`

)
:=

(
∇X∇F |u + τ∇X∇H|u + `∇H|u

dH|uX

)
.

Pick δ0 < ι(TΣM,G). That A1
u,τ is symmetric with respect to the metric

h1 = G ⊕ 1 on M × R boils down to the identity shown in part I [FW22a,
Sec. 4.2.4] after the formula for the adjoint (Dε

u,τ )∗. It is an instructive exer-
cise to check that injectivity of A0

x0
(true since f is Morse), implies injectivity

of A1
x0,χ(x0), hence bijectivity (by symmetry). Thus A1

x0,χ(x0) admits an in-
verse which, in finite dimension, is automatically bounded, say by a constant
C(x0). But bijectivity is preserved under small perturbations (with respect to
the operator norm). Hence the result for A1

Expx0
X,χ(x0)+`, say with constant

c = 2C(x0), follows from continuous dependence on |X| and |`| and by choosing
δ0 small enough. Since Σ is compact and f is Morse, the set Crit f is finite, so
we may choose the same constants δ0 and c for all x0 ∈ Crit f .

The next lemma is standard and included for convenience of the reader, for
a proof see e.g. [Web10, Le. 3.13].

Lemma 5.5. Suppose f : R → [0,∞) is a bounded C2 function and ρ ≥ 0 and
T0 > 0 are constants. If f′′(s) ≥ ρ2f(s) whenever |s| ≥ T0, then

f(s) ≤ e−ρ(s−T0)f(T0), ∀s ≥ T0, f(s) ≤ eρ(s−T0)f(−T0), ∀s ≤ −T0.

Proof of uniform exponential decay

Proof of Theorem 5.1 (Exponential decay – ∂su). Let x∓ ∈ Crit f , ε ∈ (0, 1],
and (u, τ) ∈Mε

x−,x+ . Let K be the compact set provided by Theorem 3.1.
Let C > 0 be the constant of the gradient bound Theorem 4.1. Let δ0 > 0

and c > 0 be the constants of the stability Lemma 5.4 and δ1 the constant
associated to δ0 by the critical point detection Lemma 5.3. Enlarge c to c > 1.
Shrink δ > 0 such that 2

√
Cδ ≤ δ1. In the following we will shrink δ further.

As usual we will often write us for u(s). For the vector norm in TusM and
the one in R we use the same symbol |·|.

3 Why not use Aεu,τ and hε? As that way we would get an ε on the left hand side of (5.44).
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Choose T0 > 0 sufficiently small such that hypothesis (5.39) – the asymptotic
energy is δ-small – is satisfied. (Such T0 exists by finiteness of the total energy.)
Then, by the gradient bounds (4.29,4.32) and since ‖∂su‖2 ≤ Eε(u, τ), we have

|∂sus|+ |τ ′s| ≤ 2
√
CEε[s−30,s+30](u, τ)

(5.39)
< 2

√
Cδ ≤ δ1 (5.43)

for s ∈ R. Hence, whenever |s| ≥ T0 + 1, Lemma 5.3 for (X0, `0) := (∂sus, τ
′
s)

detects a critical point x(s) ∈ Crit f whose canonical embedding (x(s), χ(x(s))) is
of distance less than δ0 to the time-s trajectory point (us, τs). Thus the stability
Lemma 5.4 applies to the pair (us, τs) and the vector field (X0, `0) := (∂sus, τ

′
s).

By (2.8), there are the identities

∇s∇F |us + τs∇s∇H|us + τ ′s∇H|us = −∇s∂sus, dH|us∂sus = −ε2τ ′′s ,

hence we obtain from the stability Lemma 5.4 the estimate

|∂sus|2 + τ ′s
2 ≤ c

(
|∇s∂sus|2 + ε4τ ′′s

2
)

(5.44)

for every |s| ≥ T0 + 1.

Consider functions f0 := 1
2 |∂su|

2 and g0 := 1
2 |∇s∂su|

2. Next we show for f0
an inequality of the form f′′0 ≥ ρ2f0, so Lemma 5.5 asserts exponential decay.
Use the identities u3 and τ̂2 in (2.8) to get (we abbreviate H = H(u))

f′′0 = 2g0 +
〈
∂su,∇s∇s∂su

〉
= 2g0 −

〈
∂su,∇s∇s∇F + τ∇s∇s∇H

〉
− 2τ ′

〈
∂su,∇s∇H

〉
− τ ′′

〈
∂su,∇H

〉
= |∇s∂su|2 + 2ε2τ ′′

2 −
〈
∂su,∇s∇s∇F + τ∇s∇s∇H

〉
− 2τ ′

〈
∂su,∇s∇H

〉
≥ |∇s∂su|2 + ε2τ ′′

2 − c̃ (|∂su|+ |τ ′|) |∂su|2

≥ 1
c

(
|∂su|2 + τ ′

2
)
− 1

2c |∂su|
2

≥ 1
c f0 = ρ2f0, ρ = 1√

c
,

(5.45)

for every |s| ≥ T0 + 1; here T0 is brought in by (5.44) in inequality three. In-
equality one is by term by term inspection and Young’s inequality, the constant
c̃ > 0 depends on the C3(K) norms of F and H and the uniform L∞ bound of
τ from Theorem 3.1. Inequality two uses, firstly, the stability estimate (5.44)4

and, secondly, we chose δ > 0 in (5.43) so small that

c̃ (|∂su|+ |τ ′|) ≤ c̃2
√
Cδδ1 ≤ 1/2c < 1/2.

By Theorem 3.1 the function f0 is bounded by c1 > 0, uniformly in ε ∈ (0, 1].
By Lemma 5.5 we have f0(s) ≤ e−ρ(|s|−T0−1) (f0(T0 + 1) + f0(−T0 − 1)), so

|∂su(s)| ≤ 2
√
c1e
− |s|−(T0+1)

2
√
c

4 here the term ε2τ ′′2 is by a factor ε2 better than required.
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whenever |s| ≥ T0 + 1 and ε ∈ (0, 1]. This proves assertion one of Theorem 5.1
where c and ρ do have new meanings though.

Since 2f0(T0+1) ≤ C‖∂su‖2L2([T0,T0+2]) by (4.29), analogous for 2f0(−T0−1),

together we conclude that for every |s| ≥ T0 + 1 holds the estimate

|∂su(s)|2 ≤ e−ρ(|s|−T0−1)C‖∂su‖2L2(IT0
), IT0

:= [−T0 − 2,−T0] ∪ [T0, T0 + 2].

Pick T ≥ T0 + 1 and integrate the inequality over s ∈ (−∞,−T ]∪ [T,∞) to get

‖∂su‖2L2(R\[−T,T ]) ≤ C‖∂su‖
2
L2(IT0

)

(∫ −T
−∞

+

∫ ∞
T

)
e−ρ(|s|−T0−1) ds.

Carrying out the integral to get assertion two in (5.40). This proves the expo-
nential decay Theorem 5.1.

To prove the yet missing exponential decay of |τ ′(s)| along [εκ, 1], see (5.42),
one is inclined, given the successful strategy to prove (4.32), to repeat calcula-
tion (5.45) with f0 substituted by the ε-energy density f2. The new calculation
starts exactly like (4.38) where one just needs to remove term −f′2. Every-
thing is fine except for the term −τ ′

〈
∇H,∇s∂su

〉
which neither is cubic, nor

can it be incorporated via Young’s inequality simultaneously into both positive
terms |∇s∂su|2 and 1

c τ
′2 in (5.45). Interestingly enough, now it is the second

ε-equation τ ′ = ε−2H(u) which helps, the nasty factor ε−2 is tame along [εκ, 1].

Proof of Corollary 5.2 for [εκ, 1]. Given T0 > 0 such that asymptotic energy
smallness (5.39) holds, pick T1 ≥ T0 sufficiently large so we can write u(s) as

u(s) = Expx∓X
∓(s)

for every |s| ≥ T0. We focus on X−, the case X+ is analogous. By τ1 we have

|τ ′(s)| = 1
ε2 |H ◦ u(s)−H(x−)|

≤ 1
ε2κ
|H ◦ Expx−X

−(s)−H(x−)|
3
= |dH|Expx− tX

−(s)X
−(s)|

≤ ‖∇H‖L∞(K) · |X−(s)|.

(5.46)

Step 3 uses the mean value theorem for a t ∈ [0, 1]. The length of X−(s) is the
Riemannian distance between u(s) and x−, see footnote to (6.52), in symbols

|X−(s)| = distG
(
u(s), x−

)
≤ length(u|(−∞,s])

=

∫ s

−∞
|∂su(σ)| dσ

4
≤ ceρ(T0+1)

∫ s

−∞
eρσ dσ

= ceρ(T0+1)

ρ e−ρ|s|

for every s ≤ −T0 and where in step 4 we use (5.40).
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i(q)

i(qσ)

(uε, τ ε) =

{(
ExpqX

ε, χ(q) + `ε
)(

ExpqσX,χ(qσ) + `
) ∈Mε

x−,x+

Zε = (Xε, `ε)

ζ = ζ(σ) = (X, `)∈ im(Dε
qσ )
∗, ‖X‖∞ ≤ δ0

√
ε︸ ︷︷ ︸

⇒ both ε-solutions (uε, τε) and T ε(qσ)
• lie in uniqueness ball (radius δ0

√
ε0) about qσ

⇒ they must be equal: (uε, τε) = T ε(qσ)

• have their difference vectors in im(Dεqσ )∗

Figure 1: Detect time shift σ of q such that ζ(σ) ∈ im (Dε
qσ )∗, ‖X‖∞ ≤ δ0

√
ε

6 Local Surjectivity of T ε – time shift

Theorem 6.1 (Time shift). Let (f, g) be Morse-Smale. Then there are con-
stants c > 0 and ∆, ε0 ∈ (0, 1] such that the following holds. If x∓ ∈ Critf is a
pair of index difference one connected by a base trajectory and an ε-trajectory

q ∈M0
x−,x+ , (uε, τε) ∈Mε

x−,x+ with ε ∈ (0, ε0],

whose difference, firstly, is measured by a vector field (Xε, `ε) ∈ C∞(R, q∗TM⊕
R) determined by the identities

uε = ExpqX
ε, τε = χ(q) + `ε,

and, secondly, the difference is sufficiently L∞ and L2 small in the sense that 5

‖Xε‖∞ ≤ ∆ε1/2, ‖Xε‖ ≤ ∆ε1/2, (6.47)

then ‖`ε‖∞ + ‖`ε‖ ≤ c and, furthermore, there is a time-shift σ ∈ R such that

(uε, τε) = T ε (q(σ + ·)) , |σ| < c
(
‖Xε‖+ ε2

)
.

