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1 Introduction
In this paper, we shall consider norm inequalities for one dimensional Sobolev
Hilbert spaces by using the theory of reproducing kernels as fundamental
inequalities and as an extension of [15].

For the Bergman kernel and the Szegö kernel on a regular domain D on
the complex z = x+ iy plane, we have the basic and deep relation

K(z, u) >> 4πK̂(z, u)2
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– the left minus the right is a positive definite quadratic form function – which
was given by D. A. Hejhal [22]. This profound result using the Riemann theta
function was given on the long historical results as in

G.F.B. Riemann (1826-1866); F. Klein (1849-1925); S. Bergman; G.
Szegö; Z. Nehari; M.M. Schiffer; P.R. Garabedian (1949 published); D.A.
Hejhal (1972 published).
It seems that any elementary proof is impossible, however, the result will, in
particular, mean a fairly simple and fundamental inequality:

For two functions φ and ψ of H2(D), analytic Hardy space, we obtain the
generalized isoperimetric inequality

1

π

∫ ∫
D

|φ(z)ψ(z)|2dxdy ≤ 1

2π

∫
∂D

|φ(z)|2|dz| 1
2π

∫
∂D

|ψ(z)|2|dz|, (1.1)

and we can determine completely the case holding the equality here. In the
thesis [42] of the author published in 1979 the result was given. The author
realized the importance of the abstract and general theory of reproducing
kernels by N. Aronszajn ([1]). In the paper, the core part was to determine
the equality statement in the above inequality, surprisingly enough, some
deep and general independing poof was appeared 26 years later in A. Yamada
([82]). A. Yamada was developed deeply equality problems for some general
norm inequalities derived by the theory of reproducing kernels and it was
published in the book appendix of [12]. Very recently his theory is developing
much more in [17].

Of course, in the thesis we can find some fundamental idea for nonlinear
transforms. In particular, for the special case φ ≡ ψ ≡ 1, for the plane mea-
sure m(D) of D and the length ℓ of the boundary we have the isoperimetric
inequality

4πm(D) ≤ ℓ2.

We have similar results and theory for the Sobolev spaces. For example,
let ρ be a positive continuous function on (a, b) satisfying ρ ∈ L1(a, b). Let fj
be complex valued- functions on (a, b) satisfying limx→a−0 fj(x) = 0. Then,
we have the inequality∫ b

a

|(f1(x)f2(x))′|2
dx(∫ x

a
ρ(t)dt

)
ρ(x)
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≤ 2

∫ b

a

|f ′
1(x)|2

dx

ρ(x)

∫ b

a

|f ′
2(x)|2

dx

ρ(x)
,

when the integrals in the last part are finite. Equality holds here if and only
if each fj is expressible in the form CjKρ(x, x2) for some constants Cj and
for some point x2 ∈ [a, b] which is independent of j. Here, Kρ(x, ·) is the
reproducing kernel of the Sobolev space with the norm√∫ b

a

|f ′
1(x)|2

dx

ρ(x)
<∞

([7]).

One basic meaning of the norm inequalities
Now, we note an important meaning or application of the inequality (1.1);
that is, when we fix any member ψ of H2(D), the multiplication operator

φ 7−→ φ(z)ψ(z), (1.2)

on H2(D) to the Bergman space is bounded. Therefore, by the general theory
for general fractional functions, we can consider the generalized fractional
functions: for any Bergman function f(z) on the domain D

f(z)

ψ(z)
, (1.3)

at least in the sense of Tikhonov; that is, we can consider the best approx-
imation problem for the functions ψ(z)−1f(z) by the functions H2(D). See
[2, 3] for more detailed results. See also [3] for applications.

As a very special fraction, we can consider the division by zero and divi-
sion by zero calculus. See [13, 14] for the details.

As an important contribution of the theory of reproducing kernel is on
the following fact:

For bounded linear operators on some reproducing kernel Hilbert
spaces, we can give analytical and numerical solutions for the op-
erator equations. See [11, 12].
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For the recent similar type norm inequalities on Hilbert Sobolev spaces
of one dimensional by A. Yamada [18], we refer to the corresponding norm
inequalities as basic results applying the theory of reproducing kernels, di-
rectly.

There exist some interesting differences in nature with his concrete and
deep results.

2 The first order Sobolev spaces
We will consider the first order Sobolev Hilbert spaces H(a, b;R), (a, b > 0),
as the basic reproducing kernel Hilbert space with finite norms√∫

R

(a2|f ′(x)|2 + b2|f(x)|2) dx

admitting the reproducing kernel KH(a,b;R)(x, x1)

KH(a,b;R)(x, x1) =
1

2ab
exp

(
− b

a
|x− x1|

)
.

See [12], pages10-18 for the related basic materials.
We will consider this space as in the Szegö space in (1.1). Note the

identity
KH(a,b;R)(x, x1)

2 =
1

ab

1

2a(2b)
exp

(
−(2b)

a
|x− x1|

)
=

1

ab
KH(a,2b;R)(x, x1).

