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Abstract. We generalize the space-time Fourier transform (SFT) [10] to
a special affine Fourier transform (SASFT, also known as offset linear
canonical transform) for 16-dimensional space-time multivector Cl(3, 1)-
valued signals over the domain of space-time (Minkowski space) R3,1.
We establish how it can be computed in terms of the SFT, and intro-
duce its properties of multivector coefficient linearity, shift and modu-
lation, inversion, Rayleigh (Parseval) energy theorem, partial derivative
identities, a directional uncertainty principle and its specialization to
coordinates. All important results are proven in full detail.

1. Introduction

In signal processing and optics the special affine Fourier transforms have been
introduced in 1994 [1, 2] as a vast generalization of Fourier transforms, and
other known signal transforms like the fractional Fourier transform. A fur-
ther notable trend has been the introduction of hypercomplex (quaternionic
and Clifford) Fourier transforms [13, 15, 18]. A species of Fourier transform
particularly relevant to signal processing, navigation and physics is the space-
time Fourier transform (SFT) [10, 11, 6, 7] that transforms signals defined
on the domain of (special relativistic) space-time (Minkowski space) R3,1

with range in the corresponding geometric (Clifford) algebra of space-time
(space-time algebra STA) Cl(3, 1). Apart from electromagnetic waves and
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light it can be applied in any area of physics, including electro-magnetism,
special relativity, satellite navigation, optics and quantum mechanics (e.g. to
spinor wave functions). It is therefore on the applied side also of interest to
quantum bit computations and quantum computing in general. A steerable
split of quaternions [16] is found to have a natural algebraic analogue in STA
as space-time split, defined by the time vector and its dual trivector (the
three-dimensional space volume element). Applied to any space-time signal,
it naturally generates two wave packages, one traveling to the left and one to
the right, classical solutions of relativistic wave equations.

With this backdrop we undertake to generalize the SFT to a special
affine Fourier transform. This automatically generates (for special parameter
settings) a fractional SFT, a linear canonical SFT, a lens transformation SFT,
a free-space propagation SFT and a magnification SFT, amongst others. We
thus create a set of potentially powerful new tools for physics, signal process-
ing, optics, quantum mechanics, quantum computing, space navigation, etc.
The current work is an extension of [17], with special emphasize on providing
detailed proof of all important new results.

This paper is structured as follows. Section 2 introduces the neces-
sary background of space-time algebra and the space-time Fourier transform
(SFT). Section 3 then defines the special affine space-time Fourier transform
(SASFT) generalization and establishes several of its properties. This in-
cludes in Subsection 3.3 the uncertainty principle for the SASFT in a general
directional form and a specific coordinate system related form. The paper
concludes with Section 4 and a list of references.

2. Background

For a general introduction to Clifford’s geometric algebras see [12].

2.1. Space-Time Algebra

Space-time of Einstein’s special relativity is a four-dimensional non-Euclidean
quadratic space R3,1 equipped with the orthonormal vector basis1

{et, e1, e2, e3}, −e2
t = e2

1 = e2
2 = e2

3 = 1. (2.1)

Space-time algebra [9, 5] (isomorphic to Dirac algebra of quantum mechanics)
is Clifford’s geometric algebra Cl(3, 1) generated by all geometric products
of R3,1 vectors, also called (flat) Minkowski space, with a 16-dimensional
algebra basis of scalar, vector, bivector, trivector, and pseudoscalar elements:

{1, et, e1, e2, e3, et1, et2, et3, e23, e31, e12,

e123 = i3, et31, et23, et12, et123 = ist}, (2.2)

1The signature (+ − −−) chosen in [9] would also be possible, but then the important

quaternionic subalgebra (2.4) would be absent. The possibility of our (− + ++) is also
indicated in Footnote 15 on page 22 of [9].
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where we used the conventional index notation et1 = ete1, e123 = e1e2e3,
etc. The even subalgebra Cl+(3, 1) of the space-time algebra has the eight-
dimensional basis

{1, et1, et2, et3, e12, e23, e31, et123 = ist}, (2.3)

and is isomorphic to (both Hamilton’s complex biquaternions and) the Clif-
ford algebra of space Cl(3, 0), also known as Pauli algebra, if we identify
(denoting Cl(3, 0) elements with bold ~e)

1 = 1, ~ek = etk, ~ejk = ejk, ~e123 = ist, k, j ∈ {1, 2, 3}, k 6= j. (2.4)

Furthermore we have the important four-dimensional subalgebra of space-
time algebra isomorphic to quaternions with basis2

{1, et, i3, ist}, e2
t = i23 = i2st = −1. (2.5)

Left multiplication with et and right multiplication with its space-time dual
i3 = e∗t = eti

−1
st is a form of space-time duality3 mapping for basis elements

of grade k to grade 4− k, 0 ≤ k ≤ 4:

et{(2.2)}i3 =

{ist,−i3, et23, et31, et12,−e23,−e31,−e12,−et1,−et2,−et3,−et, e1, e2, e3, 1},
(2.6)

A useful tool for us will be the following split [10] of space-time multivectors
and multivector functions4