Proof. Let κ > 0 be a constant as in Hypothesis 2.1. Let cκ > 0 and εκ ∈ (0, 1]
be the constants in Theorem 3.1. Fix δ0 ∈ (0, 1], ε0 ∈ (0, εκ), and c > 1 such that
for all x0, x1 ∈ Crit f of index difference one the map T ε : M0

x0,x1
→Mε

x0,x1
is

injective whenever ε ∈ (0, ε0], see [FW22a, Sec. 6].

It suffices to prove the result for a fixed pair x∓ ∈ Critf of index difference
one and a fixed base trajectory q ∈M0

x−,x+ . The reason is that the assumptions
and conclusions of the theorem are invariant under simultaneous time shift of q
and (uε, τε) and, up to time shift, there are only finitely many index one base
trajectories q. Let (uε, τε) ∈Mε

x−,x+ with ε ∈ (0, ε0]. The constant defined by

c∗ := f(x−)− f(x+)
(1.7)
= ‖∂sq‖2 > 0

(1.7)
= ‖∂suε‖2 + ε2‖(τε)′‖2

(6.48)

5 L∞ condition enters (6.52) and Step 3 of proof, L2 condition enters (6.60) and Step 3.
Both conditions enter sharply in (6.62) in Step 5 to make uniqueness theorem applicable.
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is positive as ∂sq 6≡ 0 by index difference one. For σ ∈ R consider the time shift

qσ(s) := q(s+ σ), (qσ)′ := d
dsqσ = d

dσ qσ, (6.49)

and the canonical embedding i(qσ) = (qσ, χ(qσ)), see (1.2). The difference
between (uε, τε) and i(qσ) is the pair ζ = ζ(σ) = (X, `) determined by

uε = ExpqσX, τε = χ(qσ) + `. (6.50)

Writing (X, `) can be misleading, but (Xε,σ, `ε,σ) is unreadable. Note that

ζ(0) = (Xε, `ε). (6.51)

The pair ζ = (X, `), see Figure 1, is well defined whenever the distance6

‖X‖∞ = dist∞(qσ, u
ε) ≤ dist∞(qσ, q) + dist∞(q, uε)

≤ |σ| · ‖∂sq‖∞ + ‖Xε‖∞ < ι(TΣM)
(6.52)

is smaller than the (by compactness of Σ positive) injectivity radius of the
Riemannian vector bundle (TΣM,G). To achieve such smallness

fix σ0 ∈ (0, 1] : σ0‖∂sq‖∞ < ι(TΣM)
2 , fix ∆ ∈ (0, δ0] : ∆

√
ε0 <

ι(TΣM)
2 .

By the a priori bounds for ∂sq in (A.76) and for τε in Theorem 3.1, by com-
pactness of Σ, by exponential decay (A.92), there is a constant c0 > 0 with

‖∂sq‖∞ + ‖τε‖∞ + ‖χ‖L∞(Σ) ≤ c0 (6.53)

and with (used in (6.57))

‖∇s∂sq‖ ≤ c0. (6.54)

We will prove that for every sufficiently small ε > 0 there is a time shift σ ∈
[−σ0, σ0] such that our difference ζ = (X, `) satisfies the uniqueness hypotheses

ζ(σ) ∈ im (Dε
qσ )∗ ⊂ L2, ‖X(σ)‖∞ ≤ δ0

√
ε, (6.55)

of the implicit function theorem I [FW22a, Sec. 6, IFT I – Uniqueness]. Conse-
quently there are two ε-solutions within the uniqueness range about qσ, namely,
not only (uε, τε), by (6.50) and (6.55), but also T ε(qσ) as provided by the
existence part of IFT I; see Figure 1. By uniqueness these are equal.

The proof of (6.55) will take five steps. Step 1 defines a function θε(σ)
which is zero iff ζ(σ) ∈ im (Dε

qσ )∗. To find the zero one bounds |θε(0)| from

above (Step 2) and d
dσ θ

ε from below (Step 4); see Figure 2. Step 3 prepares
estimates utilized in Step 4. The heart of the proof is Step 2 which hinges on
the ε-equations (1.3) and ε-uniform exponential decay as prepared in Section 5.

6 Let dist∞(qσ , q) := sups∈R dist(qσ(s), q(s)). The Riemann point distance dist(qσ(s), q(s))
is the infimum over all lengths of smooth curves between the two points. The length of the
curve q|[s,s+σ] is ≤ ‖∂sq‖L∞([s,s+σ])|σ|, namely, maximal speed times length of time interval.
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Step 1. Shrinking ε0 > 0, if necessary, then for every ε ∈ (0, ε0] and every
σ ∈ [−σ0, σ0] the following function is well defined, namely

θε(σ) := −〈Zεσ, ζ〉0,2,ε := −〈Ξεσ, X〉 − ε2 〈λεσ, `〉 ,

where the pair ζ = ζ(σ) = (X, `) is given by (6.50) and where

Zε :=

(
Ξε

λε

)
:=

(
∂sq

dχ|q∂sq

)
−
(
X∗

`∗

)
= Iq(∂sq)−RεqDε

qIq(∂sq)

ζ∗ :=

(
X∗

`∗

)
:= (Dε

q)
∗ (Dε

q(D
ε
q)
∗)−1︸ ︷︷ ︸

=:Rεq

Dε
q

(
∂sq

dχ|q∂sq

)
= RεqD

ε
qIq(∂sq)

with Zεσ denoting time shift. Here Iq := di(q) is the linearization of the canonical
embedding (1.2) and the linear operator Dε

q := Dε
q,χ(q), the formal adjoint (Dε

q)
∗

with respect to the (0, 2, ε) inner product, and the right inverse Rεq are introduced
in [FW22a]. Most importantly, a zero σ of θε is characterized by

θε(σ) = 0 ⇔ ζ ∈ im (Dε
qσ )∗.

Shrink ε0 > 0, if necessary, so the operator Dε
q is surjective, by the key esti-

mate [FW22a, Sec. 5.3.3], and, by [FW22a, Sec. 4.2.4], it has Fredholm index,
hence kernel dimension, equal to one and we also have (kerDε

q)
⊥ = im (Dε

q)
∗.

We get Dε
qZε = 0 since Rεq is a right inverse of Dε

q . Below we will show that
Zε 6= 0 for every ε > 0 sufficiently small, so Zε spans kerDε

q .
These properties also hold for the shifted trajectory qσ. The to qσ associated

unshifted vector Zε(qσ) = Zεσ is the shifted vector associated to q. So we have

θε(σ) = 0 ⇔ (R · Zεσ)⊥ = (kerDε
qσ )⊥ = im (Dε

qσ )∗.

Here ⊥means orthogonal complement with respect to the (0, 2, ε) inner product.
It remains to show that Zε = Iq(∂sq) − ζ∗ 6= 0 for any ε > 0 small: To see

this note that ∂sq 6= 0 since x− 6= x+, by Morse index difference one. So

‖Iq∂sq‖20,2,ε = ‖∂sq‖2 + ε2‖dχ|q∂sq‖2 ≥ ‖∂sq‖2
(6.48)

= c∗ > 0

is bounded away from zero. On the other hand, for ζ∗ we have the identity

ζ∗ := RεqD
ε
q

(
∂sq

dχ|q∂sq

)
= Rεq

(
0

(dχ|q∂sq)′
)

(6.56)

which, by the key estimate [FW22a, Sec. 5.3.3] with constant C, leads to

‖dH|qX∗‖+ ‖X∗‖+ ε‖`∗‖+ε‖∇sX∗‖+ ε2‖(`∗)′‖
≤ εC (ε‖(0, (dχ|q∂sq)′)‖0,2,ε + ‖πε(0, (dχ|q∂sq)′)‖)
≤ ε2C(1 + µ∞)‖d2χq(∂sq, ∂sq) + dχ|q∇s∂sq‖
≤ c1ε2 with c1 = C(1 + µ∞)

(
‖χ‖C2(Σ)‖∂sq‖∞‖∂sq‖ + µ∞‖∇s∂sq‖

) (6.57)
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where µ∞ := max{1, ‖∇χ‖L∞(Σ)} ∈ [1,∞) and c1 is finite by (6.48), (6.53),
and (6.54). The projection πε is defined in [FW22a, Sec. 5.1.1] and works with
β = 2 and any α ∈ [1, 2]. Thus ‖ζ∗‖20,2,ε := ‖X∗‖2 +ε2‖`∗‖2 ≤ c21ε4 converges to
zero as ε tends to zero. Consequently Zε = Iq∂sq− ζ∗ 6= 0 for ε > 0 sufficiently
small and this proves Step 1.

Step 2. There is a positive constant c2 such that

|θε(0)| ≤ c2
(
‖Xε‖+ ε2

)
whenever ε ∈ (0, ε0].

