
THE RIEMANN HYPOTHESIS PROVED
Marcello Colozzo

Abstract

The Riemann hypothesis is proved through a theorem on the nature of points critics
of the real part and the imaginary part u (x, y) , v (x, y) of a holomorphic function
having the same zeros of the Riemann zeta function. Precisely, the zeros of these
functions are saddle points, and furthermore in these points the partial derivatives of
odd order. From this derives a system of infinite identities that are check if and only
if the real part of the zeros of the zeta function is equal to 1/2.

Introduction

This work is structured as follows:

1. Section 1 recalls the definition of non-trivial zeros of the Riemann zeta function, after
which the Riemann hypothesis is stated. Technically this is a conjecture, and is cur-
rently the most important open problem in mathematics. Using the functional equation
found by Riemann, the integral representation of a holomorphic function having the
same non-trivial zeros as the zeta function is obtained.

2. In section 2 the functional equation referred to in point 1, is written in the framework
of group theory, in particular of the subgroup HL (2,R) of the antisymmetric matrices
of order 2 on the real field. This purpose is achieved by demonstrating a theorem that
allows us to algebraize the symmetry of non-trivial zeros with respect to the critical
line whose equation in the complex plane is Re z = 1/2, and to be able to express the
values assumed by u (x, y) e v (x, y) in a region of the critical strip with respect to the
values assumed by the same functions in the symmetrical region with respect to the
critical line.

3. In section 3 we introduce the harmonic functions on the real field and their properties.

4. Nella sezione 4 we study conjugate harmonic functions, an important class of harmonic
functions in R2, stating and proving important theorems.

5. In section 5 we prove a theorem according to which the real and imaginary parts of
the zeta function have a saddle point in every non-trivial zero.

6. In section 6 we prove the Riemann hypothesis, using part of the proof of the theorem
referred to in the previous point.
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1 The non-trivial zeros of the zeta function and the

Riemann hypothesis

Denoting by z = x+iy the usual complex variable, an integral representation of the Riemann
zeta function ζ (z) in the half plane Re z > 0 excluding z = 1 where this function has a simple
pole, is [1]-[2]

ζ (z) =
1

(1− 21−z) Γ (z)

∫ +∞

0

tz−1dt

et + 1
, (∀z ∈ C | Re z > 0, z 6= 1) (1)

where

Γ (z) =

∫ +∞

0

tz−1e−tdt, Re z > 0 (2)

is an integral representation of the Euler gamma function in the half plane Re z > 0. Turns
out [3]:

Γ (z) =
+∞∑

n=0

[
(−1)n

n!

1

z + n

]

+

∫ +∞

0

tz−1e−tdt (3)

It follows that Γ (z) is meromorphic with simple poles in zn = −n for every n ∈ N with

residue (−1)n

n!
. Also [3], Γ (z)−1 è is a transcendent integer, so Γ (z)has no zeros.

Riemann derived [2] the following functional equation for the ζ (z)

π− z

2Γ
(z

2

)

ζ (z) = π− 1−z

2 Γ

(
1− z

2

)

ζ (1− z) (4)

The trivial zeros (i.e. with null imaginary part) of the function ζ (z) are zn = −2n, with
n = 1, 2, 3..., and the graph of fig. 1 illustrates some of them.
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Figure 1: Some trivial zeros of the Riemann zeta function. The curve is the graph of the
function ζ (x).

Non-trivial zeros fall into the critical strip [1]:

Scrit =
{
(x, y) ∈ R

2 | 0 < x < 1, −∞ < y < +∞
}

In fig. 2 shows the graph of |ζ (z)|, in which we see some non-trivial zeros.
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Figure 2: Some non-trivial zeros of the function ζ (z). Notice the polar singularity at z = 1.

Conjecture 1 (Riemann Hypothesis – RH)
The non-trivial zeros of the function ζ (z) belong to the critical line Re z = 1

2
.

