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Abstract. The purpose of this article is to introduce and to describe a concept of math calculus 

“Multiplical”. To my total surprise I have found that currently such a concept does not exist 

among set of math definitions in its direct and explicit form. Nevertheless there are number of 

areas of its practical use, where this concept would be suitable and potentially would be 

naturally used in its direct and explicit form, especially, in statistics, finance and economy 

researches and analysis and many other areas. Moreover from my perspective this concept 

perfectly fits into the coherent system of standard mathematical concepts and operators and 

should take its rightful place there. In this article also other topics are considered and some 

interesting conclusions are made. 
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Multiplical 

The concept of math calculus “multiplical” has the same type of relation towards the product 

operator ∏ as the concept of math calculus “integral” has it towards the summation operator ∑ 

(as a continuous one has it towards a discrete one) and has the same type of relation towards 

concept math calculus “integral” as the product operator has it towards the summation 

operator (as a multiplicative one has it towards a summative one). The definition of the 

multiplical depends on and is conditioned by its position in the bottom right corner of the 

following table which could be a puzzle under other circumstances. 
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Table of concept/operator interrelations 

 Discrete Continuous 

Summative ∑    

Multiplicative ∏ 
 

 

Multiplical is an equivalent of product of infinite quantity of infinitively close to 1 (due to 

infinitively small power) factors which are equal to multiplicand function values raised to the 

power element of multiplication and is expressed as follows: 

                            

                            

 where f – multiplicand function; dx – element of multiplication;  F● – indefinite multiplical of 

the f or factor-anti-derivative of the f;    - primary multiplical sign;  ●∫ - alternative multiplical 

sign, used in circumstances of the proper symbol absence, the bullet differs it from the integral 

sign. 

F●(x) is called as “multiplical of f(x)” or “multiplical of f(x) over x”. 

An operation of searching for indefinite multiplical or factor-anti-derivative is called as 

“factorial-multiplication”, a reverse operation of searching for factor-derivative is called as 

“factorization”. The factorization (breaking down into a set of factors) of function is related to 

the factorial-multiplication of function the same way as the differentiation (breaking down into 

a set of differences in the sense of a set of increments or addends) of function is related to the 

integration of function. Those are mutually reverse operations of calculus. 

The function factorial f represents the relative function change with respect to changes in the 

function argument or in the element of multiplication and has the following general definition: 

       
        

    
                     

In accordance to how the whole integrand expression f(x)dx is a differential of the anti-

derivative dF(x), the whole multiplicand expression f(x)dx is a factorial of the factor-anti-

derivative  fF●(x), which is by the way one of the infinite quantity of infinitely close to 1 factors 

that were mentioned in the multiplical definition, and that’s is why the process is called no 

other way than factorial-multiplication:  

                           

On my opinion the concept of factorial is way too great and fundamental to use the term for 

naming x!. Further in the context of this article and by the default the “factorial” term is not 

used with reference to x!. 
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As well as the integral the multiplical can be in definite and indefinite forms. In accordance to 

how the dF(x) changes its arithmetical sign to opposite when someone does an integration in 

an opposite to argument growth direction dx<0 (the accumulating result of integration is not 

being added but instead subtracted by this differential in the case), fF●(x) is also changes to its 

multiplicative inverse when someone does a factorial-multiplication in an opposite to argument 

growth direction (the accumulating result of factorial-multiplication is not being multiplied by 

but instead divided by this factorial in the case): 

        
  

  

          
  

  

            

where x0 is the begin of the factorial-multiplication segment; x1 is the end of the factorial-

multiplication segment; 

A solution of a definite multiplical can be got as ratio of indefinite multiplical at the ending 

point to indefinite multiplical at the beginning point of the segment of multiplication 

respectively: 

        
  

  

 
       

       
              

Just like an integral of a sum or difference equals to the sum or difference of the integrals, a 

multiplical of a product or ratio equals to the product or ratio of the multiplicals respectively: 

               
           

           
                 

   
     

     
  

  

 
       

  

         
                 

Just like a definite integral of a segment equals to the sum of definite integrals of composite 

segments without gaps and under the condition of one direction of integration and its 

continuity, a definite multiplical of a segment equals to the product of definite multiplicals of 

composite segments without gaps and under the condition of one direction of multiplication 

and its continuity: 

        
  

  

         
  

  

         
  

  

             

        
  

  

         
  

  

         
  

  

             

It is forbidden for a multiplicand function to be negative inside of segment of factorial-

multiplication by two reasons: firstly, there is an uncertainty in the sign of fF●(x) with  infinitely 

small and not necessarily rational exponent dx, and secondly, if the sign of fF●(x) is nevertheless 

defined as negative, then it still makes no sense to represent the multiplical as the product of 

an infinite number of negative multipliers, because then there inevitably arises an uncertainty 
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in the evenness or oddness of the quantity of these multipliers, and hence the uncertainty of 

the state of positivity or negativity of the factorial-multiplication result. Multiplicand function 

modulus has to be submitted for the purpose. For the same reason, there is no designation of 

the module of the multiplicand function in the record of the multiplicand itself, the entire 

responsibility for submitting the allowed type of function is on the analyst. 

An integration of a constant gives us a linear function or an arithmetical progression; in return a 

factorial-multiplication of a constant gives us an exponential function or a geometrical 

progression. Indefinite multiplical of f(x) = A is expressed as follows:  

F●(x) = В ⋅ A
x
    (8), 

where A - constant, В – non-zero finite arbitrary constant (arbitrary multiplier) that shall be 

included as multiplier into an indefinite multiplical expression in the correspondence to how an 

arbitrary constant is included as an addend into an indefinite integral expression. B can be a 

negative which gives us an opportunity to have indefinite multiplical as a function that is below 

x-axis. 