Let ε ∈ (0, ε0]. We have θε(0) = −〈Ξε, Xε〉 − ε2 〈λε, `ε〉 by (6.51). First we
prove that there is a positive constant c3 such that there are L2 estimates

‖Ξε‖+ ‖λε‖ ≤ c3. (6.58)

For the first summand of Ξε = ∂sq −X∗ and also of λε = dχ|q∂sq − `∗ we use
that ‖∂sq‖2 = c∗ is finite by (6.48). For the second summands X∗ and `∗ this
is (6.57). This proves (6.58), consequently |θε(0)| ≤ c3

(
‖Xε‖+ ε2‖`ε‖

)
.

Thus it remains to find a suitable L2 bound for `ε = τε − χ(q). While we
got L∞-bounds for τε and χ|Σ, by Theorem 3.1 and compactness of Σ, these do
not help for L2 due to non-compactness of the domain R. As ε < εκ, we have

`ε = τε − χ(q)
(2.10)

= −〈∂su
ε,∇H(uε)〉
|∇H(uε)|2 + χ(ExpqX

ε)− χ(q). (6.59)

To deal with the difference |χ(ExpqX
ε) − χ(q)|, pointwise at s ∈ R, use the

lemma in [FW22a, Sec. 6.1] bringing in a factor |Xε(s)| whose L2 norm ‖Xε‖ ≤
∆
√
ε is controlled by hypothesis (6.47). Since ‖∂suε‖ ≤ c∗, by (1.7), we get

‖`ε‖ = ‖τε − χ(q)‖ ≤ c∗

cκ
+ c5∆

√
ε. (6.60)

where we also used the lower gradient bound cκ in (6.48). This proves Step 2.

Step 3 (Shift qσ). There is a positive constant c6 such that the vector field
X = X(s;σ) and the function ` = `(s;σ), defined by (6.50), satisfy the estimates

‖`‖∞ ≤ c0 ‖X‖∞ ≤ c0|σ|+ ∆ε
1
2 < ιM

‖∇sX‖ ≤ c6 ‖∇σX + ∂sqσ‖ ≤ c6
(
|σ|+ ∆ε

1
2

)
‖`‖ ≤ c6 ‖X‖ ≤ c6|σ|+ ∆ε

1
2

whenever ε ∈ (0, ε0] and |σ| ≤ σ0.

The first estimate of Step 3 holds true because ‖`‖∞ = ‖τε − χ(qσ)‖∞ ≤ c0
by (6.50) and (6.53). The second estimate was proved in (6.52).

To prove the third and fourth estimates differentiate the identity

ExpqσX = uε
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with respect to s and σ using the maps Ei from Thm. 6.7 in [FW22a] to get

E1(qσ, X)∂sqσ + E2(qσ, X)∇sX = ∂su
ε

E1(qσ, X)∂sqσ + E2(qσ, X)∇σX = 0.

The inverse E2(qσ, X)−1 exists for small ‖X‖∞ since Ei(qσ, 0) = 1l by Thm. 6.7.
Apply E−1

2 to both identities. The first identity then tells that

‖∇sX‖ = ‖E−1
2 (∂su

ε − E1∂sqσ)‖ ≤ c7 (‖∂suε‖+ ‖∂sq‖) = c72
√
c∗

where the last step is by (6.48). Resolve the second identity for ∇σX to get

‖∇σX + ∂sqσ‖ = ‖(E−1
2 E1 − 1l)∂sqσ‖ ≤ c8‖∂sq‖‖X‖∞ ≤ c9(∆ε1/2 + c6|σ|).

Inequality one uses [FW22a, Le. 6.8 i)], inequality two (6.48) and the earlier
‖X‖∞ estimate. Note that ‖∇σX‖ ≤ c9(∆

√
ε+c6σ)+‖∂sqσ‖ ≤ c9(1+c6)+

√
c∗.

Before doing the fifth estimate we do the sixth. Let X 6≡ 0, otherwise we
are done. Given s ∈ R, by the fundamental theorem of calculus we have

‖X(σ)‖ =

∫ σ

0

d
dσ̃‖X(σ̃)‖ dσ̃ + ‖X(0)‖ =

∫ σ

0

〈X(σ̃),∇̃σX(σ̃)〉
‖X(σ̃)‖ dσ̃ + ‖Xε‖

≤ |σ| max
σ̃∈[0,σ]

‖∇̃σX(σ̃)‖+ ∆ε
1
2

where the inequality is by Cauchy-Schwarz and hypothesis (6.47). Now use that
‖∇̃σX(σ̃)‖ ≤ c9(1 + c6) +

√
c∗, as we already showed.

To prove the fifth estimate note that ‖ ddσ `‖ = ‖ ddσ (τε−χ(q))‖ = ‖dχ|qσ∂sqσ‖ ≤
µ∞
√
c∗. Now integrate d

dσ̃‖X(σ̃)‖, just as we did to estimate ‖X(σ)‖, to obtain

‖`(σ)‖ ≤ |σ| max
σ̃∈[0,σ]

‖ ddσ̃ `(σ̃)‖+ ‖`ε‖
(6.60)

≤ |σ|µ∞
√
c∗ + c0

m̃H
+ c5∆

√
ε.

Since |σ|,∆, ε ≤ 1 this proves estimate five. The proof of Step 3 is complete.

Step 4. Shrinking σ0 and ε0, if necessary, we have

d
dσ θ

ε(σ) ≥ c∗

2

for ε ∈ (0, ε0] and |σ| ≤ σ0, where c∗ is defined in (6.48).

We will investigate the two terms in the sum

d
dσ θ

ε(σ) = − d
dσ 〈Ξ

ε
σ, X(σ)〉 − ε2 d

dσ 〈λ
ε
σ, `(σ)〉 (6.61)

separately. The key term is −
〈
Ξεσ,∇σX

〉
: In Step 1 we defined Zεσ := Iqσ∂sqσ−

ζ∗σ and we have seen that ‖ζ∗‖0,2ε ≤ c1ε
2 tends to zero as ε → 0. This tells

that the first component Ξεσ of Zεσ and the first component ∂sqσ of Iqσ∂sqσ are
L2-close to one another. In Step 3 we have seen that ∇σX is L2-close to −∂sqσ.
We shall prove that all the other terms are arbitrarily small and hence ∂σθ

ε is

28



arbitrarily close to ‖∂sq‖2 = c∗. More precisely, for the first term in (6.61) we
obtain (using repeatedly that ∂σuσ = ∂suσ and similar)

− d
dσ 〈Ξ

ε
σ, X〉 = −

〈
Ξεσ,∇σX

〉
−
〈
∇sΞεσ, X

〉
= ‖∂sqσ‖2 −

〈
Ξεσ, ∂sqσ +∇σX

〉
− 〈X∗σ, ∂sqσ〉

−
〈
∇s∂sqσ, X

〉
−
〈
X∗σ,∇sX

〉
≥ ‖∂sq‖2 − c10

(
‖∂sqσ +∇σX‖+ ‖X‖+ ‖X∗‖

)
≥ c∗ − c11

(
|σ|+ ∆ε1/2 + ε2

)
.

The second step adds zero (Ξεσ in Step 1) to summand one, applies integration
by parts to summand two. The third step uses Cauchy-Schwarz, shift invariance
of norms, the inequalities ‖Ξε‖ ≤ c3 (6.58), ‖∂sq‖2 = c∗, ‖∇s∂sq‖ ≤ c0 (6.54),
and ‖∇sX‖ ≤ c6 (Step 3). The last step uses Step 3 and (6.57).

For the second term in (6.61) the following preparation is in order

ε3‖`′‖2 = ε3‖τε′ − dχ|qσ∂sqσ‖2 ≤ 2ε
(
ε2‖τε′‖2 + µ2

∞c
∗) (6.48)

≤ 2εc∗
(
1 + µ2

∞
)

where here and in the following we use that ‖dχ|q∂sq‖2 ≤ µ2
∞c
∗. Now we have

ε2 d
dσ 〈λ

ε
σ, `〉

= ε2
〈
d
ds (dχ|qσ∂sqσ − `∗σ), `

〉
+ ε2

〈
dχ|qσ∂sqσ − `∗σ, ddσ (τε − χ(qσ))

〉
≤ ε1/2 (‖dχ|q∂sq‖+ ‖`∗‖) · ε3/2‖ dds`‖ − ε

2‖dχ|q∂sq‖2 + ε‖`∗‖ · ε‖dχ|q∂sq‖

≤ ε
(
µ2
∞c
∗ + ‖`∗‖2

)
+ ε3

2 ‖`
′‖2 + ε2µ2

∞c
∗ + ε2

2 ‖`
∗‖2 + ε2

2 µ
2
∞c
∗

≤ c∗εc12 with c12 = 1 + µ2
∞(2 + 3ε/2).

The first step uses that on shifted maps d
dσ acts like d

ds = ′. The second step is
by integration by parts, the Cauchy-Schwarz and the triangle inequality, shift
invariance of the norms and d

dσ τ
ε = 0. We already distributed ε2 = ε1/2ε3/2

suitably in order to apply Young’s inequality ab ≤ a2/2+ b2/2 in the third step.
Step four uses the prepared estimate for ε3‖`′‖2 and that ‖`∗‖ ≤ c1ε, by (6.57).

Putting things together, since we fixed ∆ ≤ δ0 ≤ 1, we obtain

d
dσ θ

ε(σ) ≥ c∗(1− εc12)− c11(|σ|+ 2ε1/2).

So Step 4 is true after shrinking σ0, ε0 > 0, if necessary, such that ε0c12 ≤ 1/4

and c11(|σ0|+ 2ε
1/2
0 ) ≤ c∗/4.