From (4) it follows

z0 ∈ Scrit | ζ (z0) = 0 =⇒ ζ (1− z0) = 0 (5)

that is, the distribution of non-trivial zeros is symmetrical with respect to the critical line
Re z = 1/2. It is also known that if z0 = x0 + iy0 is a zero, so is its conjugate complex
z∗0 = x0 − iy0. So we have further symmetry (with respect to the real axis). This suggests
redefining the region Scrit as the critical half-strip:

Scrit =
{
(x, y) ∈ R

2 | 0 < x < 1, 0 < y < +∞
}

(6)

From the (1):

ζ (1− z) =
1

(1− 2z) Γ (1− z)

∫ +∞

0

t−zdt

et + 1
, Re (1− z) > 0 =⇒ Re z < 1 (7)

and even more so

ζ (1− z) =
1

(1− 2z) Γ (1− z)

∫ +∞

0

t−zdt

et + 1
, ∀z ∈ Scrit (8)

The integral converges. In fact from the (1):

∣
∣
∣
∣

∫ +∞

0

tz−1dt

et + 1

∣
∣
∣
∣
< +∞, Re z > 0, z 6= 1

By placing z′ = 1− z
∫ +∞

0

t−z′dt

et + 1
=

∫ +∞

0

tz
′−1dt

et + 1

hence the convergence for Re (1− z′) > 0 i.e. Re z′ < 1 and therefore, in Scrit.
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Writing the (4) in Scrit and using the integral representations of ζ (z) and ζ (1− z), i.e.
the (1)-(8), we get:

∫ +∞

0

tz−1dt

et + 1
= χ (z)

∫ +∞

0

t−zdt

et + 1
(9)

being

χ (z)
def
= πz− 1

2

Γ
(
1−z
2

)

Γ
(
z
2

)
(1− 21−z) Γ (z)

(1− 2z) Γ (1− z)
(10)

It is easy to believe that χ (z) is holomorphic in Scrit and is zero-zero there. Let’s start with
the study of the behavior of the G function Γ

z′ =
1− z

2
=⇒ Γ (z′) has singularity in z′n = −n =⇒ zn = 1 + 2n > 1, ∀n ∈ N

Γ
(z

2

)

has singularity in zn = −2n < 0, ∀n ∈ N

Γ (1− z) has singularity in zn = 1 + n ≥ 1, ∀n ∈ N

and it is immediate to verify the absence of zeros.

Proposition 2 The function

Φ (z)
def
=

∫ +∞

0

t−zdt

et + 1
, z ∈ Scrit (11)

has the same zeros as the Riemann zeta function ζ (z).

Proof. Multiplying first and second members of the (9) for 1
(1−21−z)Γ(z)

:

1

(1− 21−z) Γ (z)

∫ +∞

0

tz−1dt

et + 1
︸ ︷︷ ︸

=ζ(z)

=
χ (z)

(1− 21−z) Γ (z)

∫ +∞

0

t−zdt

et + 1

from which

ζ (z) =
χ (z)

(1− 21−z) Γ (z)
︸ ︷︷ ︸

6=0, ∀z∈Scrit

Φ (z)

and therefore the assertion.
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2 The subgroup HL (2,R) of order 2 antisymmetric ma-

trices on the real field

The functional equation (9) written as:

χ (z)

∫ +∞

0

t−zdt

et + 1
=

∫ +∞

0

tz−1dt

et + 1
,

can be interpreted as the result of applying χ (z) on the holomorphic function
∫ +∞

0
t−zdt
et+1

,

giving rise to
∫ +∞

0
tz−1dt
et+1

. This is corroborated by the following theorem:

Theorem 3

χ (z)

∫ +∞

0

t−zdt

et + 1
=

∫ +∞

0

tz−1dt

et + 1
⇐⇒ Λ (x, y)

(
u (x, y)
v (x, y)

)

=

(
u (1− x, y)
v (1− x, y)

)

, ∀ (x, y) ∈ Scrit

(12)
where

Λ (x, y) =

(
f (x, y) −g (x, y)
g (x, y) f (x, y)

)

(13)

u (x, y) = Re

∫ +∞

0

t−zdt

et + 1
, v (x, y) = Im

∫ +∞

0

t−zdt

et + 1

f (x, y) = Reχ (x+ iy) , g (x, y) = Imχ (x+ iy)

Proof. Let’s say

Ψ (z)
def
=

∫ +∞

0

tz−1dt

et + 1
, z ∈ Scrit (14)

the (9) becomes
Ψ (z) = χ (z) Φ (z) (15)

In the second member, separating the real part and the imaginary part and then developing
the product, we easily obtain:

χ (z) Φ (z) = [Reχ (z) ReΦ (z)− Imχ (z) ImΦ (z)] + (16)

+ i [Reχ (z) ImΦ (z) + Imχ (z) ReΦ (z)]