M± =
1

2
(M ± etMi3), M = M+ +M−, (2.7)

with the convenient property that

etM± = ∓M±i3. (2.8)

Using the (anti-involution) principal reverse (reverse product order com-
bined with changing the sign of every basis vector of negative square) [20],
we have for any two multivectors M,N ∈ Cl(3, 1) that

M ∗N = 〈MN〉0 =
∑
A

MANA, (2.9)

where index A ranges over all indexes in (2.2) and in addition index 0 is for
the scalar part: M0 = 〈M〉0, N0 = 〈N〉0. Then we can define the multivector
norm

|N | =
√
N ∗N =

√∑
A

N2
A. (2.10)

2Note that this four-dimensional subalgebra of STA is spatially isotropic, i.e. invariant

under spatial rotations.
3Note that as for bivectors, the space-time duality map (2.6) exchanges relative vectors
et1, et2, et3, with pure space bivectors e12, e23, e31, and vice versa. For Maxwell’s theory

[5, 9] this means to exchange electric and magnetic fields.}
4Regarding physics, the split is determined by the time vector and its dual trivector (the
three-dimensional space volume element). Applied to any space-time signal, it naturally

generates two wave packages, one traveling to the left and one to the right, classical solu-
tions of relativistic wave equations. [10]
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Example 2.1. We compute the norm of etM for M ∈ Cl(3, 1). We have

|etM | =
√
〈etMetM〉0 =

√
〈etMMet〉0 =

√
〈MMetet〉0 =

√
〈MM〉0

= |M |, (2.11)

where we used the fact that the principal reverse is an anti-involution, the
cyclic factor permutation within the scalar grade bracket 〈. . .〉0, and that
etet = −etet = 1.

Note that the split (2.7) results in the norm identity

|M |2 = |M+|2 + |M−|2. (2.12)

2.2. Space-Time Fourier Transform (SFT)

For background on Fourier transforms we refer to [3, 8] and for Clifford
Fourier transforms to [13, 18].

For functions f : R3,1 → Cl(3, 1) and 1 ≤ a < ∞, we introduce the
linear spaces

La(R3,1;Cl(3, 1))

=
{
R3,1 → Cl(3, 1) : ||f ||a =

(∫
R3,1

|f(x)|a d4x
)1/a

<∞
}
. (2.13)

Definition 2.2. The space-time Fourier transform (SFT) [10] maps 16-dimen-
sional space-time algebra functions f ∈ L1(R3,1;Cl(3, 1)) to 16-dimensional
spectrum functions FSFT {f} : R3,1 → Cl(3, 1). It is defined as

FSFT {f}(ω) =

∫
R3,1

e−ettωtf(x)e−i3
−→x ·−→ω d4x, (2.14)

with space-time vectors x = tet + −→x ∈ R3,1, −→x = xe1 + ye2 + ze3 ∈ R3,
infinitesimal space-time volume d4x = dtdxdydz and space-time frequency
vector ω = ωtet +−→ω ∈ R3,1,−→ω = ω1e1 + ω2e2 + ωee3 ∈ R3.

We have the following lemma.

Lemma 2.3. FSFT {f} is a continuous and hence measurable function.

Proof. The proof can be done analogously to the proof of Proposition 3.1,
property (ix) of the QFT in [4]. �

The SFT is invertible, compare (72) of [10] or Lemma 2.5 of [7].

Theorem 2.4. For f,FSFT {f} ∈ L1(R3,1;Cl(3, 1)), the inverse of the SFT is

f(x) =
1

(2π)4

∫
R3,1

eettωtFSFT {f}(ω)ei3
−→x ·−→ω d4ω,

d4ω = dωtdω1dω2dω3. (2.15)

We will need the following anisotropic scaling property, a special case
of the general linear transformation property Theorem 5.4 of [10].
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Lemma 2.5. For αt, α1, α2, α3 ∈ R \ {0}, f ∈ L1(R3,1;Cl(3, 1)), we have

FSFT {f(αttet + α1x1e1 + α2x2e2 + α3x3e3)}(ω)

=
1

|αtα1α2α3|
FSFT {f}(

ωt
αt
et +

ω1

α1
e1 +

ω2

α2
e2 +

ω3

α3
x3). (2.16)

We will furthermore need the SFT Rayleigh (or SFT Parseval) energy
theorem, see Corollary 16 of [6].

Lemma 2.6. For f ∈ L2(R3,1;Cl(3, 1)), we have∫
R3,1

|FSFT {f}(ω)|2d4ω = (2π)4

∫
R3,1

|f(x)|2d4x. (2.17)

We have the following Riemann-Lebesgue lemma for the SFT.

Lemma 2.7. If f ∈ L1(R3,1;Cl(3, 1)), then FSFT {f}(ω)→ 0, as ω → 0.

Proof. The proof is analogous to that of Theorem 3.1 in [4]. �

We also need the following lemma (Lemma 13 in [6]) on partial deriva-
tives.