From the construction of the norms admitting the reproducing kernels cor-
responding to the product and multiplication of a positive number for repro-
ducing kernels, we obtain the norm inequality as in (1.1).

(A) For any f, g ∈ H(a, b;R), we have the norm inequality∫
R

(
a2|(f(x)g(x))′|2 + 4b2|f(x)g(x)|2

)
dx

≤ 1

ab

∫
R

(
a2|f ′(x)|2 + b2|f(x)|2

)
dx

∫
R

(
a2|g′(x)|2 + b2|g(x)|2

)
dx.
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Of course, we have

(A′) For any f, g ∈ H(a, b/2;R), we have the norm inequality∫
R

(
a2|(f(x)g(x))′|2 + b2|f(x)g(x)|2

)
dx

≤ 2

ab

∫
R

(
a2|f ′(x)|2 + b2

4
|f(x)|2

)
dx

∫
R

(
a2|g′(x)|2 + b2

4
|g(x)|2

)
dx.

3 Finite interval cases
If we note that the kernel on an interval [c, d],−∞ ≤ c < d ≤ +∞

KH(a,b;[c,d])(x, x1) =
1

2ab
exp

(
− b

a
|x− x1|

)
is the reproducing kernel on the Hilbert space H(a, b; [c, d]) with finite norms√∫

[c,d]

(a2|f ′(x)|2 + b2|f(x)|2) dx+ ab(|f(c)|2 + |f(d)|2) <∞

as in the whole space case, the results in Section 2 are valid in the cor-
responding way. This fact may be confirmed directly by checking the re-
producing property of the kernel as in [12], pages 11-12. Meanwhile, the
kernel KH(a,b;[c,d])(x, x1) is the restriction to the interval [c, d] of the kernel
KH(a,b;R)(x, x1) and so by the general property of reproducing kernels, we see
that any member f(x) of H(a, b; [c, d]) is the restriction of a function h(x) in
H(a, b;R) and its norm is given by

||f ||H(a,b;[c,d]) = min ||h||H(a,b;R),

where the minimum is taken over all functions h in H(a, b;R) satisfying

f(x) = h(x) on [c, d].

See [12], pages 78-80. In particular, note that any member f(x) ofH(a, b; [c, d])
has a good property on the interval [c, d].
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4 Division by zero calculus
If b = 0, then, by the division by zero calculus

KH(a,0;R)(x, x1) = − 1

2a2
|x− x1|

and this is the reproducing kernel for the corresponding space H(a, 0;R)
equipped with the norm

‖f‖2H(a,0;R) = a2
∫ a

0

(f ′(x)2dx.

See [13, 14] for the division by zero calculus. Note that it is the Green’s func-
tion in one dimensional space on the whole space and the Green’s function
may be related to the reproducing kernel. See [12], pages 62-63.

Meanwhile, if a = 0, KH(0,b;R)(x, x1) = 0, then it is the trivial reproducing
kernel for the zero function space.

However, from the representation

1

2ab
exp

(
− b

a
|x− y|

)
=

1

2π

∫ +∞

−∞

eiξ(x−y)dξ

a2ξ2 + b2
,

for a = 0, we have the reasonable result
1

b2
δ(x− y)

that may be considered as the reproducing kernel for the L2 space. See
Section 8.8 in [12].

5 Generalizations for the first order Sobolev
Hilbert spaces

From the products of different type kernels, we shall consider the correspond-
ing norm inequalities as generalizations.

First recall the result [12], page 16-17:
For the half-open interval I = [a, b), we consider a positive continuous

function ρ : I → (0,∞), such that

ρ ∈ L1[a, x] (x ∈ I) (5.1)
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for all x ∈ I. Denote by AC(I) the set of all absolutely continuous functions
on an interval I.

Theorem: Let r ≥ 1 be a real number and let a positive continuous
function ρ satisfy (5.1). Let us set

W (t) ≡
∫ t

a

ρ(ξ) dξ and Kρ(s, t) ≡
∫ s∧t

a

ρ(v) dv = W ( s ∧ t ) (s, t ∈ I),

(5.2)
where s ∧ t ≡ min(s, t). The reproducing kernel Hilbert space H(Kρ)r(I) and
its norm are given by:

H(Kρ)r(I) ≡
{
f ∈ AC(I) : f(a) = 0, f ′ ∈ L2(I,W 1−rρ−1 dt)

}
, (5.3)

and

‖f‖H(Kρ)r (I)
≡

(
1

r

∫
I

|f ′(t)|2W (t)1−rρ(t)−1 dt

) 1
2

,

respectively.
(For [12], page 17, in (1.59) put the factor 1

r
.)

For any positive integers m,n

Kρ(s, t)
m+n = Kρ(s, t)

mKρ(s, t)
n,

and so we obtain the corresponding norm inequality∫ b

a

|(f1(x)f2(x))′|2
dx(∫ x

a
ρ(t)dt

)m+n−1
ρ(x)

≤
(

1

m
+

1

n

)∫ b

a

|f ′
1(x)|2

dx(∫ x

a
ρ(t)dt

)m−1
ρ(x)

∫ b

a

|f ′
2(x)|2

dx(∫ x

a
ρ(t)dt

)n−1
ρ(x)

.