Step 5. We prove Theorem 6.1.

Let the (uε, τε) satisfy the requirements of the theorem. The estimate ‖`ε‖∞+
‖`ε‖ ≤ c holds by Step 3 with σ = 0 and by (6.60), enlarging c, if necessary. By
Steps 2 and 4, see Figure 2, there is a time shift σ ∈ [−σ0, σ0] such that

θε(σ) = 0, |σ| ≤ c14

(
‖Xε‖+ ε2

)
, c14 := 2c2

c∗ .
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− c∗
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2
θε(0)

θ

θ

Figure 2: Step 5 detects the zero of θε – two cases depending on sign of θε(0)

Let X := X(σ) and ` := `(σ). Then, by Step 3, we have X, ` ∈ L2, and by
Step 1, we have ζ := (X, `) ∈ im (Dε

qσ )∗ and, by Step 3 again, it holds

‖X‖∞ ≤
(

∆ + c0c14

(
∆ + ε3/2

))
ε1/2, ‖`‖∞ ≤ c0 <∞. (6.62)

If ∆ + c0c14

(
∆ + ε3/2

)
≤ δ0 is less than the constant δ0 in the hypothesis of

the uniqueness part of the implicit function theorem I [FW22a, Sec. 6], then
(uε, τε) = T ε(qσ), see Figure 1.

7 Surjectivity of T ε

The proof of Theorem C uses local convergence (Lemma 3.5), convergence to
broken orbits (Lemma 3.6), the base implicit function Theorem A.1 (IFT II),
some of the uniform L∞ and L2 gradient bounds from Section 4, uniform ex-
ponential decay (5.40) of |∂su(s)| will be crucial to satisfy the IFT II assump-
tion (A.74), and the local surjectivity Theorem 6.1.

Proof. The map T ε is injective for ε > 0 sufficiently small by part I [FW22a].
Fix a constant κ > 0 as in the local properness Hypothesis 2.1. To prove
surjectivity assume by contradiction the result was false. Then there is a pair
of critical points x∓ ∈ Crit f of Morse index difference one and sequences εi ∈
(0, εκ) and (ui, τi) ∈Mεi

x−,x+ such that

lim
i→∞

εi = 0, (ui, τi) 6∈ T εi
(
M0

x−,x+

)
. (7.63)

Applying time shifts we assume without loss of generality that

FH (ui(0), τi(0)) =
c∗
2

:=
f(x−)− f(x+)

2
. (7.64)

We prove in four steps that, after passing to a subsequence, there is a sequence
qi ∈M0

x−,x+ such that
ui = ExpqiXi

and the vector field sequence Xi ∈ C∞(R, q∗i TM) satisfies

lim
i→∞

ε
−1/2
i (‖Xi‖∞ + ‖Xi‖) = 0. (7.65)
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Thus, by Theorem 6.1, for i sufficiently large, there is a time shift σi ∈ R with
(ui, τi) = T εi(qi(σi + ·)). This contradicts (7.63) and thus proves Theorem C.

Step 1 (Uniform exponential decay (5.39)). For any δ > 0 exists T0 > 0 with

EεiR\[−T0,T0](ui, vi) < δ (7.66)

for every i ∈ N where EεI (u, τ) denotes the energy along an interval I ⊂ R.

The proof is by contradiction. Assume the result is false. Then there is a
constant δ > 0, a sequence of positive reals Ti → ∞, and a subsequence, still
denoted by (εi, ui, τi), such that, for every i ∈ N, the increasing-interval energies

Eεi[−Ti,Ti](ui, τi) ≤ f(x−)− f(x+)− δ (7.67)

are uniformly bounded away from the total energy Eεi(ui, τi) = f(x−)−f(x+).
According to Lemma 3.6 there is a further subsequence, still denoted by (ui, τi),
that converges to a broken base connecting trajectory, more precisely, a finite
collection of base connecting trajectories qk ∈ M0

xk−1,xk , k = 1, . . . , `, with

x− = x0, x1, . . . , x`−1, x` = x+ ∈ Crit f .
We prove that ` ≥ 2: Otherwise vi := ui(si + ·) converges to q := q1 ∈

M0
x−,x+ and ϑi := τi(si + ·)→ χ(q) as in the local convergence Lemma 3.5, for

some sequence si ∈ R provided by Lemma 3.6 (i).
We claim that the sequence si is bounded. We first exclude the case that
(si) is unbounded from above. To see this, we assume, by contradiction, that si
diverges to +∞. We abbreviate zi := (ui, τi). By the gauge condition (7.64) and
the fact that downward gradient trajectories flow downhill, it holds FH(zi(s)) ≤
c∗
2 for every s ∈ [0,∞). Therefore FH((si)∗zi(s)) ≤ c∗

2 for every s ∈ [−si,∞).
Since si →∞, for every T > 0 there exists i0 such that FH((si)∗zi(s)) ≤ c∗

2 for
all s ∈ [−T, T ] and i ≥ i0. Since (si)∗zi = (vi, ϑi) converges to (q, χ(q)) in C1

loc

we have for each s ∈ [−T, T ] that

f(q(s))
(3.25)

= lim
i→∞

FH(vi(s), ϑi(s)) ≤ c∗
2

for every s ∈ [−T, T ]. Since T was arbitrary, we have f(q(s)) ≤ c∗
2 for every

s ∈ R. In particular, we have f(x−) ≤ c∗
2 . Contradiction.

The case where s→ −∞ leads in a similar way to a contradiction, just use the
interval (−∞, 0] instead of [0,∞) and (−∞,−si] instead of [−si,∞) and look
at the positive asymptotic x+ instead of x−. This proves the claim.
Since the sequence si is bounded, given a constant T > 0, there is the inclusion
[si − T, si + T ] ⊂ [−Ti, Ti] for all large i, so (7.67) applies. We obtain

E0
[−T,T ](q)

(3.25)
= lim

i→∞
Eεi[−T,T ](vi, ϑi) = lim

i→∞
Eεi[si−T,si+T ](ui, τi)

(7.67)

≤ f(x−)− f(x+)− δ

where identity two is by variable substitution σ(s) := si + s. On the other
hand, since q connects x− to x+ we get E0(q) = f(x−) − f(x+) by (6.48).
Contradiction. Thus we have proved that ` ≥ 2.
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As f is Morse-Smale with respect to g, the Morse index difference of x− and
x+ must be at least two. This contradicts our assumption and proves Step 1.

To formulate Step 2 we first need the following discussion. The a priori
Theorem 3.1 provides c1 > 0 such that

‖τi‖∞ + ‖τ ′i‖∞ ≤ c1 (7.68)

for every i. Let κ > 0 be a constant as in the local properness Hypothesis 2.1.
The vector field V := ∇H/|∇H|2 along the open subset Mreg := {dH 6= 0} of
M generates a local flow {ϕr} on Mreg. Because Σ is compact, for δ ∈ (0, κ)
small enough, the following map is a diffeomorphism onto its image

ϕ : Σ× (−δ, δ)→ UΣ = UΣ(δ) := imϕ ⊂M, (q, r) 7→ ϕrq.

(The map ϕ provides a retraction ρ = ρ2 : UΣ → UΣ. The identities

H(ϕ0q) = 0, d
drH(ϕrq) = dH|ϕrq d

drϕrq =
〈
∇H|ϕrq, V |ϕrq

〉
= 1,

show that H(ϕr(q)) = r for every (q, r) ∈ Σ× (−δ, δ).
By the εi-equations (1.3) and (7.68) we have |H(ui)| = ε2

i |τ ′i | ≤ c1ε
2
i . As

εi goes to zero, we can assume, maybe after forgetting the first elements of the
sequence, that ui takes values in the image of ϕ for every i. Hence there exist
maps qi : R→ Σ and ri : R→ (−δ, δ) with

ui = ϕri(qi), ri = H(ui) = −ε2
i τ
′
i , |ri| ≤ c1ε2

i ≤ c1, (7.69)

pointwise at s ∈ R and for every i.

Step 2. For each i the derivative satisfies |∂sqi| ≤ 2CK |∂sui|, so it decays expo-
nentially. Here CK := ‖(dϕri |qi)−1‖L∞(K) and K is compact by Theorem 3.1.

By the identity (7.69) and definition of the local flow ϕ we have

∂sui = ∇H(ui)

|∇H(ui)|2
r′i + dϕri(qi)∂sqi

= ∇H(ui)

|∇H(ui)|2
〈
∇H(ui), ∂sui

〉
+ dϕri |qi∂sqi.

Hence

|∂sqi| =
∣∣∣(dϕri |qi)−1

(
∂sui − ∇H(ui)

|∇H(ui)|2
〈
∇H(ui), ∂sui

〉)∣∣∣ ≤ 2CK |∂sui|.

Thus exponential decay of ∂sui, see (5.40), implies exponential decay of ∂sqi.

Step 3. Let qi : R → Σ be as in (7.69). For each i sufficiently large there is a
base trajectory qi ∈M0

x−,x+ and a vector field ξi ∈ C∞(R, q∗i TΣ) such that

qi = expqi ξi, ‖ξi‖∞ ≤ ‖ξi‖1,2 ≤ c3εi

for some positive constant c3 which does not depend on i.
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Let δ, c, and ρ be the positive constants in the uniform exponential decay
Theorem 5.1 and choose T0 > 0 in Step 1 such that (7.66) holds for this δ. By
Step 2 and uniform exponential decay (5.40) we have

|∂sqi(s)| ≤ 2CK |∂sui(s)| ≤ 2CKce
−ρ(|s|−T0−1)

for every |s| ≥ T0 +1. Note that the right hand side does not depend on i. Since
es ≥ 1 + s2 for all sufficiently large s, there is a constant c2 > 0 such that

|∂sqi(s)| ≤
c2

1 + s2
(7.70)

for every s ∈ R and every i ∈ N. In the following add zero in step one, then
in step two for summand one use (2.10) and to summand two apply [FW22a,
Le. 6.8 i)]7 for some constant d = d(c1) to get the L2 estimate

‖τi − χ(qi)‖ ≤ ‖τi − χ(ui)‖+ ‖χ(ϕriqi)− χ(qi)‖

≤

∥∥∥∥∥
〈
∇H(ui), ∂sui

〉
|∇H(ui)|2

∥∥∥∥∥+ d‖ri‖

≤ ε2
i ‖τ ′′i ‖
c2κ

+ dε2
i ‖τ ′i‖

≤ εi
(
C
c2κ

+ d
√
c∗
)
.