Lemma 2.8. For f, ∂∂tf,
∂
∂xk

f ∈ L1(R3,1; Cl(3, 0)), k = 1, 2, 3, provided that
the derivatives exist, we obtain

FSFT
{ ∂
∂t
f(x)

}
(ω) = ωtetFSFT {f(x)}(ω), (2.18)

FSFT
{ ∂

∂xk
f(x)

}
(ω) = FSFT {f(x)}(ω)i3ωk. (2.19)

We note the following directional uncertainty principle for the SFT
(Theorem 7.2 of [11]).

Theorem 2.9. For two arbitrary space-time vectors c,d ∈ R3,1 and f , |x|1/2f
∈ L2(R3,1;Cl(3, 0)) we have∫

R3,1

(ctt−−→c · −→x )2|f(x)|2d4x

∫
R3,1

(dtωt −
−→
d · −→ω )2|FSFT {f}(ω)|2d4ω

≥ (2π)4

4

[
(ctdt −−→c ·

−→
d )2F 2

− + (ctdt +−→c ·
−→
d )2F 2

+

]
, (2.20)

with energies of the left- and right traveling wavepackets

F± =

∫
R3,1

|f±(x)|2d4x,

∫
R3,1

|f(x)|2d4x = F− + F+. (2.21)
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3. Special Affine Space-Time Fourier Transform (SASFT)

3.1. Defining the SASFT

We now want to vastly extend the SFT to a special affine Fourier transform
(SASFT) following the approach in [1, 2]. For this purpose we introduce two
special affine phase space transformations given by matrixes and vectors(

a b
c d

)
,

(
m
n

)
,

(
A B
C D

)
,

( −→
M
−→
N

)
,

a, b, c, d,m, n,A,B,C,D ∈ R,
−→
M,
−→
N ∈ R3, (3.1)

with the lossless area- and power-preserving unit determinants

det

(
a b
c d

)
= ad− bc = 1, det

(
A B
C D

)
= AD −BC = 1. (3.2)

We modify the left and the right kernel factors of the SFT (2.14) to5

k(t, ωt) =
1√
2πb

e
et
2b

(
at2+2mt+dω2

t−2(t+dm−bn)ωt

)
,

K(−→x ,−→ω ) =
1

(2πB)3/2
e

i3
2B

(
A−→x 2+2

−→
M ·−→x+D−→ω 2−2(−→x+D

−→
M−B

−→
N )·−→ω

)
, (3.3)

Remark 3.1. Note that we need to choose the quantities
−→
M,
−→
N as vectors

in R3, otherwise we would not be able to obtain a scalar phase factor in
the exponent of K(−→x ,−→ω ). A more elaborate alternative would be to con-
struct K(−→x ,−→ω ) as the product of three kernel factors K1(x, ω1), K2(y, ω2),
K3(z, ω3), and use three (2× 2) matrices and three (2× 1) vectors for their
construction in analogy to k(t, ωt). But this approach would introduce eight
extra parameters.

We now define the special affine space-time Fourier transform.

Definition 3.2. The special affine space-time Fourier transform (SASFT)
maps 16-dimensional space-time algebra functions f ∈ L1(R3,1;Cl(3, 1)) to
16-dimensional spectrum functions F{f} : R3,1 → Cl(3, 1). It is defined as

F{f}(ω) =

∫
R3,1

k(ωt, t)f(x)K(−→x ,−→ω )d4x, (3.4)

with kernel factors (3.3).

Remark 3.3. Note that we obtain the SFT [10] by setting a = d = m = n = 0,

b = −c = 1 and A = D = 0, B = −C = 1,
−→
M =

−→
N =

−→
0 . By setting only

m = n = 0 and
−→
M =

−→
N =

−→
0 we obtain a linear canonical transform6

generalization of the SFT without offsets. By choosing b = −c = − sinϑ,

5Note that Abe and Sheridan adopt in their 1994 papers that introduce the SAFT slightly
different sign conventions in (61) of [1] and in (3) of [2]. For consistency, we use the

conventions specified in (3) of [2].
6The SASFT is therefore more general than the linear canonical SFT, obtained by setting

for the SASFT the translation offsets to zero: m = n = 0 and
−→
M =

−→
N =

−→
0 .
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a = d = cosϑ, m = n = 0 and B = −C = − sin θ, A = D = cos θ,−→
M =

−→
N =

−→
0 we get a generalization of the SFT to a fractional Fourier

transform. Including translations m,n 6= 0 and
−→
M,
−→
N 6= −→0 , we obtain SASFT

generalizations of special known cases of interest [2] in optics as the lens
transformation7 with a = d = 1, c = ξ, b = 0 and A = D = 1, C = Ξ, B = 0;
the free-space propagation with a = d = 1, c = 0, b = η and A = D = 1,
C = 0, B = Γ; and magnification8 with a = eα, d = e−α, c = b = 0 and
A = eΛ, D = e−Λ, C = B = 0. Any property of the SASFT of Definition
3.2 will therefore automatically apply to all the special cases listed in this
remark.

3.2. Properties of the SASFT

Convenient for computations, it is possible to pull out parts of the kernel
factors to the left and right of the integral in Definition 3.2 that do not
depend on the integration variable x ∈ R3,1.

