A PROOF OF THE KAKEYA MAXIMAL FUNCTION
CONJECTURE FROM A SPECIAL CASE

JOHAN ASPEGREN

ABSTRACT. First in this paper we will prove the Kakeya maximal function
conjecture in a special case when tube intersections behave like line intersec-
tions. This paper highlights how different tube intersections can be than line
intersections. However, we show that the general case can be deducted from
the line like case.
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1. INTRODUCTION

A line [; is defined as
li ={yeR"Fa,z € R" and teR st y=a+xt}
We define the d-tubes as § neighbourhoods of lines:
TP :={zxcR"|Jz—y| <6, yecl}

The order of intersection is defined as the number of tubes intersecting in an in-
tersection. We define A < B to mean that there exists a constant C,, depending
only on n such that A < C,,B. We say that tubes are d-separated if their angles
are d-separated. Moreover, let f € L} (R™). For each tube in B(0,1) define a as
it‘s center of mass. Define the Kakeya maximal function as

f5 Sl & R via

1
fiw) = swp s | £y,
o ackn T3(a) N B(0,1) J1s(a)nB(0,1)
In this paper any constant can depend on dimension n. In study of the Kakeya
maximal function conjecture we are aiming at the following bounds

(1.1) 1£31lp < Ced™"PH=<Y £,
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for all € > 0 and some n < p < 0o. A very important reformulation of the problem
by Tao is the following. A bound of the form (|1.1)) follows from a bound of the
form
(12) || Z 1B(0,1)1Tw(aw)||p/(p71) < C«E(S—n/P—i-l—e]\fl/p’5(11—1)/@7

weN
for all € > 0, and for any set of N < §'~" §-separated of d-tubes. See for example |2

or |1]. It’s enough to consider the case p = n and the rest of the cases will follow
via interpolation [1}/2]. Let us define

N

By :={z € R"2" < "1, (2)1p(,1)(z) < 27}
i=1

We will prove the following theorem.
Theorem 1.1. Let there be a N < 61" J-separated §-tubes. Assume that for
k>0, 1 # m, it holds that
~2F
Ty N T N Ege = (1) Ty
j=1
Then we have

I Z 10,017, (@) lln/m-1) < Cn(log
weN

(%)(n—l)/n(N(;n—l)(n—l)/n.

It is a fact that the intersection of each pair of different lines contains only one
point. So this paper emphasis the difference between line and tube intersections
and it can be said that we first prove the Kakeya maximal function conjecture in a
line like case. However, we proof the general case also.

Corollary 1.2. Let there be a N < §'~" §-separated d-tubes. Then we have
1 - n n— n— n
1Y 10,017, (@) ln/(n-1) < Cnn log(g)(n D/ (Nt D/m,
weN

One of our results is the following: a generalization of a lemma of Corbdda.

Lemma 1.3. [A generalization of a lemma of Corbéda] For §-separated tube inter-
sections of order 2F > 1 it holds that

ok
|ﬂ Tz| /S 6n7127k/(n71).

i=1
It‘s not hard to check that the above bound is essentially tight.

2. PREVIOUSLY KNOWN RESULTS
We will use the following bound for the pairwise intersections of §-tubes:

Lemma 2.1 (Corboda). For any pair of directions w;,w; € S"~' and any pair of
points a,b € RN B(0,1), we have

5’)1
0 0 < —.
75, N T, 0 £
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A proof can be found for example in [1].

For any (spherical) cap Q C S™71,|Q] > 6"~ 1,§ > 0, define its -entropy Ns(£2)
as the maximum possible cardinality for an d-separated subset of ().
Lemma 2.2. In the notation just defined
19

gn—1°

Again, a proof can essentially be found in [1].

Ns(92)

3. A PROOF OF THE GENERALIZATION OF THE LEMMA OF CORBODA

Let us define

N
By :={z € R"2" <> 17, (2)1p(,1)(2) < 27}
i=1
Let us suppose that 2 = 6770 < 8 < n — 1, and let‘s suppose that tube T}
intersecting T; N Fqx has it‘s direction outside of a cap of size ~ 6" ~1=7 on the unit
sphere. Then the angle between T; and T; is greater than ~ §1=A/(n=1)  Thus by
lemma [[3] the intersection
2k
(3.1) T < ITNT; N Eye| < Ty N Ty < 671/ =) < gtk n=),
i=1
Thus, we can suppose that the directions in the intersection Eox N T; N T} belong
to a cap of size ~ 6"~ 8. If we § - separate the cap via lemmawe get that the
cap can contain at most ~ 2F tube-directions. However, the cap contains at least
2% tube directions. Thus, for any tube T} in the intersection there exists a tube T},
such that the angle between T; and T is ~ §1=F/(n=1) and the inequality is
valid. Thus we proved the lemma[I.3]