Likewise for the first member, noting that

tz−1 =
1

t1−x
[cos (y ln t) + i sin (ln t)]

we obtain

Ψ (x+ iy) =

∫ +∞

0

cos (y ln t) + i sin (ln t)

t1−x (et + 1)
dt

=

∫ +∞

0

cos (y ln t)

t1−x (et + 1)
dt

︸ ︷︷ ︸

ReΨ

+ i

∫ +∞

0

sin (ln t)

t1−x (et + 1)
dt

︸ ︷︷ ︸

ImΨ
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From the (15)

ReΨ (z) = Re [χ (z) Φ (z)] , ImΨ (z) = Im [χ (z) Φ (z)]

from which
∫ +∞

0

cos (y ln t) dt

t1−x (et + 1)
= Re [χ (z) Φ (z)] = Reχ (z) ReΦ (z)− Imχ (z) ImΦ (z) (17)

∫ +∞

0

sin (ln t) dt

t1−x (et + 1)
= Im [χ (z) Φ (z)] = Reχ (z) ImΦ (z) + Imχ (z) ReΦ (z)

The function we are interested in is Φ (z) (eq. (11))

Φ (x+ iy) =

∫ +∞

0

t−x−iydt

et + 1
=

∫ +∞

0

cos (y ln t)− i sin (ln t)

tx (et + 1)
dt (18)

=

∫ +∞

0

cos (y ln t) dt

tx (et + 1)
− i

∫ +∞

0

sin (y ln t) dt

tx (et + 1)

For the position 13 (second equation):

Φ (x+ iy) = u (x, y) + iv (x, y)

which compared to (18) returns:

u (x, y) =

∫ +∞

0

cos (y ln t) dt

tx (et + 1)
, v (x, y) = −

∫ +∞

0

sin (y ln t) dt

tx (et + 1)
(19)

For the position 13 (third equation):

f (x, y) = Reχ (x+ iy) , g (x, y) = Imχ (x+ iy) (20)

so that the (17) become:

u (1− x, y) = f (x, y) u (x, y)− g (x, y) v (x, y) (21)

v (1− x, y) = g (x, y) u (x, y) + f (x, y) v (x, y)

which can be written in matrix form:

Λ (x, y)

(
u (x, y)
v (x, y)

)

=

(
u (1− x, y)
v (1− x, y)

)

(22)

being Λ (x, y) the square matrix of order 2 on the real field:

Λ (x, y) =

(
f (x, y) −g (x, y)
g (x, y) f (x, y)

)

, ∀ (x, y) ∈ Scrit (23)

The determinant of Λ (x, y) is

det Λ (x, y) = f (x, y)2 + g (x, y)2 = |χ (x+ iy)|2 6= 0, ∀ (x, y) ∈ Scrit (24)
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Figure 3: The linear transformation (22) is the composition of the spatial reflection x →
−xand of the translation along the x axis of amplitude +1.

Regarding the antisymmetry of Λ, we observe that this translates the symmetry with
respect to the critical line Re z = 1/2. In fact, the linear transformation (22) is the compo-
sition of a spatial reflection with respect to x, cioè x → −x, and of a translation along the
x axis of amplitude +1, as illustrated i fig. 3.

Hence Λ (x, y) ∈ GL (2,R) that is, it is an element of the linear group of order 2 on the
real field. As is known, the latter is the set of square matrices of order 2 on the real field and
with a non-zero determinant (therefore with an inverse). The algebraic structure is given
by the law of internal composition “product row by column”. In fact, the group axioms are
verified:

G1 Associative property

(AB)C = A (BC) , ∀A,B,C ∈ GL (2,R)

G2 Existence of the neutral element

ĪA = AĪ, ∀A ∈ GL (2,R)

where Ī is the identity matrix of order 2:

Ī =

(
1 0
0 1

)

G3 Existence of the inverse

∀A ∈ GL (2,R) , ∃A−1 ∈ GL (2,R) | AA−1 = A−1A = Ī

The group GL (2,R) is non-commutative (or non-Abelian) since in general this is the
product row by column. The matrix (23) is a functional matrix in the sense that its elements
are functions of the variables x, y. Furthermore, this matrix is antisymmetric and we denote
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byHL (2,R) the subset of GL (2,R) whose elements are precisely the antisymmetric matrices
of the type:

A =

(
a −b
b a

)

, ∀a, b ∈ R

It follows

AA′ =

(
a −b
b a

)(
a′ −b′

b′ a′

)

=

(
aa′ − bb′ −ab′ − ba′

ab′ + ba′ aa′ − bb′

)