Lemma 3.4.

F{f}(ω) =
1√
2πb

e
et
2b

(
dω2

t +2(bn−dm)ωt

)
∫
R3,1

e
et
2b

(
at2+2(m−ωt)t

)
f(x)e

i3
2B

(
A−→x 2+2(

−→
M−−→ω )·−→x

)
d4x

e
i3
2B

(
D−→ω 2+2(B

−→
N−D

−→
M)·−→ω

)
1

(2πB)3/2
. (3.5)

The next lemma shows, that we can reduce the computation of the
SASFT to that of the SFT. By defining the function

g(x) = e
et
2b (at2+2mt)f(x) e

i3
2B (A−→x 2+2

−→
M ·−→x ), (3.6)

we can reduce the computation of the SAFT to

F{f}(ω) =
1√
2πb

e
et
2b

(
dω2

t +2(bn−dm)ωt

) ∫
R3,1

e−
et
b ωttg(x) e−

i3
B
−→ω ·−→x d4x

e
i3
2B

(
D−→ω 2+2(B

−→
N−D

−→
M)·−→ω

)
1

(2πB)3/2
. (3.7)

Lemma 3.5. The SASFT can be computed from the SFT of g(x), defined in
(3.6), by

F{f}(ω) =
1√
2πb

e
et
2b

(
dω2

t +2(bn−dm)ωt

)
FSFT {g}

(ωt
b
et +

−→ω
B

)
e

i3
2B

(
D−→ω 2+2(B

−→
N−D

−→
M)·−→ω

)
1

(2πB)3/2
. (3.8)

The following derivatives of g will be needed later.

7As [2] points out on page 1802, for the lens transformation a degenerate version of the

SAFT is required, see also [1].
8As pointed out related to equation (13) on page 1802 of [2], a special limit for b → 0
formula will need to be used in this case.
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Lemma 3.6. The time derivative of g is given by

∂

∂t
g(x) = e

et
2b (at2+2mt)

[
et(

a

b
t+

m

b
)f(x) +

∂

∂t
f(x)

]
e

i3
2B (A−→x 2+2

−→
M ·−→x ). (3.9)

The derivative in the xk-coordinate direction of g is given by

∂

∂xk
g(x) = e

et
2b (at2+2mt)

[
(
A

B
t+

Mk

B
)f(x)i3 +

∂

∂xk
f(x)

]
e

i3
2B (A−→x 2+2

−→
M ·−→x ). (3.10)

Proof. We compute only the time derivative, the derivative in the xk-coordi-
nate direction can be found analogously. We use the product rule to obtain

∂

∂t
g(x) =

∂

∂t

[
e

et
2b (at2+2mt)f(x) e

i3
2B (A−→x 2+2

−→
M ·−→x )

]
=
[ ∂
∂t
e

et
2b (at2+2mt)

]
f(x) e

i3
2B (A−→x 2+2

−→
M ·−→x )

+ e
et
2b (at2+2mt) ∂

∂t
f(x) e

i3
2B (A−→x 2+2

−→
M ·−→x )

= e
et
2b (at2+2mt)et(

a

b
t+

m

b
)f(x) e

i3
2B (A−→x 2+2

−→
M ·−→x )

+ e
et
2b (at2+2mt) ∂

∂t
f(x) e

i3
2B (A−→x 2+2

−→
M ·−→x )

= e
et
2b (at2+2mt)

[
et(

a

b
t+

m

b
)f(x) +

∂

∂t
f(x)

]
e

i3
2B (A−→x 2+2

−→
M ·−→x ). (3.11)

�

We further note useful relationships between the functions f and g of
(3.6).

Lemma 3.7. For g defined according to (3.6) in terms of f , we have

|g(x)| = |f(x)|, |g±(x)| = |f±(x)|. (3.12)

Proof. For the proof we observe that by its definition g = eetαfei3β for some
scalar functions α, β, see (3.6). Therefore

|g(x)|2 = 〈g(x)g(x)〉0 = 〈eetαf(x)ei3βe−i3βf(x)e−etα〉0
= 〈f(x)f(x)〉0 = |f(x)|2, (3.13)

where we used for the third identity the cyclic commutation property of the
scalar part 〈abc〉0 = 〈cab〉0, for any a, b, c ∈ Cl(3, 1). Because by construction

g± =
(
eetαfei3β

)
± = eetαf±e

i3β , (3.14)

we also have |g±(x)| = |f±(x)|. �

In analogy to Theorem 3.3 of [7], where in the quaternionic setting
the SAFT is referred to by another popular name of offset linear canonical
transform, we can establish the following properties.
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Theorem 3.8. The SASFT is left linear for multivector coefficients that com-
mute with et

α = α0+αtet+α12e12+α23e23+α31e31+αt12et12+αt23et23+αt31et31 (3.15)

and right linear for coefficients that commute with i3

β = β0 + β1e1 + β2e2 + β3e3 + β12e12 + β23e23 + β31e31 + β123i3. (3.16)

That is

F{αf + α′g} = αF{f}+ α′F{g},
F{fβ + gβ′} = F{f}β + F{g}β′. (3.17)

Furthermore, we have

lim
|ω|→0

|F{f}(ω)| = 0. (3.18)

Finally, F{f} is uniformly continuous on R3,1.