(7.71)

In step three, to deal with summand one, we used the identity τ̂2 in (2.8)
and (2.9) with constant cκ > 0. For summand two we used the estimate (7.69)
for ri.

ri = H(ui) = −ε2
i τ
′
i (7.72)

by (7.69) and the identity τ1 in (2.8). Step four holds by the L2 estimate (4.30)
for εiτ

′′
i with constant C > 0 and by the ε-energy identity (1.7). So

‖∂sqi +∇f(qi)‖
(1.4)
= ‖∂sqi +∇F (qi) + χ(qi)∇H(qi)‖

(1.3)
= ‖(χ(qi)− τi)∇H(qi)‖

(1.4)

≤ C1εi, C1 :=
(
C
c2κ

+ d
√
c∗
)
‖∇H‖L∞(K)

(7.73)

where step one is the base equation in (Σ, g) expressed in the ambience (M,G)
and step two is by the εi-equation.

Now let δ0 = δ0(c2) and C2 = C2(c2) be the constants in the base implicit
function Theorem A.1. Then the map qi satisfies the hypotheses of Theorem A.1
whenever C1εi < δ0. Thus, for each i sufficiently large, there is a base trajectory
qi ∈M0

x−,x+ and a vector field ξi ∈ C∞(R, q∗i TM) such that

qi = expqi ξi, ‖ξi‖ ≤ ‖ξi‖1,2 ≤ C2‖∂sqi +∇F (qi) + χ(qi)∇H(qi)‖ ≤ C1C2εi.

7 apply lemma to δ = 1, X = 0, X̂ = ri, pointwise at s ∈ R, then |X̂| = |ri| ≤ c1 by (7.69)
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But ‖ξi‖∞ ≤ ‖ξi‖1,2, see e.g. [FW22a, Sec. 4.2.5]. This proves Step 3.

Step 4. For each i sufficiently large there is a unique vector field Xi ∈
C∞(R, q∗i TM) that satisfies the identity ui = ExpqiXi and the limit (7.65).

We prove Step 4 based on Step 3. Pointwise at every s ∈ R it holds that

|Xi| = dM (qi, ui)

≤ dM (qi, qi) + dG (qi, ui)

≤ dΣ (qi, qi) + length(ϕ[0,ri]qi)

≤ |ξi|+ ri
cκ

≤ c3εi + c1
cκ
ε2
i

< ι(TΣM,G)

where the final inequality holds for all sufficiently large i. To see the other
inequalities start with inequality one, this is the triangle inequality for the Rie-
mannian distance in (M,G). Inequality two holds since there are more curves in
M than in the subset Σ and since r 7→ ϕrqi is a particular curve among many. In-
equality three holds since [0, 1] 3 t 7→ expqi tξi is a particular curve among many
and since the length of a curve is bounded by the length of the parametrization
interval, here ri, times the largest speed, here | ddtϕtqi| = |∇H(ϕtqi)|−1 ≤ 1

cκ
by (2.9). Inequality four holds for summand one by Step 3 and for summand
two by (7.69). Because dM (qi, ui) is less than the injectivity radius ι(TΣM,G)
of (M,G) along Σ and ui = ExpqiXi, it holds that |Xi| = dM (qi, ui).

Of the above estimate for |Xi(s)| take the supremum over s ∈ R to obtain
the L∞ limit in (7.65). Concerning the L2 limit take the L2 norm and use Step 3

and (7.69) to obtain ‖Xi‖ ≤ ‖ξi‖+ 1
cκ
‖ri‖ ≤ c3εi +

ε2i
cκ
‖τ ′i‖ ≤ εi

(
c3 +

√
c∗/cκ

)
.

This proves Step 4 and Theorem C.

A Implicit function theorem II – Base

The following theorem IFT II is used in the proof of surjectivity of the map
T ε : M0 →Mε in Theorem C, see (7.73).

We remind the reader that |·| denotes – depending on context – absolute value
or the length of a tangent vector with respect to a Riemannian metric.

Theorem A.1 (IFT II). Let (Σ, g) be a compact Riemannian manifold (no
boundary). Suppose that f is Morse and D0

q is onto whenever q ∈M0
y−,y+ and

y∓ ∈ Crit f .8 Pick two critical points x∓ ∈ Crit f of index difference one. Then,
for any c0 > 0, there are constants δ0, C > 0 such that the following holds. If
q : R→M is a smooth map with lims→∓∞ q(s) = x∓ and

|∂sq(s)| ≤ c0
1 + s2

(A.74)

8 in other words (f, g) is Morse Smale.
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for all s ∈ R and
‖∂sq +∇F (q) + χ(q)∇H(q)‖ ≤ δ0, (A.75)

then there is a trajectory q ∈M0
x−,x+ and an element ξ ∈ im (D0

q)
∗ ∩W 1,2 with

q = expq ξ, ‖ξ‖1,2 ≤ C‖∂sq +∇F (q) + χ(q)∇H(q)‖.

The Sobolev W 1,2 norm is defined by ‖ξ‖21,2 := ‖ξ‖2 + ‖∇sξ‖2.

To prove the base implicit function theorem IFT II requires analogous inputs
as the ε-ambient implicit function theorem, IFT I in [FW22a], namely a-priori
estimates, exponential decay, Fredholm property, bounded right inverse, and
quadratic estimates. In addition, IFT II requires similar steps as in the proof
of local and global surjectivity in Sections 6 and 7, just without the additional
difficulty of the ε parameter dependency. The steps of the present section have
been carried out in great detail in [Web13] in a slightly more general context.
Thus we shall detail here only those parts of proof that use the specific nature
of the differential equation at hand such as, for example, quadratic estimates.

A.1 A priori gradient bounds

Proposition A.2 (A priori estimates). Fix a smooth function f : Σ→ R. Then
there is a positive constant C such that the following is true for each smooth
path q : R→ Σ and every smooth, compactly supported, vector field ξ along q.

(i) Suppose ξ satisfies the linear equation ∇sξ +∇ξ∇f(q) = 0. Then

|ξ(s)|+ |∇sξ(s)| ≤ C‖ξ‖L2([s−1,s])

|∇s∇sξ(s)| ≤ C‖ξ‖L2([s−1,s]) · ‖∂sq‖∞

for every s ∈ R and where L2([s− 1, s]) = L2([s− 1, s], q∗TΣ).

(ii) Suppose q solves ∂sq +∇f(q) = 0. Then

|∂sq(s)|2 + |∇s∂sq(s)|2 ≤ CE0
[s−1,s](q) (A.76)

for every s ∈ R where E0
I is the energy over the domain I ⊂ R.

Proof of Proposition A.2. (i) Pick σ ∈ R and define ξσ(s) := ξ(s + σ) and
f(s) := 1

2 |ξ(s+ σ)|2 = 1
2 |ξ

σ(s)|2 for every s ∈ R. Since ∇sξ = −∇ξ∇f(q) we get

|∇sξ| ≤ ‖∇∇f‖∞|ξ|, f′ = 〈∇sξσ, ξσ〉 ≤ |∇sξσ| · |ξσ| ≤ µf, µ = 2‖∇∇f‖∞,

pointwise at s ∈ R. Thus, by Lemma 4.3 with r = 1, we obtain the estimate

|ξ(σ)|2 = 2f(0) ≤ 4deµ
∫ 0

−1

f(s) ds = 2de2‖∇∇f‖∞‖ξ‖2L2([σ−1,σ])

for every σ ∈ R. Let R be the Riemannian curvature tensor of (Σ, g), then

∇s∇sξ = −∇s∇ξ∇f(q) = R(ξ, ∂sq)∇f(q)−∇ξ∇s∇f(q)

pointwise at s ∈ R. (ii) Apply part (i) to ξ = ∂sq.
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A.2 Exponential decay

Two common methods to establish exponential decay are

• the energy method;

• the action-energy inequality.

The energy method was applied with great success in infinite dimensions, see
e.g. [Sal99], even in infinite dimensional adiabatic limits, see [DS94,GS05,SW06].
We utilize the energy method in the present finite dimensional adiabatic limit,
Section 5, having in my the infinite dimensional case, namely Rabinowitz-Floer
homology; see [FW22a, Introduction].

While the energy method in general involves huge calculations, the hypothe-
ses for the action-energy inequality seem easier to check, at least in the present fi-
nite dimensional context. However, the technique of the energy method, namely
to establish differential inequalities for densities, at the same time provides a
priori estimates simply utilizing some of the exponential decay density calcula-
tions. Moreover, the a priori estimates arrive together with interval L2 estimates
of higher derivatives in terms of the first derivative – (a part of) the energy, as
is illustrated by Theorem 4.1.

The action-energy inequality is discussed next.

A.2.1 Action-energy inequality

Advantages of the action-energy inequality method, see [GS05,Zil09,AF13], are
the following

• usable for functions that are only C1 (part (i));

• stable under change of equivalent metric;

• at a non-degenerate critical point the action-energy hypothesis (A.77) fol-
lows from Taylor’s theorem; see Lemma A.4.