Ranges of arbitrary constants 

Arbitrary constant Unreachable small Neutral Unreachable large 

Integral arbitrary 
constant addend C 

– ∞ 0 + ∞ 

Absolute value of multiplical 
arbitrary constant multiplier B 0 1 + ∞ 

 

Multiplical can be expressed via integral, however this expression is indirect and bulky by the 

definition, it requires some additional operations: raising e to power of integral of natural 

logarithm of multiplicand function: 

                              

To those who thinks the multiplical is a useless and redundant entity I offer equally and without 

any prejudice to re-consider the reason-ability of the product operator ∏ existence because 

obviously this operator can be expressed via sum operator ∑ exactly the same manure, and 

who knows, maybe it is also redundant according to them. The following expression could seem 

bulky but principally not bulkier that the indirect multiplical expression that is via the integral, 

but most importantly, it works: 

   

 

   

                   ⋅ ∑       
 
             

where sign – a helper function that returns –1 in case if number of negative multipliers in the 

passed as argument array is odd, otherwise it returns +1. In addition it returns 0 in case if there 

is at least one zero multiplier in the passed array. 

Anyways as a compromise the multiplical can be considered as a shorter version of the above 

expression with usage of the integral. Personally I consider the shorter version as more 
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intuitive, more primary by its nature, is something that directly reflects the mathematical 

essence of the conducted operation. On my opinion the multiplical has every right to take its 

rightful place in the coherent system of standard mathematical concepts and operators. The 

expression with usage of integral could be considered as an indirect expression that is used in 

circumstances of lack of the required math apparatus. 

In fairness, it should be noted that the indirect multiplical expression gives us the opportunity 

to analytically describe formulas of indefinite multiplicals for a large number of analytically 

given functions using existing operators and existing functions. 

A direct translation of a multiplical arbitrary constant multiplier B to an integral arbitrary 

constant addend C which is used in the indirect multiplical expression                 and the 

reverse translation of them both are possible via the following equations: 

С = ln |B|,     (11.1) 

 B = ±eC.     (11.2) 

At x0 = x1 a definite multiplical always returns one. This result corresponds to the following 

conclusion. As a result of the sum operator always represents a certain alteration of 0 the same 

way a result of the product operator represents a certain alteration of 1, therefore product of a 

zero quantity of multipliers gives us 1 as a result (without alteration of 1) and which is also 

being confirmed by equations 5 and 9: 

               
  

  

                      

F●(x) =  
           
  

  = e0 = 1.     (12.2) 

Just like the definite integral the definite multiplical 

can be solved graphically (see the diagram). If we build 

an analyzed function graph in a coordinate system 

where the Y-axis marked up in units of ln y (a natural 

logarithm of y) then if we measure an area of 

curvilinear trapezoid formed by the function graph in 

this coordinate system and limited by x0 and x1 at the 

left and at the right respectively, and then if we raise 

the e number to power of this area then we get a 

value of definite multiplical. In other words a natural 

logarithm of a function definite multiplical equals to an 

area of curvilinear trapezoid formed by the analyzed 

function and limited by x0 and x1 at the left and at the 

right respectively geometrically measured in a Y-axis 

natural logarithmic coordinate system. And since the multiplical neutral element is 1 (0 in ln y 

units) the measured below that Y coordinate curvilinear trapezoid area shall be counted as 

negative. The said is confirmed by the indirect multiplical expression with integral usage. 
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According to the multiplical definition a solution of the definite multiplical is also can be 

obtained via math limit of product operator: 

        
  

  

     
    
       

  

 

    

             

N = (x1 – x0) / ∆x,    (  .2) 

 xi =  x0  + ∆x ⋅ (i – ½).     (  .3) 

For finite values of ∆x (the length of an elementary segment) and for somewhat greater 

practical accuracy, it is proposed to take the values of the function in the middle of an 

elementary segment, as shown above. A more numerically accurate method is to use in the 

iterations a geometrical-average value as the multiplier which is received out of pair of 

multiplicand function values taken at the beginning and at the ending of an elementary 

segment respectively. Because of presence of two (an even number) close to each other 

function values as multipliers in this method, the latter provokes making a factorial-

multiplication of negative function zones, which is forbidden. 

The summation operator and the product operator can be given a general definition of a 

recursive incremental iterator of the first and second order respectively (according to the 

hyper-operator order used in the basis). The integral and the multiplical can be given a general 

definition of a recursive incremental iterator in limit of the first and second order respectively. 

Also the anti-derivative and the factor-anti-derivative, the derivative and the factor-derivative 

can be given a general definition of an anti-derivative of the first and second order, and a 

derivative of the first and second order respectively. 

Examples of factor-anti-derivative for known functions 

Function Factor-anti-derivative 

0 does not exists 

1   

   ⋅    

  ⋅ xn 
 ⋅   ⋅ ⋅      

 
⋅       

  ⋅    ⋅    ⋅ ⋅ 
   

 e↗x B ⋅ e↗x 
 

where ↗ - a designation of the operator of power tower with left associative property. 

 

Multiplical usage examples 

                     
  

  

             

where t – time, year; t0 – control period beginning timestamp, year; t1 – control period ending 

timestamp, year; i(t) – time function of money inflation or economical growth or interest rate 
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on year basis, u.f.; I(t0, t1) – factor function of money depreciation or economical growth or 

exponent debt growth over the control period, u.f. 