4. THE PROOF OF THE LINE LIKE CASE

We defined

N
By :={z € R"2" < "15,(2)1p(,1)(z) < 2"}
i=1
We have for k > 0 that

M ~2F
Eor = U ﬂ T;;.
i=1j=1

The number M is just the number of distinct intersections of given order. The
cases k < 2 are trivial for our purposes and we omit them. We assume the special
case that

~2k
(4.1) Eype NTiNT, C () Tij,

j=1
for I # m. We then say that the intersection T; N T, is point like, because the
above holds for tubes replaced by lines. However it’s relatively easy to construct
examples of situations where (4.1) does not hold. For example, some kind of a
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”double hairbrush” where we would have two handles intersecting a lot with a
small angle ~ §. Then we would have

2 ~2k
U N Ty c B nTinTy,
i=1j=1
and not
~2F
LN TN Eye = () Ty,
j=1

which is implied by (4.1). Now, via standard dyadic decomposition

N
n/(n— n/(n—1
> @)D By ~ 1Y 1o L2703
k i=1

It suffices to proof that
(4.2) | Egi| < 27kn/(n=1) yrgn—1,
We use Fubini to deduct

N N N
COREER I SIS 90 D) D ATA LS
(4.3) Eok =1 i=1j=11=1
' N N N
NZZZ|EOT‘7QEOE‘2I€|.

i=1j=11=1

Next we rewrite the triple sum. The first is the diagonal term, the second contains
two repeated indexes and the key triple sum will contain no repeated indexes.
(4.4)
N N N

erflz‘ﬁTj N1 ﬁE2k|
=1

j=11=1

1
N N
SOTINHCY S TN TN B
i=1 j=1
N N N
+ ) > > TN T; N By N T
I=1,1#0,1#] i=1,177,i# 1=1,174,1#]
N
< OMTIN 428N 4 > > D ITNT N Ex Ty,
LEN1(5,No(5)),l#1,1#] i€ No(5),i#j I=1
First of all we have the trivial estimates for the diagonal case. Next we deal the
sum in (4.4]) that contains two repeated indexes. Now,
N N
] ) k\2 < 9k gn—1
S N IO Ty 0 Eyi| ~ (25)%|Bai | S 25677,
i=1 j=1
where we used that
N

N
S 2By ~ 1Y 1]l = ST ~ 67N,
k i=1

i=1
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Finally, we treat the case with no repeated indexes. Now, for each two different
tubes T; and T} there are only ~ 2" tubes such that |B(0,1)NT;N, ..., Tos N Eox| # 0
by the condition (.1I]). So we use the condition to N1(j, No(j)) C (1,...,N),
and deduct that

(4.5) #(IN1(i, No(i))) < 2"

Intuitively this follows because the condition with two different fixed tubes,
T; and T}, and an index [ that is always different than ¢ or j implies that we sum
over just one intersection. This intuition is the foundation why we use the third
power of 2 in the beginning. In other words, with condition and with fixed
i # j, there are only ~ 2F different choices for I:

N Nij ~2k ~2k
> ILNTNExNT = Y ) TaNTNTNTY ~ 2% () TnTiNTy).
1=1,1#4,1#j 1=1,l#i,l#j m=1 m=1

However, an another key problem is that in the last part we are still left with two
sums over to N in (4.4). So, an another key part of our proof is the following idea
- ”the summing away method”:

N
> > D ITNT; N ExNT|

LEN1(4,No(4)),l#i,1#j i€No(j),i#j J=1

- ¥ |

LEN (4, No () l#i,l#] i€No (5)i#j =17 Tt “T'“Ezk

< IQ?X#(#(NI(j’NOU))) / j
PR 1€N0(] ity j=1 TﬂTlﬁEzk

(4.6)

N
<2FN / Iy lgp 1y,
N
:2kN/ lplg Y 1,
Bk j=1

< N2F / 1p, 17,2
k

ok

= N©2"2|T; N T N Byl
Above, the third inequality follows from (4.5) and that #(N(j)) < N. The second
to last inequality follows because we are integrating over Fsx, respectively. Now, it
follows from the lemma [[.3] that we have

(4.7) |T; VT N By | < 27K/ (=gt

for ¢ # I. Thus, the claim (4.2)), follows from the equations (4.3), , 4.6)) and
[D.
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5. THE PROOF THE GENERAL CASE

We divide each -tube to L parallel §’-tubes overlapping small amount. So that
we have

L/
(5.1) |
j=1

Then we choose a maximum number of disjoint ¢’-tubes. If we don’t like this
procedure we should define our d-tubes in equivalent way as hyperrectangles. For
completess we prove the following quite self-evident lemma.