Let f be a smooth function on a Riemannian manifold Σ. The covariant
Hessian operator of f at a point q ∈ Σ is the linear map given by

A0
q : TqΣ→ TqΣ, ξ 7→ ∇ξ∇f(q).

The linear map A0
q is symmetric; see e.g. [FW22a, Sec. 4.1.2]. For convenience

of the reader we state and prove the action-energy inequality next.

Proposition A.3. Let f : Σ→ R be a smooth function on a Riemannian man-
ifold, let x be a zero f(x) = 0. Assume there are positive constants c, c1, c2 and
δ < ιx (injectivity radius at x) such that there is the action-energy inequality

|f(q)| ≤ c|∇f(q)|2, ∀q ∈ B̄δ = {q = expx ξ : |ξ| ≤ δ}. (A.77)

Then the following is true. All solutions q : [0,∞)→ Bδ of

q′ = −∇f(q), q(s)
s→∞−→ x,

36



approach the critical point x exponentially with the same rate, namely

|ξs| = d(qs, x) ≤ 2
√
cf(qs) ≤ 2e−s/2c

√
cf(q0)

for every s ≥ 0. Moreover, the derivatives of the trajectory q decay exponentially

|∂sqs| ≤ c1f(q0)1/3e−s/3c, |∇s∂sqs| ≤ c2f(q0)1/3e−s/3c, (A.78)

for every s ≥ 0.

Proof. Let q 6≡ 0. Pick two times s+ ≥ s ≥ 0. So f(qs) > f(x) = 0. We have

dist(qs, qs+)
(A.77)

≤ `(q|[s,s+])

(A.77)
=

∫ s+

s

|∂sqs| ds
(sol)
=

∫ s+

s

|∇f(qs)| ds =

∫ s+

s

|∇f(qs)|2

|∇f(qs)|
ds

(A.77)

≤
∫ s+

s

|∇f(qs)|2√
f(qs)/c

ds
(sol)
=
√
c

∫ s+

s

− d
dsf(qs)√
f(qs)

ds

(A.77)
= −2

√
c

∫ s+

s

d
ds

√
f(qs) ds

(A.77)
= 2

√
c
(√

f(qs)−
√
f(qs+)

)
for every s ≥ 0. By hypothesis f(qs+)→ f(x) = 0, as s+ →∞. Thus

|ξs| = dist(qs, x) ≤ 2
√
cf(qs), qs = expx ξs.

Again by the action-energy inequality (A.77) and as q is a solution (sol), we get

d
dsf(qs) = df |qs ddsqs

(sol)
= −|∇f(qs)|2

(A.77)

≤ −1
c f(qs) < 0

for every s ≥ 0. Thus there is the inequality d
ds ln f(qs) = (f◦q)′(s)

f◦q(s) ≤
−1
c whose

integral over [0, s] produces the first assertion f(qs) ≤ e−s/cf(q0) for s ≥ 0.

Next we show that ∂sq decays exponentially. From the formula ∇s∂sqs =
−Aqs∂sqs and the hypothesis that q takes values in the compact ball B̄δ we
deduce that there exist C > 0 such that |∇s∂sqs| < C for every s ≥ 0. Given
T > 0, we abbreviate µ := |∂sqT |. Apply the fundamental theorem of calculus
to the derivative

d
ds |∂sqs| =

d
ds

√
〈∂sqs, ∂sqs〉 =

〈∇s∂sqs, ∂sqs〉
|∂sqs|

≥ −|∇s∂sqs| ≥ −C

in order to obtain for s ∈ [T, T + µ
2C ] the estimate

|∂sqs| − µ = |∂sqs| − |∂sqT | =
∫ s

T

d
ds |∂sqs| ≥ −C(s− T ) ≥ −µ2 ,
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thus |∂sqs| ≥ µ
2 . By assertion one we obtain

E[T,∞)(q) =

∫ ∞
T

|∂sqs|2 ds = f(qT )− f(x) ≤ e−T/cf(q0).

On the other hand, we have that

E[T,∞)(q) =

∫ ∞
T

|∂sqs|2 ds ≥
∫ T+ µ

2C

T

2

|∂sqs|︸ ︷︷ ︸
≥µ/2

ds ≥ µ3

8C
=
|∂sqT |3

8C
.

Combine both inequalities to get |∂sqT | ≤ (8Cf(q0))1/3e−T/3c. Since ∇s∂sqs =
−Aqs∂sqs the second inequality of (A.78) follows from the first one and since the
Hessian is bounded along the compact set B̄δ. This proves Proposition A.3.

Lemma A.4. At a non-degenerate critical point (A.77) is true.

Proof. By the Morse Lemma we can assume that in local coordinates around
the critical point the function has the form f(q) =

∑n
i=1 aiq

2
i for reals ai 6= 0.

Step 1. (Flat case) Assume that in Morse coordinates the metric is standard.

Under this assumption the gradient is given by ∇f(q) = (2a1q1, . . . , 2anqn) and
therefore |∇f(q)|2 = 4

∑
i a

2
i q

2
i . We abbreviate a := min{a1, . . . , an}, then

|f(q)| ≤
∑
i

|ai|q2
i =

1

a

∑
i

a|ai|︸︷︷︸
≤a2

i

q2
i ≤

1

a

∑
i

a2
i q

2
i =

1

4a
|∇f(q)|2.

Let g1 = g be the given metric on Σ and let g2 be the euclidean metric on
Rn. In any compact neighborhood the two metrics are equivalent to each other.

Step 2. Suppose we have two metrics and a constant c that satisfy the norm
estimate |·|1 ≤ c|·|2. Then we have the estimate for the norm of the gradients

|2∇f(q)|2 ≤ c|1∇f(q)|1

Step 2 follows from the following estimate

0 ≤ |c2 · 1∇f(q)− 2∇f(q)|2

= c4|1∇f(q)|21 − 2c2
〈

1∇f(q), 2∇f(q)
〉

1
+ |2∇f(q)|21

= c4|1∇f(q)|21 − 2c2dfq(
2∇fq) + |2∇f(q)|21

≤ c4|1∇f(q)|21 − 2c2|2∇f(q)|22 + c2|2∇f(q)|22
= c4|1∇f(q)|21 − c2|2∇f(q)|22.

As a consequence of Step 2, maybe after changing the constant c, the action-
energy inequality (A.77) continues to hold if one replaces the metric by an
equivalent one. By Step 1 this proves (A.77) for the given metric g.
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A.2.2 Finite energy trajectories

In the present article all solutions of the 0-equation, here (1.4), have finite
energy, indeed E0(q) ≤ oscf ; see [FW22a, Sec. 3.1.1]. For general problems, this
is not so, but it is usually still the set of finite energy solutions which carries
desired information. Usually in more general cases, see e.g. [Sal99] in a PDE
setting, finite energy solutions are characterized by equivalence of properties (i),
(ii), and (iii) in the following proposition.

Proposition A.5 (Finite energy and Morse). Suppose f : Σ→ R is Morse. Let
q : R→ Σ be a solution of the downward gradient equation (1.4). Then it holds

(i) E0(q) <∞;

(ii) there exist critical points x∓ ∈ Crit f such that lims→∓∞ q(s) = x∓;

(iii) there are constants δ, c > 0 such that |∂sq(s)| ≤ ce−δ|s| for every s ∈ R.

Existence of asymptotic limits, property (ii), enters the proof of the surjec-
tivity Theorem C, right after (3.28). The proof of Proposition A.5 uses

Lemma A.6 (Critical point detection). Let f : Σ → R be Morse. Then, for
every δ0 ∈ (0, ιΣ), there is a constant δ1 > 0, such that the following is true.
If q ∈ Σ is an almost critical point of f in the sense that |∇f(q)| < δ1, then
there is a critical point x of f and a δ0-short difference vector ξ ∈ TxΣ such
that q = expx ξ and |ξ| ≤ δ0.

Proof. Analogous to Lemma 5.3, but shorter by lack of a second component.

Proof of Proposition A.5. We show equivalence of (i), (ii), and (iii). The impli-
cation (iii) ⇒ (i) of finite energy is clear. (ii) ⇒ (i) is the base energy identity,
prior to (1.7). We prove (i) ⇒ (ii). For any s ∈ R it holds that

|∇f(q(s))|2 (1.4)
= |∂sq(s)|2

(A.76)

≤ CE0
[s−1,s](q)

s→∓∞−→ 0

where the limit is zero because the energy (integral) over the whole real line R
is finite by hypothesis (i). Hence it remains to show that the asymptotic limits
lims→∓∞ q(s) exist, in which case they are critical points automatically.
To this end fix a constant 4δ0 > 0 smaller than the injectivity radius ιΣ > 0
and smaller than the minimal distance minx,y∈Crit f dist(x, y) > 0 of any two
of the finitely many critical points. Let δ1 be the constant in Lemma A.6 with
this choice of δ0. Pick a large time T > 0 such that |∇f(q(s))| < δ1 whenever
s > T . Given s > T , Lemma A.6 associates to the point q(s) a critical point
xs at distance ≤ δ0. But the radius δ0 ball about xs contains no other critical
points. Thus x0 := xs does not depend on s > T . Hence the whole forward
trajectory q|(T,∞) stays in the δ0 ball about x0. But this remains true for any
smaller δ0, hence q(s)→ x0 as s→∞. Same for the backward limit s→ −∞.