=⇒ AA′ ∈ HL (2,R) (25)

Furthermore

A−1 =
1

a2 + b2

(
a b
−b a

)

=⇒ A−1 ∈ HL (2,R) (26)

From (25)-(26) it follows for a well-known theorem [5], the group structure for HL (2,R)
and we will say that it is a subgroup of GL (2,R). Also, from a simple calculation

(
a −b
b a

)(
a′ −b′

b′ a′

)

=

(
a′ −b′

b′ a′

)(
a −b
b a

)

, ∀a, b, a′, b′ ∈ R

for which the subgroup HL (2,R) is commutative (or abelian).
For the above:

[Λ (1− x, y) Λ (x, y)]

(
u (x, y)
v (x, y)

)

= Λ (1− x, y)

[

Λ (x, y)

(
u (x, y)
v (x, y)

)]

= Λ (1− x, y)

(
u (1− x, y)
v (1− x, y)

)

=

(
u (x, y)
v (x, y)

)

, ∀

(
u (x, y)
v (x, y)

)

so that
Λ (1− x, y) Λ (x, y) = 1̄

As the matrices switch:
Λ (x, y) Λ (1− x, y) = 1̄

That is
Λ (1− x, y) = Λ−1 (x, y) (27)

illustrated in fig. 4.
A direct computation of the inverse matrix starting from (23) gives:

Λ−1 (x, y) =
1

f (x, y)2 + g (x, y)2

(
f (x, y) g (x, y)
−g (x, y) f (x, y)

)

(28)

which compared with the (28) returns:

f (1− x, y) =
f (x, y)

f (x, y)2 + g (x, y)2
, g (1− x, y) = −

g (x, y)

f (x, y)2 + g (x, y)2
(29)

Theorem 4

Λ

(
1

2
, y

)

= 1̄, ∀y ∈ (0,+∞) (30)
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Figure 4: Geometric interpretation of the (27).

Proof. From (28) it is easy to get

f

(
1

2
, y

)

= 1, g

(
1

2
, y

)

= 0, ∀y ∈ (0,+∞)

that is the assertion. Alternatively, from (22)

Λ

(
1

2
, y

)(
u
(
1
2
, y
)

v
(
1
2
, y
)

)

=

(
u
(
1
2
, y
)

v
(
1
2
, y
)

)

i.e.

(
u
(
1
2
, y
)

v
(
1
2
, y
)

)

is eigenvector of Λ
(
1
2
, y
)
with eigenvalue +1, and this for all y ∈ (0,+∞).

But the only matrix with this property is the identical matrix.
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3 The harmonic functions. Properties and theorems

Definition 5 A real function of n real variables x1, x2, ...xn, is called harmonic in a field A
of Rn, if it is continuous there with first and second partial derivatives, and solves Laplace’s
equation in A:

∇2u = 0 (31)

being

∇2 =
n∑

k=1

∂2

∂x2k
(32)

the Laplacian.

We are interested in n = 2, so u (x, y) is harmonic in a field A if

∂2u

∂x2
+
∂2u

∂v2
= 0 (33)

resulting continuous in A together with the first and second partial derivatives. Real part
and imaginary part of a holomorphic function in a field A are harmonic functions there
[3]-[4]:

f (x+ iy) = u (x, y) + iv (x, y)

Remember that u and v are not independent, in the sense that if u, v harmonics in A are
taken as arbitrary, the composition u + iv is not in general a holomorphic function. In fact,
the real part and the imaginary part are linked by the Cauchy-Riemann equations [3]-[4]

{
ux = vy
uy = −vx

(34)

In this regard, the following definition exists:

Definition 6 If u (x, y) is harmonic in A, we say conjugate of u (x, y), every function
v (x, y) is harmonic in A and such that the complex function u+ iv is holomorphic in A.

It follows that given a harmonic function u (x, y) in A, any conjugate functions are the
solutions of the system of partial differential equations (34). The existence of such solutions
is guaranteed by the theorem:

Theorem 7 In a simply connected field A every harmonic function admits a conjugate func-
tion defined up to an additive constant. Precisely:

v (x, y) = c+

∫ (x,y)

(x0,y0)

(

−
∂u

∂ξ
dξ +

∂u

∂η
dη

)

, ∀c ∈ R

where the curvilinear integral is extended to an arc of a regular curve of extremes an arbitrary
point (x0, y0) nd the point (x, y).