                  
  

 

             

where m(t) – function of year based mortality rate in an elementary group in dependence of 

the elementary group age, u.f.; t1 – age, year; S(t1) – function of expected fraction of survivals 

out of all born in dependence of age t1, u.f. 

 

Arbitrary multipliers “B” coordination rule 

If an analyzed function is defined via series of functions (further constituent functions) each 

applied for each argument intervals (function domains) located one just after another being 

adjacent, in other words if an analyzed functions is defined with interruptions then building its 

indefinite multiplical implies taking indefinite multiplicals for each of constituent functions in 

order to use those multiplicals as constituent indefinite multiplicals of the analyzed function 

indefinite multiplical for respective function domains. Further if the analysis implies building a 

continuous indefinite multiplical of the analyzed function then a mandatory operation of 

mutual coordination of arbitrary multipliers B must be conducted, of those arbitrary multipliers 

which belong to each of constituent indefinite multiplicals.# The coordination of all pairs of 

adjacent constituent indefinite multiplical arbitrary multipliers must meet the following 

equation: 

B1 ⋅ F
●

1(x) = B2 ⋅ F
●

2 (x),    (14) 

где 0 и 1 - indexes of mutually adjacent the previous and the next constituent indefinite 

multiplicals and their arbitrary multipliers B;  x - junction point of adjacent the previous and the 

next constituent indefinite multiplicals under indexes 0 and 1. 

The solution of the above equations is carried out for each junction of the constituent indefinite 

multiplicals, and sequentially in the order of the values of the argument at the junction points 

in one of two directions: in the direction of their growth or 

in the direction of their decrease. Thus, the arbitrary 

multiplier B is determined for each next constituent 

indefinite multiplical by the already known value for each 

previous one. The value of the arbitrary multiplier B for 

the first constituent indefinite multiplical in the calculation 

sequence is set by the analyst.  

On the diagram the is an example of arbitrary multipliers 

coordination. Here the multiplicand function (red) consists 

of five analytically defined linear functions and for each of 

them an indefinite multiplical is build (gray). Then a 

coordination of arbitrary multipliers B is carried out in the 
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direction from left to right. So for the first (the leftmost) constituent indefinite multiplical the 

arbitrary multiplier is set to 2.25, for the second its calculated value is 3.709623, for the third it 

is 0.914782, for the fourth 11.20608 and for the fifth 1.980973. As the result of the conducted 

coordination a continuous function of the analyzed function indefinite multiplical is build 

(black) out of five constituent indefinite multiplicals. A similar procedure must be conducted for 

indefinite integral arbitrary addends C in similar cases. 

As it is visible the multiplical has no interruptions of its derivative in points where multiplicand 

function has interruptions of its derivative (multiplicand function breaking points), because the 

there is no interruption of multiplicand function as multiplical function factor-derivative. In 

points, where multiplicand function has interruptions, its multiplical has interruptions of its 

derivative (multiplical breaking point). 

 

So called “Continuous factorial” 

On the diagram there is a series of graphs (in gray) from an 

infinite set of graphs of the indefinite multiplical of f(x) = x 

(indirectly ex▪ln(x)–x+С) (in red) presented. Each of presented 

multiplicals differs from the others by its own value of an 

arbitrary constant multiplier B. And for one of them – the one 

that is lined through point (x=1,y=1) (in black) a derivative is 

drawn (in orange). 

For the indefinite multiplical of f(x) = x the following 

remarkable ratio is valid: 

                       

               
 = e,      (17.1) 

also a property of its derivative is: 

        = 0,       (17.2) 

where F●(x) – the indefinite multiplical of f(x) = x; F●’(x) – the 

derivative of F●(x); F●’’(x) – the second derivative of F●(x). 

Regarding the indefinite multiplical of f(x) = x, a persistent 

thought does not leave me that this beautiful function may 

claim to play a role of so called “continuous factorial”.  

The Gamma function shifted one unit left (the Pi function) is a generalization for x! for real 

numbers and from my perspective is unsuitable for the role of the so called “continuous 

factorial”. So, the first reference point of x!  (points where x=y), is a point at x=1, and the 

second such point is at x=2, while for the indefinite multiplical of  f(x) = x, in particular 

expressed by ex▪ln(x)–x+1, the second such point is at x=e, which testifies for an exclusivity of the 

latter curve comparing to the generalization for x!. 
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It would seem, what relation can e number have to building of so called ”continues factorial”. 

And as it turned out a very direct one, cause as it turned out the process of factorial-

multiplication of function f(x) = x is one of methods to find the е. To confess, the shown on the 

diagram graphs are built not via the indirect multiplical expression ±ex▪ln(x)–x+С which I was not 

thinking of back then, therefore not via already known the e number, but in fact via the process 

of factorial-multiplication of f(x) = x using the numerical method staring from point (x=1,y=1) 

and iterating to both possible directions along the x-axis. And what an amazement I 

experienced when I found the e number as x tended to zero in the limit. But on the other hand, 

what is really to wonder here about, what other finite number could be found in the case as 

any other number would be a new notable math constant by its definition, and finding such a 

number would cause even greater excitement. 