The implication (ii) ⇒ (iii) holds by Proposition A.3 based on Lemma A.4.
Part (i) is true since E0(q) ≤ max f −min f by [FW22a, Le. 3.3].
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A.3 Quadratic estimate and right inverse

Proposition A.7 (Quadratic estimate). There is a constant δ ∈ (0, 1] with the
following significance. For every C0 > 0, there is a constant c > 0 such that the
following is true. Let q : R → Σ be a map and ξ a smooth compactly supported
vector field along q such that

‖∂sq‖∞ ≤ C0, ‖ξ‖∞ ≤ δ,

then

‖F0
q (ξ)−F0

q (0)− dF0
q (0)ξ‖ ≤ c‖ξ‖∞ (‖ξ‖+ ‖∇sξ‖ · ‖ξ‖∞) . (A.79)

Here the map F0
q is defined by

F0
q (ξ) := φ(q, ξ)−1

(
∂s
(
expq ξ

)
+∇f

(
expq ξ

))
(A.80)

where φ = φ(q, ξ) : TqΣ → Texpq(ξ)
Σ is parallel transport in (Σ, g), pointwise at

s ∈ R, along the geodesic r 7→ expq(rξ); see [FW22a, §4.1.3].

As Σ is compact the injectivity radius of the Riemannian manifold (Σ, G) is
positive. Choosing δ = ι(Σ, g)/2 > 0 takes care that X is in the domain of exp.

Proof. Let lower case ei be the covariant derivatives of the exponential map exp
of the Riemannian manifold (Σ, g), see [FW22a, Thm. 6.7], then

∂s(expqξ) = e1(q, ξ)∂sq + e2(q, ξ)∇sξ. (A.81)

By definition of F0
q and since dF0

q (0)ξ = D0
qξ = ∇sξ+∇ξ∇f(q), see e.g. [FW22a,

Sec. 4.1.2], we obtain

F0
q (ξ) = φ(q, ξ)−1

(
e1(q, ξ)∂sq + e2(q, ξ)∇sξ +∇f(expq ξ)

)
−F0

q (0) = −∂sq −∇f(q)

−D0
qξ = −∇sξ −∇ξ∇f(q).

Now we write F0
q (ξ)−F0

q (0)−D0
qξ = F1(ξ) + F2(ξ) + F3(ξ) where

F1(ξ) :=
(
φ(q, ξ)−1e1(q, ξ)− 1l

)
∂sq

F2(ξ) :=
(
φ(q, ξ)−1e2(q, ξ)− 1l

)
∇sξ

F3(ξ) := φ(q, ξ)−1∇f(expq ξ)−∇f(q)−∇ξ∇f(q).

In [FW22a, Sec. 6.1] in the proof of Quadratic Estimate I we showed, in the
present notation and pointwise at s ∈ R, that h2(ξ) :=

(
φ(q, ξ)−1e2(q, ξ)− 1l

)
ξ

satisfies h2(0) = 0 and Dh2(0)ξ = 0. The proof carries over literally if e1

replaces e2. Use Lemma [FW22a, Le. 6.8] ii) pointwise, then integrate, to get

‖F1‖ ≤ c1C0‖ξ‖∞‖ξ‖, ‖F2‖ ≤ c1‖ξ‖2∞‖∇sξ‖, ‖F3‖ ≤ c1‖ξ‖∞‖ξ‖,

for some constant c1 > 0 that depends on the C2(Σ) norm of f .
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Right inverse

Proposition A.8 (Right inverse). Let x∓ ∈ Critf be non-degenerate critical
points and q ∈M0

x−,x+ such that D0
q : W 1,2 → L2 is surjective. Then there is a

positive constant c = c(q), invariant under s-shifts of q, such that

‖ξ∗‖1,2 ≤ c‖D0
qξ
∗‖ (A.82)

for every ξ∗ ∈ im (D0
q)
∗ ∩W 1,2.

Proof. By non-degeneracy of the asymptotic boundary conditions x∓, both op-
erators D0

q and (D0
q)
∗ are Fredholm. Since ker(D0

q)
∗ = cokerD0

q = {0}, see
e.g. [FW22a, Sec. 4.1.6], the bounded linear map D0

q is injective. Hence, by the
open mapping theorem, there is a positive constant c1 = c1(q) such that

‖η‖+ ‖∇sη‖ ≤ c1‖(D0
q)
∗η‖

for every η ∈ W 1,2(R, q∗TM). Both sides of the inequality are invariant under
time shift, thus so is the constant c1.

A.4 Proof of IFT II

Assume by contradiction the result was false. Then there exists a pair of critical
points x∓ ∈ Critf of Morse index difference one and a sequence of smooth maps
qi : R→ Σ such that lims→∓∞ qi(s) = x∓ and

|∂sqi(s)| ≤
c0

1 + s2
(A.83)

for every s ∈ R and

‖∂sqi +∇f |qi‖ ≤
1

i
, (A.84)

but qi does not satisfy the conclusion of Theorem A.1 for c = i. This means
that whenever q ∈M0

x−,x+ and ξi ∈ im (D0
q)
∗ ∩W 1,2 satisfy qi = expq ξ

i, then

‖∂sqi +∇f |qi‖ <
1

i
‖ξi‖1,2. (A.85)

Fix a regular value d∗ of f between f(x+) and f(x−). Applying time shifts, if
necessary, see (6.49), we may assume without loss of generality that

f(qi(0)) = d∗. (A.86)

Recall that, by (A.76), any finite energy 0-solution q̃ satisfies the a priori bound

‖∂sq̃‖∞ ≤ C0 (A.87)

for some constant C0 > 0 of the form C0 = C̃(f) · oscf .
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Claim. There exists a subsequence, still denoted by qi, a constant C > 0,
a connecting trajectory q ∈ M0

x−,x+ , and a sequence of time shifts σi ∈ R,

see (6.49), such that the sequence of difference vector fields ηi determined by

qi = expqσi
ηi

is in the W 1,2 part of the adjoint image, L∞ null, and W 1,2 bounded, in symbols

ηi ∈ im (D0
qσi

)∗ ∩W 1,2, lim
i→∞
‖ηi‖∞ = 0, ‖ηi‖1,2 ≤ C ∀i. (A.88)

First we show how the claim leads to a contradiction. Consider the shifted
connecting trajectories qσi and vector fields ηi along them, as provided by the
claim. These satisfy the assumptions of the quadratic estimate, Proposition A.7,
by (A.87) with constant C0 and by choosing a further subsequence, if necessary,
so that ‖ηi‖∞ ≤ δ. Let C2 := c(C0) > 0 be the constant provided by Proposi-
tion A.7. SinceM0

x−,x+ is a finite set, and so is Critf , the estimate for the right

inverse, Proposition A.8, applies with constant C1 = C1(f) > 0. By (A.80) and
since parallel transport is an isometry we obtain step one

‖∂sqi +∇f |qi‖ = ‖F0
qσi

(ηi)‖

≥ ‖D0
qσi
ηi‖ − ‖F0

qσi
(ηi)−F0

qσi
(0)− dF0

qσi
(0) ηi‖

≥ ‖ηi‖1,2
(

1
C1
− C2‖ηi‖∞(1 + ‖ηi‖1,2)

)
≥ 1

2C1
‖ηi‖1,2.

In step two we added twice zero, namely D0
qσi
− dF0

qσi
(0) = 0 and F0

qσi
(0) = 0.

Step three is by (A.79) and (A.82). By the null sequence in (A.88) the final step
holds for sufficiently large i. For i > 2C1 the estimate contradicts (A.85) and
this proves Theorem A.1. It remains to prove the claim. This takes four steps.

Step 1. (Compactness and limit q ∈ M0
x−,x+). There is a subsequence of qi,

still denoted by qi, whose L∞ limit is a connecting trajectory q, in symbols

∃q ∈M0
x−,x+ : qi = expq ξi, lim

i→∞
(‖ξi‖∞ + ‖ξi‖) = 0. (A.89)

Proof. By the Nash embedding theorem we may suppose without loss of gener-
ality that (Σ, g) ↪→ RN is isometrically embedded in some Euclidean space RN .

The sequence qi : R → Σ ↪→ RN admits a uniform W 1,2(IT ) bound: By
compactness of Σ there is a uniform C0 bound. For r ≥ 1 there is the estimate∫ ∞

−∞

(
1

1 + s2

)r
ds ≤ 2 + 2

∫ ∞
1

1

s2r
ds = 2

(
1 + 1

2r−1

)
≤ 4.

Thus, by assumption (A.83), we get the bound

‖∂sqi‖Lr(IT ) ≤ ‖∂sqi‖r ≤ 4c0, r ∈ [1,∞], (A.90)
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uniformly for all i and T > 0.
Thus, by the Arzelà-Ascoli and the Banach-Alaoglu theorems, a suitable sub-
sequence, still denoted by qi, converges strongly in C0 and weakly in W 1,2 on
every compact interval IT to some continuous map q : R→ Σ which is locally of
class W 1,2. Hence the sequence ∂sqi +∇f(qi) converges weakly to ∂sq+∇f(q).
On the other hand, by (A.84), it converges to zero in L2. By uniqueness of lim-
its q satisfies the base equation ∂sq = −∇f(q) ∈ C0(R,Σ) almost everywhere.
Thus q is smooth by bootstrapping.
The limit q is non-constant: Since qi(0) converges to q(0) and f ∈ C0 we get

f(q(0)) = lim
i
f(qi(0)) = d∗

by (A.86). But d∗ is a regular value of f , thus ∂sq(0) = −∇f(q(0)) 6= 0.
The limit of the sequence qi, the smooth solution q of (1.4) has finite energy
and distinct asymptotic limits y∓ ∈ Critf : Any solution is of finite energy, as
we showed in [FW22a, Le. 3.3]. Now Proposition A.5 (ii) provides y∓ ∈ Critf
and these are distinct since ∂sq 6= 0 and f decays strictly along non-constant
trajectories.
Broken trajectory: By standard arguments, see e.g. Lemma 3.6, a subsequence
of qi converges to a k-fold broken trajectory which, in fact, must be unbroken
by Morse index difference 1 of x∓.9 Thus q ∈M0

x−,x+ and this proves the first
assertion of Step 1.