Proof. We first proof left linearity (3.17). For that we note that due to the
assumed commutation property of α and α′ with et:

etα = αet, etα
′ = α′et, (3.19)

we also have commutation of the left kernel factor (3.3) with α and α′:

k(t, ωt)α = αk(t, ωt), k(t, ωt)α
′ = α′k(t, ωt). (3.20)

Therefore,

F{αf + α′g}(ω) =

∫
R3,1

k(ωt, t)[αf(x) + α′g(x)]K(−→x ,−→ω )d4x

=

∫
R3,1

αk(ωt, t)f(x)K(−→x ,−→ω )d4x+

∫
R3,1

α′k(ωt, t)g(x)K(−→x ,−→ω )d4x

= αF{f}(ω) + α′F{g}(ω). (3.21)

Next, we proof right linearity (3.17). We note that due to the assumed com-
mutation property of β and β′ with i3:

βi3 = i3β, β′i3 = i3β
′, (3.22)

we also have commutation of the right kernel factor (3.3) with β and β′:

βK(−→x ,−→ω ) = K(−→x ,−→ω )β, β′K(−→x ,−→ω ) = K(−→x ,−→ω )β′. (3.23)

Therefore,

F{fβ + gβ′}(ω) =

∫
R3,1

k(ωt, t)[f(x)β + g(x)β′]K(−→x ,−→ω )d4x

=

∫
R3,1

k(ωt, t)f(x)K(−→x ,−→ω )βd4x+

∫
R3,1

k(ωt, t)g(x)K(−→x ,−→ω )β′d4x

= F{f}(ω)β + F{g}(ω)β′. (3.24)

Equation (3.18) follows from the computation of the SASFT from the SFT
by Lemma 3.5, and by applying Lemma 2.7 for the SFT.
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The uniform continuity of F{f} on R3,1 follows from the computation
of the SASFT from the SFT by Lemma 3.5, and from Lemma 2.3 for the
SFT. �

We further obtain the following shift and modulation properties and the
inverse transform.

Theorem 3.9. For f ∈ L1(R3,1;Cl(3, 1)), x, ω ∈ R3,1, and constant vector

k = ket +
−→
K ∈ R3,1 we have

F{f(x− k)}(ω) = eet(−
1
2ack

2−cmk+ckωt+ank) F{f(x)}
(
ω − (aket +A

−→
K)
)

ei3(− 1
2AC

−→
K2−C

−→
M ·
−→
K+C

−→
K ·−→ω+A

−→
N ·
−→
K). (3.25)

Proof. We compute, using substitution x′ = x−k, d4x = d4x′, and therefore

x = x′ + k, or in components t = t′ + k, −→x = −→x ′ +
−→
K , that

F{f(x− k)}(ω) =

∫
R3,1

k(t, ωt)f(x− k)K(−→x ,−→ω )d4x

=

∫
R3,1

k(t′ + k, ωt)f(x′)K(−→x ′ +
−→
K,−→ω )d4x′ (3.26)

Now we compute the kernel factors separately.

k(t′ + k, ωt) =
1√
2πb

e
et
2b

(
a(t′+k)2+2m(t′+k)+dω2

t−2(t′+k+dm−bn)ωt

)
=

1√
2πb

e
et
2b

(
at′2+2akt′+ak2+2mt′+2mk+dω2

t−2(t′+dm−bn)ωt−2kωt

)
= e

et
2b

(
ak2+2mk−2kωt

)
1√
2πb

e
et
2b

(
at′2+2mt′+d(ωt−ak)2+2dakωt−da2k2−2(t′+dm−bn)(ωt−ak)−2(dm−bn)ak

)
= e

et
2b

(
ak2−da2k2−2kωt+2dakωt+2mk−2(dm−bn)ak

)
1√
2πb

e
et
2b

(
at′2+2mt′+d(ωt−ak)2−2(t′+dm−bn)(ωt−ak)

)
= eet

(
a
2b (1−da)k2+ 2

2b (−1+da)kωt+
2
2b (1−da)mk+ 2b

2bnak
)
k(t′, ωt − ak)

= eet
(
− 1

2ack
2+ckωt−cmk+nak

)
k(t′, ωt − ak), (3.27)

where in the fifth equality we have replaced the line before by k(t′, ωt − ak),
according to (3.3), and for the last equality we have used the determinant
ad − bc = 1 of (3.2), i.e. c = (ad − 1)/b. We can similarly compute for the
right kernel factor

K(−→x ′ +
−→
K,−→ω ) = K(−→x ′,−→ω −A

−→
K)

ei3
(
− 1

2AC
−→
K2+C

−→
K ·−→ω−C

−→
M ·
−→
K+A

−→
N ·
−→
K
)

(3.28)