Lemma 5.1. Suppose that each x© € Eox belongs to maximally C,, &' -tubes. Then
for mazimal number of disjoint tubes Ti‘; we have

L
(52) U jjz(; C Ti57
j=1

for all different tubes we have

CnL

0 5’

(5.3) N

Jj=1
and

C.L
(54) T < DI

j=1
Moreover, we have
(5.5)

N L
{reRM2"<H N Lys Lo,y <2 1y — U{:): e R"2F < Z Lys Lp,n < k1)
=1 j=1 7j=1 =

and for some set of tubes

N L
(5.6) |Boe| ~ {z € R*2V <D0 1pwlpea) < 251,

i=1 j=1

Proof. Now, (5.2) and (5.3) are clear. Moreover, (5.4]) follows from ([5.3)). Clearly,
because the the L tubes are disjoint, we have (|5.5)

L N N L
R"12F <N 1,51 < okt — R"|2F < 1501 < gkt1y,
L_J{we | _Z o 1B00) <2 = {r e RV <30 Ty lpea < 254}

i=1 j=1
If z € {x € R"|2F < Zl 12 T5/13(0 1) < 2FF1} then shows that = €
F5r. So we can assume x € For. So essentlally we just slice each 5 tube to L parallel
disjoint ¢’-tubes. We can proof the equation (5.6) as follows. If z € FEyr then there
exists ~ 2% §-tubes such that x C Tj for j € {1,2,...,28"1}. So x belongs to one or
few Tg—tubes via (5.3). Thus, z € Uf;f{x € R"|2F < Zivzl 1T$/1B(0’1) < 2k
So we proved that

CnL

By C U {z e R"2F < 21T5,1B(0 )y < 2K
j=1 i=1
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and that

L N
R"2F <Y 1,451 < 2F1Y ¢ B,
U{.’L’ S | < Zl 5 B(0,1) S } C Lok

j=1
So, via (5.5) we only need to prove that

CnL N L N
Utz e R <3 1wl < 297 < Culde € RY28 < 3 17w 1m0 < 2571,
Jj=1 i=1

=1 i=1
But this follows if we take

L N L N

\U{x ER"|2" < Z Ly lson < 2 = le(imnc )| U{x e R"|2" < Z Lysrlpon = 2P,
j=1 i=1 s =1 i=1

O

Next, we define

N
By = {z € R"2" <) 17 o lpen <2571},
i=1
Thus, by previous lemma we have
L
(5.7) > IE | ~ [ Egel.
j=1

Finally, we make ¢’ so small that we have point like intersections. In other words

~2Fk
B0 nTs ¢ (T

25
=1

for all I, m and j, when [ # m. This ”thinning technique” is always possible when
we necessary have intersections, that is when &k # 0. It holds that

(5.8) lim T, NTY N E L C {x},

1—+00

for I # m. So for any | and m, I # m, we can choose 0, = 1/i such that

M ~2F ~2k
1/i 1/i i _ o 1/i ~Al/i 1/i _ 1/4
ninnin g =nanynJ (7 = N1,
j=1k=1 j=1

for all ¢ > ig, for some ig. This follows from and because the intersections
are disjoint. Taking the minimum of 1/i over all M intersections gives the desired
85 < 1/i, for Ey,. Then we must take the minimum of 7 over j and we are done.
In addition the conditions for our theorem hold for any E;Qk.

Remark 5.2. With the easy thinning technique just defined we get rid of the small
angle counterexamples to (4.1). Now the angles are large enough with respect to
possibly really small §’. This method solves the so called ”small angle problem” for
the Kakeya conjecture.
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So we have
|E;2k| 5 27kn/(n71)N6'(n71)
via previous discussion and theorem And it follows from above and from (5.1))

that
L

E2k ~ E . 5 2—kn/(n—1)NL5'(n—1) ~ 2—kn/(n—1)]\7511—17
72
j=1
which proves the corollary
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