Proof. Please refer to [4].
Here are some notable theorems that we will use later:
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Theorem 8 A harmonic function in a field A is analytic therein, i.e. developable at any
point in power series:

u (x, y) =
+∞∑

h=0

+∞∑

k=0

ahk (x− x0)
h (y − y0)

k (35)

Proof. Please refer to [4].
From this the corollary immediately follows:

Corollary 9 Any harmonic function in a field A is endowed with partial derivatives of any
high order, and each derivative is in turn a harmonic function in A.

Theorem 10 (Gauss’ mean theorem)
If u (x, y) is continuous in the domain

CR (x0, y0) =
{
(x, y) ∈ R

2 | (x− x0)
2 + (y − y0)

2 ≤ R2
}

and harmonic in CR (x0, y0) \∂CR (x0, y0)

u (x0, y0) =
1

2πR

∮

+∂CR(x0,y0)

u (x, y) ds (36)

that is u (x0, y0) is the average value of the values assumed by u (x, y) on ∂CR (x0, y0).

Proof. Please refer to [4].
From this theorem follows this other:

Theorem 11 A harmonicfunction u (x, y) in a connected field A and which is not constant
there, is devoid of relative maxima and minima.

Proof. Please refer to [4].

Theorem 12 (Areal averages theorem)
In the same hypotheses as the theorem 10:

u (x0, y0) =
1

πR2

∫∫

CR(x0,y0)

u (x, y) dxdy (37)

ux (x0, y0) =
3

πR3

∫∫

CR(x0,y0)

u (x, y)
x− x0

√

(x− x0)
2 + (y − y0)

2
dxdy

uy (x0, y0) =
3

πR3

∫∫

CR(x0,y0)

u (x, y)
y − y0

√

(x− x0)
2 + (y − y0)

2
dxdy

whose interpretation is immediate.

Proof. Please refer to [4].

Theorem 13 (Theorem of means for derivatives)
Nelle stesse ipotesi del teorema 10:

ux (x0, y0) =
1

πR3

∮

+∂CR(x0,y0)

u (x, y) (x− x0) ds (38)

uy (x0, y0) =
1

πR3

∮

+∂CR(x0,y0)

u (x, y) (y − y0) ds

11



One notable theorem that we will apply later is

Theorem 14 The critical points of a harmonic function in a field A are critical points of
any conjugate function.

Proof. If (x0, y0) ∈ A is a critical point of u (x, y), we have

ux (x0, y0) = 0, uy (x0, y0) = 0

From the Cauchy-Riemann equations (34)

vx (x0, y0) = 0, vy (x0, y0) = 0

12



4 Place of the zeros of the conjugate harmonic func-

tions

We premise the following theorem that characterizes the zeros of a holomorphic function:

Theorem 15 The derivative of the set of zeros of a holomorphic function in a field A which
is not identically null therein is contained in ∂A.

Proof. Please refer to [4].
This means that any accumulation points of the set of zeros fall on the frontier of the

holomorphic field of the assigned function. Put another way, the zeros of a holomorphic
function are isolated points. At the same time, they are the common zeros of the real part
and the imaginary part of the function itself. Precisely, let f(z) = u(x, y) + iv(x, y) be a
holomorphic function in a field A. The locus of zeros of the harmonic function u(x, y) is a
curve of the xy coordinate plane of implied representation:

γu : u (x, y) = 0

In the same way for the conjugate

γv : v (x, y) = 0

It follows that the zeros of f (z) are the points of intersection of the aforesaid plane curves
which for a known property [3] are orthogonal therein. We prove the following theorem:

Theorem 16 The zeros of a holomorphic function f(z) in a field A, are critical points for
the real function |f (z)|2.

Proof. Writingf(z) = u(x, y) + iv(x, y), we have the real function

ψ (x, y)
def
= |f (z)|2 = u (x, y)2 + v (x, y)2

It follows

ψx (x, y) = 2 [u (x, y) ux (x, y) + u (x, y) uy (x, y)] (39)

ψy (x, y) = 2 [u (x, y) ux (x, y) + u (x, y) uy (x, y)]

If (x0, y0) ∈ A is a zero of f (z), from (39):

ψx (x0, y0) = ψy (x0, y0) = 0

Corollary 17 The critical points of any pair (u, v) of conjugate functions are critical points
of the holomorphic functions u+ iv and v + iu.