A building generalization for x! for real numbers returns us to the fact that initially x! is a 

discrete function and this fact reasonably raises two related to itself questions. The first one is 

why not to consider the set of multipliers starting not from 1 but from some other real number, 

for example from 0.5 making the set to look as follows:  0.5, 1.5, 2.5 and etc.? The second one 

is why the 1 and not any other positive real number is chosen as the set step size. What is so 

special about the 1 as the set initial point and as the set step size? This perspective makes the 

generalization for x! for real numbers to look as some special not a general function building. 

Changing the set step size means changing quantity of multipliers that are effectively used for 

the function result calculation for a given argument value. In order to preserve sameness of the 

function result magnitude order for a given argument and since we have a deal with в set of 

multipliers, a potential set step size change have to be counterbalanced by raising each 

multiplier of the set to power of the set step size change (increase) multiplicity, in our case of a 

set step size change relative to 1 as the default set step size. In this context we can write new 

general definition of x! : 

          ⋅    

    

   

            

           
     

 
             

where b – the set/function initial point, the default value is 1; s – the set step size, the default 

value is 1; N – the product operator iterations quantity excluding the zero iteration. 

Examples of the set:  0.5 ⋅ 2.52 ⋅ 4.52 ⋅ 6.52 ⋅ 8.52 ⋅ 10.52 and etc.;  1.5 ⋅ 1.60.1 ⋅ 1.70.1 ⋅ 1.80.1 ⋅ 1.90.1 

⋅ 2.00.1 and etc.; 1 ⋅ 21 ⋅ 31 ⋅ 41 ⋅ 51 ⋅ 61 and etc. From the described point of view the last set of 

multipliers – the one used in the initial version of x!, is the default one but the same time seems 

to be a specific building from a plenty of possible.  

If we start to gradually reduce the set step size s then at the each next factorial-multiplication 

iteration the function value for a certain argument would be closer and closer to its value 

measured at the previous state of the set step size. Reducing the set step size to zero in the 

limit technically means replacing the defined above function with multiplical of f(x) = x. First of 
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all this measure gives us the desired function continuity and also makes a function value for a 

certain argument to be indifferent to the set multipliers quantity or to the set step size in the 

limit, makes it to tend to its determined value in the limit. Therefore this defines locus of points 

for all its allowed arguments function values within a general determined position which 

depends only on the function initial point b. In fact each function initial point of its own infinite 

set defines one function locus of points of its own infinite set. Each of those function locus of 

points differs from the others in the set by its own indefinite multiplical arbitrary constant 

multiplier B and for all of them the described above remarkable equal to e ratio is valid. In 

reverse, a definite multiplical arbitrary constant multiplier B causes an existence of up to two 

possible function initial points b. 

So as it is visible on the diagram it would be possible to draw a multiplical graph starting it from 

any point (except point x=0) of the f(x) = x graph. Yellow points represent samples of such initial 

points from which multiplical functions are 

drawn to the left direction. Also we can 

witness that the solution for initial points 

does not exist for all arbitrary multiplier 

constants B as some of multiplical graphs 

don’t have intersection points with the f(x) 

= x graph. 

In the second diagram in a naturally 

logarithmic along the y-axis coordinate 

system, a series of graphs of the indefinite 

multiplical (in gray in general and black at 

B=0) of the function f(x) = x (red) module 

(yellow) for various values of an arbitrary 

multiplier B is shown. Yellow shows the 

graph of the modulus of f(x) = x. 

 

Geometrical function growth 

A function derivative shows a function growth in a point. But as it turned out the function 

growth can be a different kind. Therefore it should be clarified that the described kind of 

growth is arithmetical as it shows how much the function will grow absolutely if the function 

argument will grow by one and if this growth will be constant within the argument growth. 

Graphically this is solved by drawing a tangent to the graph at the given point, more precisely, 

not just a tangent, not just a straight tangent, but a linear function graph that is tangent to the 

function graph at the given point and which is expressed by following general equation: 

y = b ⋅ x + c,   (37) 

where b and c – constants of the tangent linear function, which determination gives it a 

tangency to the function graph at given point.  
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b numerically shows the absolute function growth with the grows of the argument by 1, 

therefore shows the function arithmetical growth at given point. The tangent of the slope 

reflects the arithmetical function growth. 

The mentioned above factor-derivative shows a function geometrical growth in a point as it 

shows how many times the function will grow if the argument will grow by one and if this 

growth will be constant within the argument growth, therefore it shows the relative function 

growth. Graphically this is solved by drawing an exponential function graph that is tangent to 

the function graph at the given point and which is expressed by following general equation: 

y = b ⋅ax,   (38.1)  

   
 
     
    

  
             

  
    

      
⋅  

 
        
   

      
            

where a(x) and b(x) – constants of the tangent exponential function, power base and multiplier 

respectively, which values 

provide it with a tangency to the 

analyzed function graph at given 

point; f(x) – the analyzed 

function; f’(x) – the analyzed 

function derivative.  

a numerically shows the relative 

function growth with the grows 

of the argument by 1, therefore 

shows the function geometrical 

growth at the given point. Factor-

derivative can not be negative. 

On the diagram there is a number 

of tangent exponential functions 

graphs (in colors) drawn to 3 

analyzed functions (in black):   

f(x) = 2⋅ln(x), f(x) = 2⋅x and f(x) = 

100/x2. Here the absolute x-axis 

difference between the 2nd and 

the 1st points of the same color 

reflects a growth of function 

argument by 1. The same time 

the relative Y-axis difference 

between the 2nd and the 1st points of the respective pair or how many times point 2 is located 

farther from the x-axis than point 1 to indicates a geometrical growth value of the respective 



12 
 

analyzed function at the point of contact (the 1st point). It is obvious that through one pair of 

points 1 and 2 one can draw 

one exponential graph of y = b 

⋅ax. 