It remains to prove nullity of the limits in (A.89). We abbreviate d := dist.
Since we have only C0

loc convergence qi → q, we decompose, for T > 0, the real
line R = (−∞,−T ) ∪ [−T, T ] ∪ (T,∞) = I−T ∪ IT ∪ I

+
T into three pieces. Along

the non-compact ends I∓T we define tangent vectors ξ∓i (s), ξ∓(s) ∈ Tx∓Σ by

qi(s) = expx∓ ξ
∓
i (s), q(s) = expx∓ ξ

∓(s),

for ∓s > 1 large. Given ε ∈ (0, ιΣ), we’ll show that there is T = T (ε) > 0 with

|ξi(s)| = d(qi(s), q(s)) ≤ d(qi(s), x
+) + d(x+, q(s)) < ε

3 (A.91)

for all i and s > T ; similarly for x−. On the other hand, by C0
loc convergence,

there is iε such that ‖ξi‖L∞(IT ) < ε/3 whenever i ≥ iε. Putting things together

‖ξi‖∞ = ‖ξi‖L∞(I−T ) + ‖ξi‖L∞(IT ) + ‖ξi‖L∞(I+
T )

≤ sup
I−T

(
d(qi, x

−) + d(x−, q)
)

+ ‖ξi‖L∞(IT ) + sup
I+
T

(
d(qi, x

+) + d(x+, q)
)

≤ ε
3 + ε

3 + ε
3 = ε

whenever i ≥ iε. To conclude the proof that the L∞ limit in (A.89) is zero it
remains to show (A.91). To this end use the decay hypothesis (A.83) to obtain

d(qi(σ), x+) ≤ length(qi|[σ,∞)) =

∫ ∞
σ

c0
1 + s2

ds ≤
∫ ∞
σ

c0
s2
ds =

c0
σ
<
ε

6

9 for any two next neighbor break points indf (y−)−indf (y+) = indexD0
q = dim kerD0

q ≥ 1

since D0
q is surjective by Morse-Smale and ∂sq ∈ kerD0

q , but the difference between x∓ is 1
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for all i and σ > 6c0/ε. Concerning q use exponential decay

|∂sq(s)| ≤ ce−δ|s|, s ∈ R, (A.92)

with constants10 c, δ > 0, as provided by Proposition A.5, in order to get that

d(x+, q(σ)) ≤ length(q|[σ,∞)) ≤
∫ ∞
σ

ce−δs ds =
c

δ
e−δσ <

ε

6

for every σ > −δ−1 ln(εδ/6c). The two distance estimates prove (A.91).

To prove nullity of the L2 limit in (A.89) we proceed similarly as above, but
now we integrate over (T,∞) the square of (A.91). By the distance estimates∫ ∞

T

d(qi(σ), x+)2 dσ ≤
∫ ∞
T

c20
σ2

dσ =
c20
T

where the right hand side is independent of i and goes to zero, as T →∞, and∫ ∞
T

d(x+, q(σ))2 dσ ≤ c2

δ2

∫ ∞
T

e−δσ dσ =
c2

δ3
e−δT

which also goes to zero, as T →∞. This proves (A.89) and Step 1.

Step 2 (Distance to shifted limit qσ). Let ∆i := ‖ξi‖∞ + ‖ξi‖ be the null
sequence from (A.89) and C0 the constant in (A.87). Then there are a constant
σ0 > 0 and an integer i0 ≥ 1 such that for all σ ∈ [−σ0, σ0] and i ≥ i0 the
following is true. Firstly, there is a vector field η = η(σ, i) along the shifted
connecting trajectory qσ := q(·+ σ), of bounded length and determined by

qi = expqσ η, ‖η‖∞ < ιΣ. (A.93)

Furthermore, there is a constant c2 = c2(σ0) > 0 such that

‖η‖∞ ≤ ∆i + C0|σ|, ‖η‖ ≤ 2∆i + c2|σ|, ‖∇sη‖ ≤ c2,

whenever σ ∈ [−σ0, σ0] and i ≥ i0.

Proof. We abbreviate d := dist. Given σ ∈ R, then for every s ∈ R it holds that

d(q(s), q(s+ σ)) ≤ |σ|
∫ 1

0

|∂sq(s+ rσ)| dr ≤

{
|σ| · ‖∂sq‖∞ ≤ |σ|C0

|σ| · ceδ|σ|e−δ|s|
(A.94)

where inequality one involves the length of the path [0, 1] 3 r 7→ q(s+ rσ) and
the upper estimate uses (A.87), whereas the lower estimate uses (A.92). By the
triangle inequality and the upper estimate we obtain that

d(qi(s), qσ(s)) ≤ d(qi(s), q(s)) + d(q(s), qσ(s)) ≤ ∆i + C0|σ| (A.95)

10 A priori the constants c, δ depend on q ∈M0
x−,x+ , but due to the gauge condition (A.86)

and the index difference one assumption there are only finitely many such q. Moreover, there
are only finitely many critical points of f , so we can choose c and δ to only depend on f, g.
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for all i and σ. Existence of σ0 and i0: For |σ| small and i large the right hand
side is < ιΣ. In this case the left hand side is equal to |η(s)| and this proves the
L∞ estimate for η = η(σ, i). Concerning the L2 estimate, by (A.95), we get

‖η‖2 ≤ 2

∫
R
d(qi(s), q(s))

2 + d(q(s), qσ(s))2 ds ≤ 2∆2
i + 2|σ|2 2c2e2δσ0

δ

where inequality two uses the lower estimate in (A.94). As in (A.81) we get

∂sqi = e1(qσ, η)∂sqσ + e2(qσ, η)∇sη. (A.96)

Because e2(qσ, 0) = 1l is the identity and ‖η‖∞ is as small as we wish by choosing
σ0 > 0 smaller and i0 larger, we can resolve for ∇sη and obtain an L2 bound,
uniform in i and σ, since ‖∂sqi‖ ≤ 4c0, by (A.90), and ‖∂sqσ‖2 = ‖∂sq‖2 =
E0(q) ≤ oscf . This proves Step 2.

Step 3 (Time shift to adjoint image). For σ ∈ [−σ0, σ0] consider the function
θi(σ) := −〈∂sqσ, η〉 where η = η(σ, i) is the vector field along qσ determined
by (A.93) and 〈·, ·〉 is the L2(R, q∗σTΣ) inner product. The zeroes of the function
are characterized by

θi(σ) = 0 ⇐⇒ η ∈ im (D0
qσ )∗.

Moreover, there exist new constants σ0, c3 > 0 and i0 ∈ N such that

|θi(0)| ≤ c3∆i,
d
dσ θi(σ) ≥ c∗

2 ,

whenever σ ∈ [−σ0, σ0] and i ≥ i0 and where c∗ := f(x−)− f(x+) > 0.

Proof. The derivative ∂sqσ generates kerD0
qσ : Firstly, it is element, as follows

by linearizing (1.4) at qσ. Secondly, the kernel has dimension 1 as follows from
the Fredholm index being the asymptotic’s Morse index difference, that is one,
and D0

qσ being surjective by Morse-Smale. ‘⇐’ true since ∂sqσ ∈ kerD0
qσ . ‘⇒’

true since η ⊥ kerD0
qσ = coker (D0

qσ )∗.
Since η = η(σ, i) reduces to ξi at σ = 0, by Cauchy-Schwarz we get that

|θi(0)| ≤ ‖∂sqσ‖ · ‖η‖ =
√
E0(qσ) · ‖ξi‖ ≤ oscf ·∆i.

We abbreviate ei = ei(qσ, η). Differentiate qi = expqσ η with respect to σ and

resolve for ∇ση = −e−1
2 e1∂sqσ, then add zero to obtain

d
dσ θi(σ) = −〈∇s∂sqσ, η〉 −

〈
∂sqσ,−∂sqσ + (1l− e−1

2 e1)∂sqσ
〉

≥ ‖∂sq‖2 − ‖∇s∂sq‖ · ‖η‖ − 1
4‖∂sq‖

2

≥ 1
2‖∂sq‖

2 = 1
2E

0(q) = 1
2c
∗.

Inequality one uses Cauchy-Schwarz, that e1(qσ, 0) = 1l = e2(qσ, 0), and that
‖η‖∞ is arbitrarily small by enlarging i0 and shrinking σ0 in Step 2 so that the
linear map 1l−e2(qσ(s), η(s))−1e1(qσ(s), η(s))) is of norm ≤ 1/4 at every s ∈ R.
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For inequality two we used the following. By exponential decay (A.92) in combi-
nation with (A.78) we get that ‖∇s∂sq‖ ≤ c4 for some constant c4. Now enlarge
i0 and shrink σ0 so that by Step 2 it holds ‖η‖ ≤ c∗/4c4. We also use the energy
identity. This proves Step 3.

Step 4. We prove the claim.

Proof. By Step 3 there exists, for every i ≥ i0, an element σi ∈ [−σ0, σ0] such
that θi(σi) = 0 and |σi| ≤ c3∆i

2
c∗

. Set ηi := η(σi, i). Then ηi ∈ im (D0
qσi

)∗, still

by Step 3, and by Step 2 we have, enlarge i0 if necessary, the estimates

‖ηi‖∞ ≤ ∆i (1 + C02c3/c
∗) , ‖ηi‖21,2 ≤ ∆i (2 + c22c3/c

∗) + c22 ≤ 2c22.

This proves (A.88), hence the claim, so Step 4, and Theorem A.1.
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