We note that
Open problem: How will be the inequality for noninteger case m,n?

Meanwhile, from the identity

KH(a,b;R)(x, x1)KH(a′,b′;R)(x, x1) =
1

2

(
a

b
+
a′

b′

)
KH(aa′,ab′+a′b;R)(x, x1),
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we obtain the corresponding inequality∫
R

(
(aa′)2|(f(x)g(x))′|2 + (ab′ + a′b)2|f(x)g(x)|2

)
dx

≤ 1

2

(
a

b
+
a′

b′

)∫
R

(
a2|f ′(x)|2 + b2|f(x)|2

)
dx

∫
R

(
(a′)2|g′(x)|2 + (b′)2|g(x)|2

)
dx.

6 For infinite order Sobolev spaces
Note that the kernel

K(z, u; t) =
1

2
√
2πt

exp

(
− 1

8t
(z − u)2

)
is the reproducing kernel for the Hilbert space with finite norms

√√√√ ∞∑
j=0

(2t)j

j!

∫
R
|∂jxf(x)|2dx =

√
1√
2πt

∫∫
C
|f(x+ iy)|2 exp

(
−y

2

2t

)
dxdy.

(6.1)
These mean that for the restriction to the real line, the Hilbert space is

an infinite order Sobolev Hilbert space and on the complex plane the space is
composed of entire functions ([12], pages 141-145). We thus have the identity

K(z, u; t/2) = 4
√
πtK(z, u; t)2

and we have the corresponding norm inequality.
For the isometric inequality (1.1) for the Bergman and Szegö spaces, note

their representations ([12], pages 146-147).
We write S(r) ≡ {z ∈ C : 0 < arg(z) < r} for the open sector and its

boundary ∂S(r) ≡ {z ∈ C : z = 0 or arg(z) = ±r}.

(Note that we defined as
arg 0 = 0

as a result of the division by zero in [13].)
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Theorem: Let r ∈ (0, π/2). For an analytic function f on the open
sector S(r), we have the identity∫∫

S(r)

|f(x+ iy)|2dxdy = sin(2r)
∞∑
j=0

(2 sin r)2j

(2j + 1)!

∫
R
x2j+1|f (j)(x)|2dx. (6.2)

Conversely, if any f ∈ C∞(∂S(r)) has a convergent sum in the right-hand
side in (6.2), then the function f(x) can be extended analytically onto the
sector S(r) in the form f(z) and the identity (6.2) is valid.

In the Szegö space, we have the following formula:
Theorem: Let r ∈ (0, π/2). For any member f in the Szegö space on

the open sector S(r), we have the identity∮
∂S(r)

|f(z)|2|dz| = 2 cos r
∞∑
j=0

(2 sin r)2j

(2j)!

∫
R
x2j|f (j)(x)|2dx, (6.3)

where f(x) means the nontangential Fatou limit on ∂S(r) for x ∈ R . Con-
versely, if any f ∈ C∞(0,∞) has a convergent sum in the right-hand side in
(6.3), then the function f(x) extends analytically onto the open sector S(r)
and the identity (6.3) is valid.

As a simple case, we shall refer to the Fischer space Fa(C) admitting the
reproducing kernel, for any fixed a > 0

Ka(z, u) = exp(a2zu) (z, u ∈ C)

with finite norms for entire functions f(z)

‖f‖Fa(C) = a

√
1

π

∫∫
C
|f(z)|2 exp(−a2|z|2) dx dy.

See [12], page 170. We thus have the relation for any positive a, b

Ka(z, u)Kb(z, u) = K√
a2+b2(z, u)

and the corresponding result.
Meanwhile, any positive definite Hermitian matrix may be considered as

a reproducing kernel and so we can apply the theory of reproducing kernels
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to that of positive definite Hermitian matrices ([6, 8]). For the product of
two positive definite Hermitian matrices A,B with the same size, and for
the Hadamard product ∗ and for the complex conjugate transpose ∗, we can
state the results as in

(
x(1) ∗ x(2)

)∗ (
A−1 ∗B−1

)−1 (
x(1) ∗ x(2)

)
≤

(
x(1) ∗Ax(1)

) (
x(2) ∗Bx(2)

)
and (

A−1 ∗B−1
)−1 ≤ A ∗B,

symbolically ([6], page 128). Equality problems are all solved .

7 Open problems
Our norm inequalities will be very beautiful and fundamental, so we wonder
their direct derivations apart from the theory of reproducing kernels. It
seems that Yamada’s results [18] and our results are different in nature for
the similar norm inequalities for one dimensional Sobolev Hilbert spaces.
What are the relations between our results?

Professor Yamada made a deep research for the equality problem for some
general norm inequalities derived from the theory of reproducing kernels,
however, he stated that the new equality problem in (A) is still an open
problem on 23 August, 2022.

Our norm inequalities here have a similar form as in the Schwarz inequal-
ity, so we wonder does there exist p, q (1/p + 1/q = 1) versions as in the
Hölder inequality.
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