Building the all above functions 

and their respective tangent 

exponential functions in a 

coordinate system where the 

Y-axis marked up in units of ln 

|y| (a natural logarithm of 

absolute value of y) visually 

degrades all these graphs as 

follows: linear to logarithmic, 

exponential to linear, and 

respectively visually degrade 

the function geometrical 

growth to the function 

arithmetical growth. The e 

number raised to power of the tangent of the slope of the degraded to a line tangent 

exponential graph reflects the geometrical function growth at the point of contact. In other 

words a natural logarithm of an analyzed function geometrical growth at given point equals to 

the tangent of the slope of the tangent exponential function drawn through the given point of 

the analyzed function in a Y-axis natural logarithmic coordinate system. 

In points where function crosses the x-axis its factor-derivative has interruptions. For example it 

is visible that the factor-derivative of y=2⋅ln(x) has an interruption at x=1 tending to 0 (e–∞) and 

to + ∞ (e+∞) as x approaches to the point from the left and from the right respectively. 

Like searching for a derivative implies omitting a common constant addend, searching for a 

factor-derivative implies omitting a common constant multiplier.  

Examples of factor-derivative of know functions 

Function Factor-derivative 

0 uncertainty 

B 1 

b ⋅ xa 
     

b ⋅ ax a 

b ⋅ e↗x e↗x 
 

where ↗ - a designation of the operator of power tower with left associative property. 

Those who wish can practice in searching for factor-derivatives and factor-anti-derivative of 

known functions. 

Through the analyzed function there is interdependence between the function derivative 

(arithmetical growth) and the function factor-derivative (geometrical growth): 
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          ⋅                      

if f(x) ≠ 0 and  f●(x) ≠ 0 and f(x) ≠ ∞ and  f●(x) ≠ ∞ and f’(x) ≠ ∞ 

where f(x) – the analyzed function; f●(x) – the analyzed function factor-derivative; f’(x) – the 

analyzed function derivative.  

It is obvious that it is not possible to restore a function by its known derivative or factor-

derivative solely, but it is possible to restore a function if both are known together and the 

factor-derivative is not equal to 0 or to 1 and has finite value: 

           
   

 
   

    

if f(x) ≠ 0 and  f●(x) ≠ 0 and f●(x) ≠ 1 and f(x) ≠ ∞ and  f●(x) ≠ ∞ and f’(x) ≠ ∞.       (39.3) 

The same way as function derivative can be expressed via function differential: f’(x) = df(x) / dx, 

function factor-derivative can be expressed via function factorial, using there not the division 

operator but rightfully the root extracting operator which is an operator of one hyper-operator 

order higher than the division operator: 

             
  

            

And therefore vice versa function factorial can be expressed via function factor-derivative, 

which is similar to how function differential can be expressed via function derivative: df(x) = 

f’(x) ⋅ dx, but again here not using the multiplication operator but the exponentiation operator 

instead which is also an operator of one hyper-operator order higher than multiplication 

operator: 

                      

 

Accelent 

I set a task to find and formulate a function whose growth or, in other words, whose factor-

derivative, and automatically, therefore, the multiplical would be equal to the function itself for 

all values of argument. The first such function suggests itself, and this is the function y = 1, 

which exists in accordance with the existence of the function y = 0 for the problem of finding a 

derivative and an integral equal to the function itself, where 1 and 0 are obviously the values of 

neutral arbitrary constants for the multiplical and integral respectively. Also, by analogy with 

the search for a derivative, the second function with a similar property should presumably be 

exponential and the same way as y = ex function does it should have as its basis the e number, 

and as we already know the e number is really directly related to the factorial-multiplication 

and factorization of functions. 
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As you know, the integration and differentiation operations use the addition and subtraction 

operators, that is, binary operators of the first order, on the other hand the factorial-

multiplication and factorization operations use the multiplication and division operations, that 

is, binary operators of the second order. Exponentiation function y = ex is a single action with 

the power operator, that is, with a binary operator of the third order, and also has the e 

number as the first operand and the argument x as the second. You can notice that this 

function uses a binary operator standing two orders higher than the operators used in the 

integration and differentiation operations. Then we do a bold guess that the function we are 

looking for exactly copies the function y = ex in part of operands and as y = ex is a single action 

with a binary operator standing two orders higher than the operators used in the factorial-

multiplication and factorization operations, that is an action with some binary operator of the 

4th order. Therefore this is a hyper-exponentiation function of the 4th order with base e. We 

write this function and, in particular, the proposed operator as follows: 

y = e↗
x
,    (43) 

where ↗ - the designation of the operator of the 4th 

order. The operator is called by its own name – 

Acceleration; super-scripted x – accelerator, e – 

accelerating; y – acceleration. The expression can 

be read as “the e number in acceleration of x”, “e 

number in x-th acceleration”, “e number 

accelerated x times”, ”accelerated x times e 

number”, ”acceleration of e number in x”. The 

curve  y =  ↗x is called as “Accelent”. 

My guess is correct, as it turned out y = e↗x meets 

the requirements only if the Acceleration is a 

power tower but with left associative property. It 

should not be confused with the Tetration that is 

the power tower with right associative property.  

On the diagram there are an accelent function 

y=e↗x (lined in red dotted line) and a set of its 

indefinite multiplicals (in gray). A graph of one 

indefinite multiplical – the one with arbitrary 

multiplier constant equal to 1 (in black) is the same 

as the graph of the accelent function, and that’s why I had to display the latter in dotted line. 