Proof. Immediately follows from (39).
Always from (39):

(x0, y0) is critical point of u, v
=⇒
:

(x0, y0) is critical point of |f (z)|2 (40)

(x0, y0) is critical point of f (z) =⇒ (x0, y0) critical point of |f (z)|2

; (x0, y0) is critical point of u, v

We conclude: being a critical point for u, v is a sufficient but not necessary condition to
be a critical point for |f (z)|2 = u2 + v2.
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5 The zeros of the zeta function are saddle points for

the real part and the imaginary part

Theorem 18 The zeros of the function Φ (z) =
∫ +∞

0
t−zdt
et+1

(and therefore of the ζ (z)) are
saddle points of the real part and the imaginary part.

Proof. Let’s rewrite the (22):

Λ (x, y)

(
u (x, y)
v (x, y)

)

=

(
u (1− x, y)
v (1− x, y)

)

(41)

remembering that

Λ (x, y) =

(
f (x, y) −g (x, y)
g (x, y) f (x, y)

)

, ∀ (x, y) ∈ Scrit (42)

As seen in the section 2, tge (41) tells us how the column vector

(
u (x, y)
v (x, y)

)

when we pass

from one side of the critical strip to the other. Let’s examine how derivatives are transformed.
To do this, we apply the operator ∂

∂x
to the first and second members of the (41):

∂

∂x

[

Λ (x, y)

(
u (x, y)
v (x, y)

)]

=
∂

∂x

(
u (1− x, y)
v (1− x, y)

)

It follows
∂Λ

∂x

(
u (x, y)
v (x, y)

)

+ Λ (x, y)

(
ux (x, y)
vx (x, y)

)

=

(
−ux (1− x, y)
−vx (1− x, y)

)

(43)

being
∂Λ

∂x
=

(
fx (x, y) −gx (x, y)
gx (x, y) fx (x, y)

)

(44)

If (x0, y0) is a zero of the zeta function, with x0 6= 1/2 the (43) becomes

Λ (x0, y0)

(
ux (x0, y0)
vx (x0, y0)

)

=

(
−ux (1− x0, y0)
−vx (1− x0, y0)

)

(45)

Deriving with respect to y first and second members of the (41)

∂Λ

∂y

(
u (x, y)
v (x, y)

)

+ Λ (x, y)

(
uy (x, y)
vy (x, y)

)

=

(
uy (1− x, y)
vy (1− x, y)

)

(46)

As usual, if (x0, y0) is a zero

Λ (x0, y0)

(
uy (x0, y0)
vy (x0, y0)

)

=

(
uy (1− x0, y0)
vy (1− x0, y0)

)

(47)

Developing in (45)-(47) the product rows by columns, we obtain







f (x0, y0) ux (x0, y0)− g (x0, y0) vx (x0, y0) = −ux (1− x0, y0)
g (x0, y0) ux (x0, y0) + f (x0, y0) vx (x0, y0) = −vx (1− x0, y0)
f (x0, y0) uy (x0, y0)− g (x0, y0) vy (x0, y0) = uy (1− x0, y0)
g (x0, y0) uy (x0, y0) + f (x0, y0) vy (x0, y0) = vy (1− x0, y0)

(48)
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which is a system of four linear equations in the unknowns ux (x0, y0) , uy (x0, y0) , vx (x0, y0) , vy (x0, y0).
This system can be reduced to two equations, thanks to the Cauchy-Riemann equations:

ux = vy, uy = −vx

It follows 





f (x0, y0) ux (x0, y0) + g (x0, y0) uy (x0, y0) = −ux (1− x0, y0)
g (x0, y0) ux (x0, y0)− f (x0, y0) uy (x0, y0) = uy (1− x0, y0)
f (x0, y0) uy (x0, y0)− g (x0, y0) ux (x0, y0) = uy (1− x0, y0)
g (x0, y0) uy (x0, y0) + f (x0, y0) ux (x0, y0) = ux (1− x0, y0)

(49)

By adding the first and fourth, and then subtracting the third from the second, we obtain
the homogeneous linear system

{
f (x0, y0) ux (x0, y0) + g (x0, y0) uy (x0, y0) = 0
−g (x0, y0) ux (x0, y0) + f (x0, y0) uy (x0, y0) = 0

(50)

The determinant of the coefficients is
∣
∣
∣
∣

f (x0, y0) g (x0, y0)
−g (x0, y0) f (x0, y0)

∣
∣
∣
∣
= f (x0, y0)

2 + g (x0, y0)
2 = |χ (x0 + iy0)|

2 6= 0,

for which the aforesaid system admits only the trivial solution ux (x0, y0) = uy (x0, y0) = 0.
It follows that zero (x0, y0) is a critical point for u (x, y) and it is also a critical point for
v (x0, y0) by virtue of the theorem 14.