Inserting (3.27) and (3.28) in (3.26), we can factor out the exponentials to
the left and right, respectively, and obtain (3.25). �
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Theorem 3.10. For f ∈ L1(R3,1;Cl(3, 1)), x, ω ∈ R3,1, and constant (modu-
lation frequency) vector µ = µtet +−→µ ∈ R3,1 we have

F{eettµtf(x)ei3
−→x ·−→µ }(ω) = e−et

(
1
2d(bµ2

t−2µtωt)+µt(dm−bn)
)

F{f(x)}
(
ω − (bµtet +B−→µ )

)
e−i3

(
1
2D(B−→µ 2−2−→µ ·−→ω )+−→µ ·(D

−→
M−B

−→
N )
)
. (3.29)

Proof. We compute

F{eettµtf(x)ei3
−→x ·−→µ }(ω)

=

∫
R3,1

k(t, ωt)e
ettµtf(x)ei3

−→x ·−→µK(−→x ,−→ω )d4x. (3.30)

First we focus on the left side factors

k(t, ωt)e
ettµt =

1√
2πb

e
et
2b

(
at2+2mt+dω2

t−2(t+dm−bn)ωt

)
eettµt

=
1√
2πb

e
et
2b

(
at2+2mt+dω2

t−2(t+dm−bn)ωt+2tbµt

)
=

1√
2πb

e
et
2b

(
at2+2mt+dω2

t−2dbµtωt+db
2µ2

t+2dbµtωt−db2µ2
t

)
e

et
2b

(
−2(t+dm−bn)(ωt−bµt)−2(dm−bn)bµt

)
= e

et
2b

(
2dbµtωt−db2µ2

t−2(dm−bn)bµt

)
1√
2πb

e
et
2b

(
at2+2mt+d(ωt−bµt)

2−2(t+dm−bn)(ωt−bµt)
)

= e−et
(

1
2d(bµ2

t−2µtωt)+µt(dm−bn)
)
k(t, ωt − bµt), (3.31)

where in the last line we used the expression for the left kernel factor from
(3.3). Similarly, we can treat the right factors and obtain

ei3
−→x ·−→µK(−→x ,−→ω )

= K(−→x ,−→ω −B−→µ )e−i3
(

1
2D(B−→µ 2−2−→µ ·−→ω )+−→µ ·(D

−→
M−B

−→
N )
)
. (3.32)

By inserting (3.31) and (3.32) into (3.30), we can factor out the exponential
factors to the left and right, respectively, and obtain (3.29). �

Theorem 3.11. For f,F{f} ∈ L1(R3,1;Cl(3, 1)), we obtain the inverse trans-
form as

f(x) =

∫
R3,1

k(ωt, t)F{f}(ω)K(−→x ,−→ω ) d4ω, (3.33)

with overbar denoting the principal reverse [20], i.e. et = −et, i3 = −ie.
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Proof. We compute∫
R3,1

k(ωt, t)F{f}(ω)K(−→x ,−→ω ) d4ω

=

∫
R3,1

1√
2πb

e−
et
2b

(
at2+2mt+dω2

t−2(t+dm−bn)ωt

)
1√
2πb

e
et
2b

(
dω2

t +2(bn−dm)ωt

)
FSFT {g}

(ωt
b
et +

−→ω
B

)
e

i3
2B

(
D−→ω 2+2(B

−→
N−D

−→
M)·−→ω

)
1

(2πB)3/2

e−
i3
2B

(
A−→x 2+2

−→
M ·−→x+D−→ω 2−2(−→x+D

−→
M−B

−→
N )·−→ω

)
1

(2πB)3/2
d4ω

=

∫
R3,1

1

2πb

1

(2πB)3
e−

et
2b

(
at2+2mt−2tωt

)
FSFT {g}

(ωt
b
et +

−→ω
B

)
e−

i3
2B

(
A−→x 2+2

−→
M ·−→x−2−→x ·−→ω

)
d4ω

=
1

2πb

1

(2πB)3

∫
R3,1

e−
et
2b

(
at2+2mt−2tωt

) {∫
R3,1

e−
et
b ωtt

′
e

et
2b (at′2+2mt′)f(x′)

e
i3
2B (A−→x ′2+2

−→
M ·−→x ′) e−

i3
B
−→ω ·−→x ′

d4x′
}
e−

i3
2B

(
A−→x 2+2

−→
M ·−→x−2−→x ·−→ω

)
d4ω

= e−
et
2b

(
at2+2mt

) ∫
R3,1

[ 1

2πb

∫
R1

e−
et
b ωtt

′
e

et
b tωtdωt

]
e

et
2b (at′2+2mt′)f(x′)

e
i3
2B (A−→x ′2+2

−→
M ·−→x ′)

[ 1

(2πB)3

∫
R3

e−
i3
B
−→ω ·−→x ′

e
i3
B

(
−→x ·−→ω

)
d3ω

]
d4x′

e−
i3
2B

(
A−→x 2+2

−→
M ·−→x

)
= e−

et
2b

(
at2+2mt

) ∫
R3,1

δ(t− t′) e
et
2b (at′2+2mt′)f(x′)

e
i3
2B (A−→x ′2+2

−→
M ·−→x ′) δ3(−→x −−→x ′)d4x′ e−

i3
2B

(
A−→x 2+2

−→
M ·−→x

)
= e−

et
2b

(
at2+2mt

)
e

et
2b (at2+2mt)f(x)e

i3
2B (A−→x 2+2

−→
M ·−→x ) e−

i3
2B

(
A−→x 2+2

−→
M ·−→x

)
= f(x). (3.34)