You can notice that a Y-logarithmic coordinate system visually degrades the accelent a one 

order down to visual exponent which is also shifted to the right by 1 on the x-axis. 

Specially noted that the acceleration operator is obtained by the necessity of formulating an 

analog of ex for the operations of factorial-multiplication and factorization, obtained not by the 

method of extrapolation but rather by method of shifting a series of 3 consecutive hyper-

operators one order up in the intended direction of mathematical analysis, similar to how 

bridge spans are pushed during the construction of the latter. The conducted analysis ordained 
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the inner logic of this operator of the 4th order and not vice a versa when we have an operator 

and then we try to apply it. 

Illustration of the hyper-operator series shifting 

 Addition Multiplication Raising to power Acceleration 

The initial 
state 

Summation 
and 

Integration 

Operation with the 
element of integration; a 

linear equation of  the 
function arithmetical 

growth tangent 

The function arithmetical 
growth is same as the 

function itself 
ex 

 

Shifting 
one order 

up  
(rightward) 

 
Product and Factorial-

multiplication 

Operation with the 
element of multiplication; 
an exponent equation of  
the function geometrical 

growth tangent 

The function 
geometrical 

growth is the same 
as the function 

itself 
e↗x 

 

The acceleration can be expressed compactly via operators of lower order: 

        
                

A hyper-root of the 4th order is called as “Deceleration” and designated as follows: 

             

where ↘ - designation of the operator;  subscribed n – decelerator; a – decelerating.  The 

operation result is “deceleration”. The expression can be read as: “a in deceleration of n”, ”a in 

n-th deceleration”, ”n-th deceleration of a”, ”a decelerated n times”, ”decelerated n times a”, 

”deceleration of a in n”. 

The deceleration shows a number, which has to be raised to power of itself 1 times less than 

the decelerator value in order the decelerating to be obtained and applying the left associative 

property in the raising to power sequence for the purpose. 

The deceleration is solved recurrently using root operator (a inverse binary operator one order 

lower) and also compactly: 

      
      

      

          

There is nothing out of the ordinary, as extracting the root is also solved recurrently in the 

exactly same scheme, but what is distinctive and natural, using the division operator (a inverse 

binary operator one order lower): 

  
 

 
 

   
 
 
     

          

A consequence of a common solution scheme for the two inverse hyper-operators and 

similarity to how it is forbidden to submit a lower than 0 value to the radical expression, it is 

forbidden to submit a lower than 1 value as the decelerating. Recalling to how the complex 
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numbers set was defined at the time, it is becoming to be interesting what set of numbers 

could be defined using decelerating less than 1. 

The logarithm of the 4th order with own name “Accelerator extraction” and “Natural 

accelerator extraction” is defined as nested logarithm: 

       
 
    

 
                

                          

 

Factorial-multiplication for zero function values 

Оf factorial analytical interest is the process of factorial-multiplication of the modules of 

functions that intersect the x-axis in the vicinity of a given intersection (hereinafter, the zero 

point). 

In a neighborhood of the zero point, the intersecting function can be approximately 

represented as a polynomial: 

y = b1 ⋅ (x - c)1 + b2 ⋅ sign(x - c ⋅(x - c)2 + b3 ⋅ (x - c)3 + ... + bn ⋅ sign(x - c  ⋅ |x – c|n,     (15.1) 

where b1 ,b2 ,b3, bn  are the multipliers of the polynomial; с – zero point X coordinate; sign - a 

function that returns –1 if the passed argument is negative, +1 otherwise. 

In the infinitely close approximation to the zero point, the polynomial function can be reduced 

to a function of one term - the first from the left, which is with a non-zero factor b.  Considering 

the exact position of the zero point on the x-axis as not important in the case in order to 

shorten the notation we will take C = 0 (the zero point is located at the point of origin). After 

simplification, the equation has the general look of a power function dependent on the 

arithmetic sign of the argument: 

y = bn ⋅ sign(x) ⋅ |x|n  if n > 0,     (15.2) 

Since it is allowed to carry out factorial-multiplication of only positive functions domains, we 

transform the function up to its module, and we obtain a multiplicand function allowed for 

factorial-multiplication (hereinafter, the multiplicand). In addition, this transformation 

describes the case of not crossing the x-axis functions, but touching it. Thus, the present 

analysis covers all possible cases of contact between the graph of the function and the x-axis at 

one point: 

y = |bn| ⋅ |x|n.     (15.3)  

Further, the multiplicand is divided into two domains: the one to the left and the one to the 

right of the zero point, represented by the following constituent functions applicable under 

appropriate conditions: 

y = |x|n ⋅ b,    at  bn ⋅ x ≥ 0,    (15.4) 
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y = –|x|n ⋅ b,    at bn ⋅ x ≤ 0,     (15.5) 

Indefinite multiplical for each of constituent functions: 

       ⋅       ⋅   ⋅ ⋅     ⋅       ⋅     
              ⋅            (15.6) 

        ⋅       ⋅   ⋅ ⋅      ⋅       ⋅     
           ⋅           (15.7) 

Since both of these indefinite multiplicals do not exist at the zero point, we determine their 

values when approaching this point infinitely close from the left and from the right separately 

using the previous equations: 

   
   

 ⋅   ⋅ ⋅     ⋅       ⋅     
             ⋅                      

   
   

 ⋅   ⋅ ⋅      ⋅       ⋅     
             ⋅                      

On the first diagram there are  

presented: function  y = bn ⋅ sign(x) 

⋅ |x|n at n=1 and different bn (from 

0.25 to 4 in shades of red and at 

bn=1 in bright red), function 

module: y = |bn| ⋅ |x|n (in shades 

of yellow and at bn=1 in bright 

yellow), indefinite multiplical of 

function module at B=1 и different 

bn  (in shades of gray and at bn=1 in 

black). 

