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                 ABSTRACT  We reduce finding of Least Common Multiplier of  two 

                 integer numbers to polynomial-time integer optimization problem and  

                 to NP-hard integer optimization problem that would imply P = NP. 

 

 

 

1. Introduction.    

 

    In arithmetic and number theory, the least common multiple, lowest  com- 

mon multiple, or smallest common multiple of two integers  n   and   m, usu- 

ally denoted by  lcm(n, m), is the smallest positive integer that is divisible by 

both n and m (see e.g. [6]). Let us reduce the problem of finding of the Least 

Common Multiplier of two integer numbers to the following two integer mi- 

nimization problems. 

    

2. Reducing to the polynomial-time linear programming two-dimension- 

al problem.  

 

    The problem of finding of Least Common Multiplier of two integer numb- 

ers: n and m can be reduced to the following linear minimization problem: 

 

   lcm(n, m) = { min  nx, 

 

                         subject to                                                                              (1) 

 

                         nx - my = 0, 

 

                         x, y, n, m ∈ N }. 

 

   Due to Lenstra [11], minimizing a linear function over the integer points in 

a polyhedron is solvable in polynomial time provided that the number of int- 

eger variables is a constant. 

 



   So, problem (1) can be solved in time polynomial. 

 

 

3. Reducing to the NP-hard non-linear  two-dimensional minimization 

problem. 

 

    On the other hand, the problem of finding of Least Common Multiplier of 

two integer numbers: n and m can be reduced to the following non-linear in- 

teger mnimization problem: 

 

lcm(n, m) = { min  (nx - my)
2k   

+ 
 
nx, 

 

                         subject to                                                                              (2) 

 

                         x, y, n, m, k ∈ N }.                                                                          

 

    Despite in general, integer programming is NP-hard or even incomputable   

(see, e.g., Hemmecke et al. [8]),   for some subclasses of target functions and 

constraints it can be computed in time polynomial.   

    Note that the dimension of the problem (2) is fixed and is equal to 2. 

    A  fixed-dimensional polynomial minimization in integer variables, where 

the objective function is a  convex polynomial and the  convex feasible set is 

described by arbitrary polynomials can be solved in time polynomial(see, e.g 

., Khachiyan and Porkolab [9]). 

    A  fixed-dimensional  polynomial minimization over the integer variables,  

where the objective function  f0(x)    is a quasiconvex polynomial with integer 

coefficients  and where the constraints are inequalities fi (x)  ≤ 0,  i = 1, … , k  

with  quasiconvex polynomials fi(x) with  integer coefficients,  fi :    R
n
 → R, 

fi(x), i = 0, … , k  are polynomials of degree at most  p ≥ 2, can be solved  in  

time polynomial in the degrees and the binary encoding of the coefficients(s-    

ee, e.g., Heinz [7], Hemmecke et al. [8], Lee [10]).  Note that the degrees are 

unary encoded here as well as the number of the constraints. 

    A mixed-integer minimization of a convex function in a  convex, bounded 

feasible set can be done in time polynomial, according to Baes et al. [1], 

Oertel et al. [12]. 

 

    As a result, we can expect that there exists such number   k,   that problem  

(2) is NP-hard and therefore, since we reduced the same problem to  polyno- 



mial-time problem (1) and to NP-hard problem (2), it would imply that P = 

NP.  
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