If x0 = 1/2 la (45) is written

Λ

(
1

2
, y0

)(
ux

(
1
2
, y0

)

vx
(
1
2
, y0

)

)

=

(
−ux

(
1
2
, y0

)

−vx
(
1
2
, y0

)

)

=⇒
Λ( 1

2
,y0)=1̄

(
ux

(
1
2
, y0

)

vx
(
1
2
, y0

)

)

=

(
−ux

(
1
2
, y0

)

−vx
(
1
2
, y0

)

)

=⇒

(
ux

(
1
2
, y0

)

vx
(
1
2
, y0

)

)

=

(
0
0

)

Likewise, from the (45):
(
uy

(
1
2
, y0

)

vy
(
1
2
, y0

)

)

=

(
0
0

)

Let us now study the behavior of the second order partial derivatives of u (x, y) e v (x, y)
respectively. For this purpose we derive with respect to x, the first and second members of
(43), obtaining

∂2Λ

∂x2

(
u (x, y)
v (x, y)

)

+ 2
∂Λ

∂x

(
ux (x, y)
vx (x, y)

)

+ Λ (x, y)

(
uxx (x, y)
vxx (x, y)

)

=

(
uxx (1− x, y)
vxx (1− x, y)

)

which, evaluated on zero (x0, y0) of the functions u, v (and as far as we have seen, of their
first derivatives), returns:

Λ (x0, y0)

(
uxx (x0, y0)
vxx (x0, y0)

)

=

(
uxx (1− x0, y0)
vxx (1− x0, y0)

)

(51)

To obtain the mixed derivative of the second order, derived with respect to y first and second
members of (43), obtaining

∂2Λ

∂x∂y

(
u (x, y)
v (x, y)

)

+
∂Λ

∂x

(
ux (x, y)
vx (x, y)

)

+
∂Λ

∂y

(
ux (x, y)
vx (x, y)

)

+Λ (x, y)

(
uxy (x, y)
vxy (x, y)

)

=

(
−uxy (1− x, y)
−vxy (1− x, y)

)
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Calculating on (x0, y0)

Λ (x0, y0)

(
uxy (x0, y0)
vxy (x0, y0)

)

=

(
−uxy (1− x0, y0)
−vxy (1− x0, y0)

)

(52)

Even if the hypotheses of Schwartz’s theorem (on the invertibility of the partial order of
derivation) are verified, it is worthwhile to calculate the mixed derivatives uyx, vyx. Then
we derive with respect to y, first and second members of (46), obtaining:

∂2Λ

∂y∂x

(
u (x, y)
v (x, y)

)

+
∂Λ

∂y

(
ux (x, y)
vx (x, y)

)

+
∂Λ

∂x

(
uy (x, y)
vy (x, y)

)

+Λ (x, y)

(
uyx (x, y)
vyx (x, y)

)

=

(
−uyx (1− x, y)
−vyx (1− x, y)

)

In (x0, y0) reduces to

Λ (x0, y0)

(
uyx (x0, y0)
vyx (x0, y0)

)

=

(
−uyx (1− x0, y0)
−vyx (1− x0, y0)

)

(53)

For the partial derivatives of the second order with respect to y, we are going to derive with
respect to this variable, the first and second members of the (46),obtaining:

∂2Λ

∂y2

(
u (x, y)
v (x, y)

)

+ 2
∂Λ

∂x

(
uy (x, y)
vy (x, y)

)

+ Λ (x, y)

(
uyy (x, y)
vyy (x, y)

)

=

(
uyy (1− x, y)
vyy (1− x, y)

)

In (x0, y0) reduces to

Λ (x0, y0)

(
uyy (x0, y0)
vyy (x0, y0)

)

=

(
uyy (1− x0, y0)
vyy (1− x0, y0)

)

(54)

Before discussing the equations found, let’s rewrite them (??)-(47):

Λ (x0, y0)

(
ux (x0, y0)
vx (x0, y0)

)

=

(
−ux (1− x0, y0)
−vx (1− x0, y0)

)

(55)

Λ (x0, y0)

(
uy (x0, y0)
vy (x0, y0)

)

=

(
uy (1− x0, y0)
vy (1− x0, y0)