On the second diagram there are  

presented: function  y = bn ⋅ sign(x) 

⋅ |x|n at bn=1 and different n (from 

0.25 to 4 in shades of red and at 

n=1 in bright red), function module: y = |bn| ⋅ |x|n (in shades of yellow and at n=1 in bright 

yellow), indefinite multiplical of function module at B=1 и different n  (in shades of gray and at 

n=1 in black). 

It is easy to see that when approaching the zero point, the indefinite multiplical of the 

multiplicand (hereinafter the multiplical) tends to some finite value on both sides of this point, 

and moreover, on both sides it tends to the same value which depends only on the single for 

the two constituent multiplicals, the values of an arbitrary multiplier B, and, what is 

remarkable, does not depend in any way on bn and on n, that is, on the values of all derivatives 

of the multiplicand. In the vicinity of the zero point, the constituent multiplicals of the two 

multiplicand domains are located at the junction with each other. At the same time, the two 

domains are still separated by the zero point, where there is an interruption of the constituent 

multiplicals, and possibly an interruption of the multiplical, but the factorial-multiplication 

operation bypassed this point, leaving the question open. 
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It would seem that in the process of factorial-multiplication, the transition through this point of 

the multiplicand, which has zero value, as through a factor for the intermediate result of 

factorial-multiplication (hereinafter referred to as the intermediate result) should nullify this 

result and automatically slam to zero the entire domain of the multiplical located to the right of 

the zero point, thereby completely making the factorial-multiplication process meaningless to 

the right of this point, assuming that we do operation in the direction of growth of the 

argument. This statement would be just if the zero would be a zero as a multiplier. 

But as you know, when we carry out factorial-multiplication, we divide the linear segment of 

factorial-multiplication along the x-axis into infinitely small, but not zero length segments dx. 

From this position, the problem of a dimensionless point and at the same time the solution of 

the problem for us is the fact that the point, being a dimensionless quantity, leaves a projection 

of zero length on the x-axis. 

One so-called geometric approach comes to the following simple conclusion. Since we are 

factorial-multiplicating along the linear continuum of the x-axis, influencing the state of the 

function by something that also has a dimension related to the linear dimensions of the x-axis 

leaves its mark there. And if at the same time something leaves a projection of zero length on 

the axis, then this something, no matter what it is, effectively leaves absolutely nothing, it 

simply does not exist for the operation being performed. And assuming that the function on 

both sides tends to the finite and to the same identical value, this point can be ignored, the 

function is "glued", and the continuity of the latter is stated. 

Another so-called abstract approach does not ignore the state of the function at a point, and 

implies a transition from the analysis of the properties of functions in extremely small linear 

segments to the analysis of their properties at dimensionless points. This approach involves 

finding the “connecting” multiplier (hereinafter referred to as the multiplier) at a dimensionless 

point, when passing through which, in the process of factorial-multiplication, the intermediate 

result is multiplied by this multiplier or divided by it, depending on the direction of factorial-

multiplication: in the direction of increasing or decreasing the argument, respectively. Thus, the 

"fate" of the factorial-multiplication being carried out depends on the state and value of this 

multiplier. 

It is obvious that the size of the multiplier at the zero point is equal to the value of the 

multiplicand measured at the zero point, that is, zero which is raised to power of the element 

of multiplication, the size of which also has a zero value. Obviously, in this case we are not 

talking about the differential of the argument dx, since one with a zero length does not make 

sense, but no one has canceled the multiplication element that is necessarily applied as power 

to the value of the multiplicand, even if it has a zero value. Thus, the problem of determining 

the value of the multiplier is reduced to determining the result of 00. 

The exponentiation operator is hyper-operator, namely, the product operator ∏ with the 

number of iterations corresponding to the exponent value. In our case, the result of the 

operator ∏ is a multiplier for the intermediate result. On the one hand, it can be assumed that 

the result of 00 is nothing, an uncertainty, since there are no factors at all, even if those factors 

are zeros. In this case, there is no operation of multiplication by zero at all, since the zeros 
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themselves are absent. Given this, it is already clear that the multiplical will not turn into zero. 

But the multiplical can cease to exist as a result of multiplication by uncertainty. On the other 

hand, if ∏ has a zero number of multipliers, as in our case, then it is obviously inactive, does not 

iterate and does not increment anything, and if so, then it must leave unchanged the result of 

which it is a multiplier, pass through itself its value in transit, but does not destroy it. 

It turns out that the expectation of the result of raising to a power depends on our idea of the 

operator's function and logic, on its formal definition, which in turn is determined by the 

context of its application. Above, the definition of the product operator was given as a recursive 

incremental iterator, which implies a certain initial state of the result of the operator, in 

relation to which an increment is made starting from the first iteration. The math analysis 

implies the transit without change in the case of operator inactivity, which is in full accordance 

with how the summation operator ∑ does not return uncertainty in the absence of addends, in 

the absence of iterations, in its inaction, but returns 0 as a neutral value, thereby does not 

change the result of the previous summation, but passes it through itself in transit. 