For the first equality we insert the definition of the kernel factors (3.3), and
Lemma 3.5 that expresses the SASFT in terms of the SFT. For the third
equality we use the definitions of the SFT (2.14) and of the function g in terms
of f (3.6). For the fourth equality we apply Fubini’s theorem for changing
the order of integration. �

For the SASFT we have the following Rayleigh (Parseval) energy theo-
rem.

Theorem 3.12. A space-time algebra signal f ∈ L2(R3,1;Cl(3, 1)) and its
SASFT F{f} satisfy the energy identity

||F{f}||2 = ||f ||2. (3.35)
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Proof. We compute

(‖F{f}‖2)2 =

∫
R3,1

|F{f}(ω)|2d4ω

=

∫
R3,1

∣∣∣ 1√
2πb

e
et
2b

(
dω2

t +2(bn−dm)ωt

)
FSFT {g}

(ωt
b
et +

−→ω
B

)
e

i3
2B

(
D−→ω 2+2(B

−→
N−D

−→
M)·−→ω

)
1

(2πB)3/2

∣∣∣2d4ω

=

∫
R3,1

∣∣∣ 1√
2πb
FSFT {g}

(ωt
b
et +

−→ω
B

) 1

(2πB)3/2

∣∣∣2d4ω

=
1

(2π)4

∫
R3,1

∣∣∣FSFT {g}(ωt
b
et +

−→ω
B

)∣∣∣2 d4ω

bB3

=
1

(2π)4

∫
R3,1

∣∣∣FSFT {g}(ω′)∣∣∣2d4ω′

=
1

(2π)4
(2π)4

∫
R3,1

|g(x)|2d4x

=

∫
R3,1

∣∣∣e et
2b (at2+2mt)f(x) e

i3
2B (A−→x 2+2

−→
M ·−→x )

∣∣∣2 d4x

=

∫
R3,1

|f(x)|2d4x = (‖f‖2)2, (3.36)

where we used Lemma 3.5 for the second equality, substitution ω′ = ωt

b et+
−→ω
B ,

d4ω′ = d4ω/(bB3), for the fifth equality, Lemma 2.6 for the sixth equality,
and the definition of g by (3.6) for the seventh equality. Finally, taking the
square root of both sides of (‖F{f}‖2)2 = (‖f‖2)2, completes the proof. �

In analogy to Lemma 3.7 of [7] we can establish relationships between
signal derivatives and multiplication with frequency components of the SA-
SFT.

Lemma 3.13. For f, ∂∂tf,
∂
∂xk

f ∈ L2(R3,1;Cl(3, 0)), k = 1, 2, 3, provided that
the derivatives exist, we obtain

∫
R3,1

ω2
t |F{f}(ω)|2d4ω = b2

∫
R3,1

∣∣∣et(a
b
t+

m

b

)
f(x) +

∂

∂t
f(x)

∣∣∣2d4x,∫
R3,1

ω2
k|F{f}(ω)|2d4ω

= B2

∫
R3,1

∣∣∣(A
B
xk +

Mk

B

)
f(x)i3 +

∂

∂xk
f(x)

∣∣∣2d4x. (3.37)
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Proof. We compute∫
R3,1

ω2
t |F{f}(ω)|2d4ω =

∫
R3,1

|ωtetF{f}(ω)|2d4ω

=

∫
R3,1

∣∣∣ 1√
2πb

e
et
2b

(
dω2

t +2(bn−dm)ωt

)
ωtet FSFT {g}

(ωt
b
et +

−→ω
B

)
e

i3
2B

(
D−→ω 2+2(B

−→
N−D

−→
M)·−→ω

)
1

(2πB)3/2

∣∣∣2d4ω

=
b2

(2π)4

∫
R3,1

∣∣∣e et
2b

(
dω2

t +2(bn−dm)ωt

)
ωt
b
et FSFT {g}

(ωt
b
et +

−→ω
B

)
e

i3
2B

(
D−→ω 2+2(B

−→
N−D

−→
M)·−→ω

)∣∣∣2 d4ω

bB3

=
b2

(2π)4

∫
R3,1

∣∣∣FSFT { ∂
∂t
g(x)}

(ωt
b
et +

−→ω
B

)∣∣∣2 d4ω

bB3

=
b2

(2π)4

∫
R3,1

∣∣∣FSFT { ∂
∂t
g(x)}(ω′)

∣∣∣2d4ω′

= b2
∫
R3,1

∣∣∣ ∂
∂t
g(x)

∣∣∣2d4x

= b2
∫
R3,1

∣∣∣e et
2b (at2+2mt)

[
et(

a

b
t+

m

b
)f(x) +

∂

∂t
f(x)