)

which as seen lead to the cancellation of the derivatives, that is

ux (x0, y0) = 0, uy (x0, y0) = 0

vx (x0, y0) = 0, vy (x0, y0) = 0

This derives from the inversion of the sign of the derivative with respect to x (eq. 55). On
the other hand, this clearly does not happen for the partial derivative of the second order
and more generally of the partial (not mixed) derivatives of even order. In fact, for the
second order the (51)-(54) are valid. It follows that these derivatives do not cancel out in
any non-trivial zero. Hence (x0, y0) is a critical point, and by the theorem 11 it is a saddle
point for u (x, y) and v (x, y).
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6 Proof of the Riemann hypothesis

We are now in a position to prove the conjecture 1.
Proof. We rewrite the second of (13), remembering that u (x, y) and v (x, y) have the same
zeros of the real part and the imaginary part of the zeta function:

u (x, y) = Re

∫ +∞

0

t−zdt

et + 1
, v (x, y) = Im

∫ +∞

0

t−zdt

et + 1

During the proof of the theorem 3 we obtained:

u (x, y) =

∫ +∞

0

cos (y ln t) dt

tx (et + 1)
, v (x, y) = −

∫ +∞

0

sin (y ln t) dt

tx (et + 1)
(56)

Deriving u (x, y) respect to x under the integral sign:

ux (x, y) =
∂

∂x

∫ +∞

0

cos (y ln t) dt

tx (et + 1)
=

∫ +∞

0

∂

∂x

cos (y ln t) dt

tx (et + 1)

That is

ux (x, y) = −

∫ +∞

0

ln t cos (y ln t) dt

tx (et + 1)
(57)

Deriving u (x, y) respect to y under the integral sign:

uy (x, y) = −

∫ +∞

0

ln t cos (y ln t) dt

tx (et + 1)
(58)

Similarly (or by applying the (34)):

vx (x, y) =

∫ +∞

0

ln t sin (y ln t) dt

tx (et + 1)
(59)

vy (x, y) = −

∫ +∞

0

ln t sin (y ln t) dt

tx (et + 1)
(60)

Deriving again:

uxx (x, y) =

∫ +∞

0

ln2 t cos (y ln t) dt

tx (et + 1)
, uxy (x, y) =

∫ +∞

0

ln2 t sin (y ln t) dt

tx (et + 1)
(61)

uyy (x, y) = −

∫ +∞

0

ln2 t cos (y ln t) dt

tx (et + 1)

and the like for vxx, vxy, vyy. We separate the derivatives of even order from those of odd
order, obtaining with obvious meaning of the symbols:

±

∫ +∞

0

(ln t)2n
{

cos (y ln t)
sin (y ln t)

dt

tx (et + 1)
, ±

∫ +∞

0

(ln t)2n+1

{
cos (y ln t)
sin (y ln t)

dt

tx (et + 1)
, ∀n ∈ N (62)

During the proof of the theorem 18 we have seen that in any zero (x0, y0) of the zeta function,
the partial derivatives of odd order, of the real part and of the imaginary part, must cancel
out. From (62)

∫ +∞

0

(ln t)2n+1

{
cos (y0 ln t)
sin (y0 ln t)

dt

tx0 (et + 1)
= 0, ∀n ∈ N
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It follows

∫ +∞

0

(ln t)2n+1 cos (y0 ln t) dt

tx0 (et + 1)
= 0,

∫ +∞

0

(ln t)2n+1 sin (y0 ln t) dt

tx0 (et + 1)
=, ∀n ∈ N

For the symmetry of zeros (1− x0, y0) is also a zero, so:

∫ +∞

0

(ln t)2n+1 cos (y0 ln t) dt

t1−x0 (et + 1)
= 0,

∫ +∞

0

(ln t)2n+1 sin (y0 ln t) dt

t1−x0 (et + 1)
= 0, ∀n ∈ N

We have thus obtained the system of infinite identities

{ ∫ +∞

0
(ln t)2n+1 cos(y0 ln t)dt

tx0 (et+1)
=

∫ +∞

0
(ln t)2n+1 cos(y0 ln t)dt

t1−x0(et+1)
∫ +∞

0
(ln t)2n+1 sin(y0 ln t)dt

tx0 (et+1)
=

∫ +∞

0
(ln t)2n+1 sin(y0 ln t)dt

t1−x0(et+1)

, ∀n ∈ N

It necessarily follows

x0 = 1− x0 =⇒ x0 =
1

2
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