So, the only multiplier that leaves the result of multiplication unchanged is 1. And this means 

that ∏ with a zero number of multipliers, regardless of their possible state (including the state 

of uncertainty) and value, must return 1 as a result of its inaction, as a neutral value. Thus, it 

can be said that the desired multiplier at the zero point is equal to 1. For your information, one 

of coming next related articles is about the hyper-operator analysis, where the topic of neutral 

elements (values) of hyper-operators is touched upon. 

We single out the zero point itself and its infinitely small neighborhood on both sides of it into a 

separate third domain of the multiplicand, the one that is not included in the first two. Let’s 

designate it as [0;0] from zero inclusive to zero inclusive. Next, it is necessary to make an 

assumption that the finite value of the multiplier at the singularity point, in our case at the zero 

point, can be extended to an infinitesimal neighborhood of this point towards that boundary on 

which the multiplical has finite and the same value as well as at the zero point. The statement is 

based on the assumption that within the considered infinitesimal interval the function is 

monotone under the given conditions, it simply has nowhere to go, there are no known reasons 

for a different behavior of the function. In our case, to the right of the zero point, to the left of 

it, the constituent multiplicals of the first and second domains tend to 1 (finite value) when 

approaching it from both sides, therefore, the value of the multiplier at the zero point extends 

to the entire infinitesimal neighborhood of the zero point, that is, over the entire previously 

defined third domain of the multiplicand. 

By extending the value of the multiplier to an infinitely small neighborhood, one should not 

understand the construction of a monotonic function with a constant value within this interval 

equal to the value of the multiplier, but it should be understood that during factorial-

multiplication, the intermediate result at the input to this neighborhood is multiplied or divided 

by this multiplier, depending on the direction factorial-multiplication, then it is passed to the 

output from the given neighborhood. 

If the extension of the value of the function is possible only in one of the two directions of the 

neighborhood, then it makes no sense to say that the multiplier must be divided into two 
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multipliers, each of which is equal to square root of its original value, since the impossibility of 

spreading the value of the multiplier in both directions for one singularity point indicates the 

presence of an interruption there, which in turn makes senseless analytical work to find the 

continuity of the function at the singularity point. In this regard, for the sake of simplicity, 

speaking of the multiplier, we can omit the mention of the neighborhood of the point, and 

consider the multiplier as a property of the point, and the domain under study, as the domain 

of the point. From this perspective, the question of how to extend the value of the multiplier to 

the neighborhood of the point disappears, since the intermediate result will be multiplied or 

divided by the multiplier once when passing through the singularity point. 

When building the multiplical of the function modulus, the result of factorial-multiplicating the 

third abstract domain of the multiplicand requires matching its arbitrary multiplier with 

arbitrary multipliers and two other constituent definite multiplicals. Next, we “glue” all the 

constituent multiplicals of all three domains of the multiplicand and obtain a continuous 

indefinite multiplical of the analyzed function. 

Evidence of the identity of the multiplier to 1 at the zero point is also the identity of the results 

of factorial-multiplication obtained through two different approaches: through the so-called 

geometric approach, and through the so-called abstract approach with an analysis of the 

properties of functions at dimensionless points. 

It can be argued that in the process of factorial-multiplication, the transition through the zero 

value of the multiplicand, due to the intersection of the function and  x-axis or the contact of 

the x-axis at one point, does not lead to any changes in the intermediate result. Even a possible 

break in the function (Interruption of the first derivative) does not affect this result, since the 

value of the multiplical at the zero point does not depend on bn. But what is remarkable is that 

a function break at a singularity point, such as zero, leads to a break in the multiplical at this 

point, but obviously not to a break in its factor-derivative (multiplicand), and that is not 

observed when the function breaks outside singularity points, where only the second the 

derivative of the multiplical is interrupted. It can be 

concluded that the behavior of the derivative and factor-

derivative is different at singularity points, where the 

interdependence between them is violated. 

And now let's consider a slightly different case, specifically, 

one where the multiplicand has a zero value over an interval 

that is not zero in length. So, inside this interval, the 

intermediate result is multiplied by the multiplier 0dx equal 

to zero, since dx in this case is infinitely small, but not a zero 

value. 

In this case, the multiplical "collapses" to zero to the right of 

the entry point of the multiplicand into the horizontal 

segment with zero value. Further, the multiplical is not 

restored, even despite the subsequent “dawn” of the 

multiplicand to non-zero values, because anything (the 
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intermediate result) once multiplied by zero then gives only zero as a result (the solid black 

graph on the diagram). In this regard, we can say that the point where the indefinite multiplical 

touches the x-axis (we are not talking about an infinitely close approximation of the x-axis) 

means, in fact, the point of its interruption. If factorial-multiplication is carried out in the 

direction opposite to the direction of growth of the argument, then at the entry point on the 

left into the interval with a zero value of the multiplicand, the intermediate result will cease to 

exist as a result of an attempt to perform the operation of division by zero, which is also an 

interruption point for the multiplical, after which, to the left, it will not recover either (hollow 

black graph in the diagram). Thus, for the horizontal interval of the multiplicand with zero 

value, there are two points at which the multiplical is interrupted, these are the points of the 

beginning and end of this interval. The interval itself is the domain of uncertainty of the 

multiplical. It can also be argued that the multiplical of the function y=0 is not y=0, but it simply 

does not exist, since the entire domain of the multiplicand from – ∞ to + ∞ is the domain of 

uncertainty of its multiplical. 
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