A LOWER BOUND FOR MULTIPLE INTEGRAL OF
NORMALIZED LOG DISTANCE FUNCTION IN R"

T. AGAMA

ABSTRACT. In this note we introduce the notion of the local product on a
sheet and associated space. As an application, we prove that for (a,b) > e
then
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for all s € N, where (,) denotes the inner product and 2 = —1.

1. Introduction

There is hardly no formal introduction to the concept of an inner product and
associated space in the literature. The inner product space is usually a good place
to go for a wide range of mathematical results, from identities to inequalities. In this
situation, the best potential result is frequently obtained. The Cauchy-Schwartz
inequality obtained in the case of the Hilbert space [1] is a good example. The
notion of the local product and the induced local product space are introduced
in this study. This space reveals itself to be a unique form of complicated inner

product space. The following inequality is obtained by utilizing this space.

Theorem 1.1. Let d = (al,aQ,...,an),g = (b1,ba,...,b,) € R™ such that e® <

—

(@,b) and (d,b) # 1, then we have
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for all s € N, where (,) denotes the inner product and i* = —1.
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2. The local product and associated space

In this section, we introduce and study the notion of the local product and
associated space.

Definition 2.1. Let @b € C" and f : C — C be continuous on Uy [lagl, 1651
Let (C™,(,)) be a complex inner product space. Then by the k*" local product of @
with b on the sheet f, we mean the bi-variate map Q’Jf (C () x (C, () — C
such that

xk

-

(o] 1oz [b1] Y

o =ra [ | "'/foe<(i)k||a||k+lj+l|5||k+1)d“d“”'dx”

‘an‘ ‘anfll ‘al‘

where (,) denotes the inner product and where e(q) = ¢*™*. We denote an inner
product space with a k** local product defined over a sheet f as the k' local
product space over a sheet f. We denote this space with the triple (C™, (, ), g’;(; ).

In certain ways, the k*" local product is a universal map induced by a sheet. To
put it another way, a local product can be made by carefully selecting the sheet.
We get the local product by making our sheet the constant function f :=1
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Similarly, if we take our sheet to be f = log, then under the condition that (a@,b) # 0,
we obtain the induced local product
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By taking the sheet f = Id to be the identity function, then we obtain in this
setting the associated local product
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Again, by taking the sheet f = Id™' with (a,b) # 0, then we obtain the corre-
sponding induced k" local product
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Also by taking the sheet f = loglog, then we have the associated k" local product

bal 1bn—1|  |ba] k Zlgcéc
k a; b = a. b .« ) I~ .«
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3. Properties of the local product product

In this section we study some properties of the local product on a fixed sheet.
Proposition 3.1. The following holds
(i) If f is linear such that {a,b) = —(b,a) then
G5 (@b) = (=1)"*"'G§(b; a@).
(i) Let f,g : R — R such that f(t) < g(t) for any t € [1,00). Then

- -

|Gy (d;b)| < |Gg(a;b)|.

Proof. (i) By the linearity of f, we can write
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= (-1)"GF (5 a).

(ii) Property (ii) follows very easily from the inequality f(¢) < g(¢).

4. Applications of the local product

In this section we explore some applications of the local product.
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Theorem 4.1. Let d = (a1, aq,.. .,an),g = (b1,ba,...,by) € R™ such that ¢ <

-

(@, b), then the lower bound holds
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for all s € N, where (,) denotes the inner product and i* = —1.

Proof. Let f:R — R and @,b € R™ such that e < (@, b). We note that
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by taking k& = 4s for any s € N. Also by taking the sheet f := 1 to be the constant
function, then we obtain in this setting the associated local product
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Since |logit| = [logt + i%| > 1 on RT the claim inequality is a consequence by
appealing to Proposition 3.1. (Il
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