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Abstract. In this note we introduce the notion of the local product on a

sheet and associated space. As an application, we prove that for 〈a, b〉 > ee

then
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for all s ∈ N, where 〈, 〉 denotes the inner product and i2 = −1.

1. Introduction

There is hardly no formal introduction to the concept of an inner product and
associated space in the literature. The inner product space is usually a good place
to go for a wide range of mathematical results, from identities to inequalities. In this
situation, the best potential result is frequently obtained. The Cauchy-Schwartz
inequality obtained in the case of the Hilbert space [1] is a good example. The
notion of the local product and the induced local product space are introduced
in this study. This space reveals itself to be a unique form of complicated inner
product space. The following inequality is obtained by utilizing this space.

Theorem 1.1. Let ~a = (a1, a2, . . . , an),~b = (b1, b2, . . . , bn) ∈ Rn such that ee <

〈~a,~b〉 and 〈~a,~b〉 6= 1, then we have
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for all s ∈ N, where 〈, 〉 denotes the inner product and i2 = −1.
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2. The local product and associated space

In this section, we introduce and study the notion of the local product and
associated space.

Definition 2.1. Let ~a,~b ∈ Cn and f : C −→ C be continuous on ∪nj=1[|aj |, |bj |].
Let (Cn, 〈, 〉) be a complex inner product space. Then by the kth local product of ~a

with ~b on the sheet f , we mean the bi-variate map Gkf : (Cn, 〈, 〉)× (Cn, 〈, 〉) −→ C
such that

Gkf (~a;~b) = f(〈~a,~b〉)
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where 〈, 〉 denotes the inner product and where e(q) = e2πiq. We denote an inner
product space with a kth local product defined over a sheet f as the kth local
product space over a sheet f . We denote this space with the triple (Cn, 〈, 〉,Gkf (; )).

In certain ways, the kth local product is a universal map induced by a sheet. To
put it another way, a local product can be made by carefully selecting the sheet.
We get the local product by making our sheet the constant function f := 1

Gk1 (~a;~b) =
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Similarly, if we take our sheet to be f = log, then under the condition that 〈~a,~b〉 6= 0,
we obtain the induced local product

Gklog(~a;~b) = 2π × (i)k+1 log(〈~a,~b〉)
||~a||k+1 + ||~b||k+1
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By taking the sheet f = Id to be the identity function, then we obtain in this
setting the associated local product

GkId(~a;~b) = 〈~a,~b〉
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Again, by taking the sheet f = Id−1 with 〈a, b〉 6= 0, then we obtain the corre-
sponding induced kth local product
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Also by taking the sheet f = log log, then we have the associated kth local product

Gklog log(~a;~b) = log log(〈~a,~b〉)
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3. Properties of the local product product

In this section we study some properties of the local product on a fixed sheet.

Proposition 3.1. The following holds

(i) If f is linear such that 〈a, b〉 = −〈b, a〉 then

Gkf (~a;~b) = (−1)n+1Gkf (~b;~a).

(ii) Let f, g : R −→ R+ such that f(t) ≤ g(t) for any t ∈ [1,∞). Then

|Gf (~a;~b)| ≤ |Gg(~a;~b)|.

Proof. (i) By the linearity of f , we can write

Gkf (~a;~b) = f(〈~a,~b〉)
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= (−1)n+1f(〈b, a〉)
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(ii) Property (ii) follows very easily from the inequality f(t) ≤ g(t).
�

4. Applications of the local product

In this section we explore some applications of the local product.
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Theorem 4.1. Let ~a = (a1, a2, . . . , an),~b = (b1, b2, . . . , bn) ∈ Rn such that ee <

〈~a,~b〉, then the lower bound holds
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Proof. Let f : R −→ R+ and ~a,~b ∈ Rn such that ee < 〈~a,~b〉. We note that

G4slog log(~a;~b) = log log(〈~a,~b〉)
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by taking k = 4s for any s ∈ N. Also by taking the sheet f := 1 to be the constant
function, then we obtain in this setting the associated local product

G4s1 (~a;~b) =
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Since | log it| = | log t + iπ2 | ≥ 1 on R+ the claim inequality is a consequence by
appealing to Proposition 3.1. �
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