]
e

i3
2B (A−→x 2+2

−→
M ·−→x )

∣∣∣2d4x

= b2
∫
R3,1

∣∣∣et(a
b
t+

m

b
)f(x) +

∂

∂t
f(x)

∣∣∣2d4x, (3.38)

where we used Example 2.1 for the first equality, Lemma 3.5 for the second

equality, Lemma 2.8 for the fourth equality, the substitution ω′ = ωt

b et +
−→ω
B

and d4ω′ = d4ω/(bB3) for the fifth equality, Lemma 2.6 for the sixth equality,
and Lemma 3.6 for the seventh equality. �

3.3. Uncertainty Principle for the SASFT

We now establish the directional uncertainty principle for the SASFT. The
uncertainty principle specifies how precisely a signal can be measured in space
as well as in its spectral (frequency) domain, and is therefore of universal
importance in quantum theory, optics and signal processing.

Theorem 3.14. For two arbitrary constant space-time vectors c,d ∈ R3,1 and
f, |x|1/2f ∈ L2(R3,1;Cl(3, 0)) we have∫

R3,1

(ctt−−→c · −→x )2|f(x)|2d4x

∫
R3,1

(dtωt −
−→
d · −→ω )2|F{f}(ω)|2d4ω

≥ 1

4

[
(ctd

′
t −−→c ·

−→
d ′)2F 2

− + (ctd
′
t +−→c ·

−→
d ′)2F 2

+

]
, (3.39)

with d′ = bdtet+B
−→
d , and energies of the left- and right traveling wavepackets

F± =

∫
R3,1

|f±(x)|2d4x. (3.40)
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Proof. We observe that according to (3.6) and Lemma 3.5

|F{f}(ω)|2 =
1

(2π)4bB3
|FSFT {g}(ω′)|2, ω′ =

ωt
b
et +

−→ω
B
. (3.41)

Therefore,∫
R3,1

(dtωt −
−→
d · −→ω )2|F{f}(ω)|2d4ω

=
1

(2π)4bB3

∫
R3,1

(dtωt −
−→
d · −→ω )2|FSFT {g}(ω′)|2d4ω

=
bB3

(2π)4bB3

∫
R3,1

(d′tω
′
t −
−→
d ′ · −→ω ′)2|FSFT {g}(ω′)|2d4ω′ (3.42)

with d′ = bdtet + B
−→
d , such that dtωt −

−→
d · −→ω = d′tω

′
t −
−→
d ′ · −→ω ′, and

d4ω = bB3d4ω′. Relabeling ω′ → ω in the last integral of (3.42), and using
|f(x)| = |g(x)| of Lemma 3.7, we obtain∫

R3,1

(ctt−−→c · −→x )2|f(x)|2d4x

∫
R3,1

(dtωt −
−→
d · −→ω )2|F{f}(ω)|2d4ω =∫

R3,1

(ctt−−→c · −→x )2|g(x)|2d4x
1

(2π)4

∫
R3,1

(d′tωt −
−→
d ′ · −→ω )2|FSFT {g}(ω)|2d4ω

≥ 1

4

[
(ctd

′
t −−→c ·

−→
d ′)2F 2

− + (ctd
′
t +−→c ·

−→
d ′)2F 2

+

]
, (3.43)

where we applied the directional uncertainty principle of the SFT (Theorem
2.9) for the inequality, and replaced G± =

∫
R3,1 |g±(x)|2d4x = F±, i.e. finally

applying Lemma 3.7 to the left- and right traveling energy integrals for g. �

For coordinate directions we get the following specialization.

Corollary 3.15. For any two space-time and frequency coordinates xλ, ωµ,

with λ, µ ∈ {t, 1, 2, 3}, xt = t, and f, |x|1/2f ∈ L2(R3,1;Cl(3, 0)) we have∫
R3,1

x2
λ|f(x)|2d4x

∫
R3,1

ω2
µ|F{f}(ω)|2d4ω ≥ δλ,µ

4
β2F 2, (3.44)

with Kronecker symbol δλ,µ equal 1 if µ = λ and zero otherwise, β = b for
µ = t and β = B for µ ∈ {1, 2, 3}, and total signal energy (see (2.12))

F =

∫
R3,1

|f(x)|2d4x =

∫
R3,1

[|f−(x)|2 + |f+(x)|2]d4x = F− + F+. (3.45)

4. Conclusion

After giving some background on space-time algebra and reviewing the space-
time Fourier transform (SFT) and some of its properties, we have defined
the special affine space-time Fourier transform as a vast generalization of the
SFT on the one hand, which now includes new transforms such as a fractional
SFT and others. On the other hand this generalization means also to lift the
classical special affine Fourier transforms, with their primary relevance for
optics [1, 2], to the level of high dimensional hypercomplex (Clifford) integral
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transforms. The current work is based on [17], adding detailed proofs for im-
portant SASFT properties. We expect that a series of theoretical and applied
research on this new class of hypercomplex transforms may ensue in fields
like physics, electro-magnetism, optics, signal processing, GPS, space navi-
gation and quantum computing, including quantum internet related signal
processing.
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