
ON THE AVERAGE NUMBER OF INTEGER POWERED

DISTANCES IN Rk

T. AGAMA

Abstract. Using the method of compression we obtain a lower bound for the

average number of dr-unit distances that can be formed from a set of n points
in the euclidean space Rk. By letting Dn,dr denotes the number of dr-unit

distances (r > 1 fixed) that can be formed from a set of n points in Rk, then
we obtain the lower bound∑

1≤d≤t

Dn,dr � n
2r
√
k log t.

for a fixed t > 1.

1. Introduction

The Erdős distance problem in Rk (k ≥ 3) is perhaps one of the most celebrated
unsolved problem in discrete geometry. The problem as is suggestive was posed
by the Hungarian mathematician Paul Erdős. It has two main versions, namely
the distinct distance problem and the unit distance problem, respectively. Even
though both versions of the problem remains unsolved in higher dimensions, some
substantial progress has been made. For the number distinct distances Pn,k that
can be formed from an arrangement of n points in any euclidean space Rk for k ≥ 3,
Erdős obtained the upper bound

Pn,k � n
2
k

and conjectured that the lower bound for the number of distinct distances that can
be formed from the arrangement of n points in the space Rk for k ≥ 3 is lower
bounded by the same quantity. It is known that (see [3]) the number of distinct
distances that can be formed a set of n points in a euclidean space Rk for k ≥ 3
satisfies the lower bound

Pn,k � n
2
k−

2
k(k+2) .

The unit distances problem similarly seeks to find the number of unit distances that
can be formed from a set of n points in the plane. Let In,k denotes the number
of unit distances that can be formed from a set of n points in the euclidean space
Rk for k ≥ 2. Paul Erdős (see [2]) proved the lower bound for the number of unit
distances that can be formed from n points in Rk for k = 2

In,k � n1+o(1)
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and conjectured that the upper bound can also be bounded by a function of this
form. The best known upper is given by

In,k � n
4
3

due to Joel Spencer, Endre Szemeredi, and William Trotter [1].
In this paper, by exploiting the method of compression of points in Rk, we obtain
a lower bound for the number of d-unit distances that can be formed from a set of
n points in Rk for k ≥ 2. In particular, we obtain the following lower bound

Theorem 1.1. Let Dn,dr denotes the number of dr-unit distances (d > 0) that can
be formed from a set of n points in Rk. Then the lower bound holds for the average
number of distances formed for 1 ≤ d ≤ t (t > 1 fixed)

� n
2r
√
k log t.

2. Preliminaries and background

Definition 2.1. By the compression of scale m > 0 (m ∈ R) fixed on Rn we mean
the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression roughly
speaking pushes points very close to the origin away from the origin by certain scale
and similarly draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale 1 ≥ m > 0 with Vm : Rn −→ Rn is a
bijective map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale m > 0 (m ∈ R) fixed, we
mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
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then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi ≤ xj for
1 ≤ i, j ≤ n.

Lemma 2.4. The estimate holds∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m > 0.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for each 1 ≤ i ≤ n and
xi 6= xj for i 6= j, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�
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Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m > 0, denoted G ◦ Vm[(x1, x2, . . . , xn)], we
mean the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Definition 2.7. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all 1 ≤ i ≤ n. Then
by the ball induced by (x1, x2, . . . , xn) ∈ Rn under compression of scale m > 0,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ < 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality. We call the ball the circle induced by points under compression if we
take the dimension of the underlying space to be n = 2.

Remark 2.8. In the geometry of balls under compression of scale m > 0, we will
assume implicitly that 1 ≥ m > 0. The circle induced by points under compression
is the ball induced on points when we take n = 2.

Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Nn, where m2M◦ V1[(x21, . . . , x

2
n)] is the error term in this case.

Lemma 2.9 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2 and
xi 6= xj for i 6= j, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Theorem 2.10. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] < G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] ≥ G ◦ Vm[~y],

then it follows that ||~y|| ≤ ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] < G ◦ Vm[~y]
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then it follows from Proposition 2.3 that ||~z|| < ||~y||. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �

Theorem 2.11. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 2.10 that

G ◦ Vm[~z] ≥ G ◦ Vm[~x].

It follows that

G ◦ Vm[~y] > G ◦ Vm[~z]

≥ G ◦ Vm[~x]

> G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 2.12. Theorem 2.11 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

2.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 2.13. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 2.14. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball.

Theorem 2.15. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].
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Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 2.10, we obtain the inequality

G ◦ Vm[~y] ≤ G ◦ Vm[~z] < G ◦ Vm[~x].

It follows from Proposition 2.3 that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining this
points to the origin by a straight line, this contradicts the fact that the point ~y
is an admissible point of the ball B 1

2G◦Vm[~x][~x]. The latter equality follows from

assertion that two balls are indistinguishable. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y lives on the outer of
the indistinguishable balls and must satisfy the inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
and ~y is indeed admissible, thereby ending the proof. �

Remark 2.16. We note that we can replace the set Nn used in our construction
with Rn at the compromise of imposing the restrictions ~x = (x1, . . . , xn) ∈ Rn such
that xi > 1 for all 1 ≤ i ≤ n and xi 6= xj for i 6= j. The following construction in
our next result in the sequel employs this flexibility.

3. The lower bound

Theorem 3.1. Let Dn,dr denotes the number of dr-unit distances (d > 0) that can
be formed from a set of n points in Rk for a fixed r > 1. Then the lower bound
holds ∑

1≤d≤t

Dn,dr � n
2r
√
k log t

for a fixed t > 1.

Proof. Pick arbitrarily a point (x1, x2, . . . , xk) = ~x ∈ Rk with xi > 1 for 1 ≤ i ≤ k
and xi 6= xj for i 6= j such that G ◦ Vm[~x] = dr for a fixed d > 0 and r > 1. This

ensures the ball induced under compression is of radius dr

2 . Next we apply the
compression of fixed scale m ≤ 1, given by Vm[~x] and construct the ball induced
by the compression given by

B 1
2G◦Vm[~x][~x]

with radius (G◦Vm[~x])
2 = dr

2 . By appealing to Theorem 2.15 admissible points ~xl ∈
Rk (~xl 6= ~x) of the ball of compression induced must satisfy the condition G ◦
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Vm[~xl] = dr. Next we count the number of dr-unit distances formed by a set of n
points in Rk by counting pairs of admissible points (~xl, ~xh) on the ball B 1

2G◦Vm[~x][~x]

such that Vm[~xl] = ~xh so that the average number of dr-unit distances for 1 ≤ d ≤ t
with fixed t, r > 1 is lower bounded by∑

1≤d≤t

Dn,dr =
∑

1≤d≤t

∑
1≤l≤n

2

~xl∈Rk

G◦Vm[~xl]=dr

1

=
∑

1≤d≤t

∑
1≤l≤n

2

~xl∈Rk

r
√
G ◦ Vm[~xl]

d

�
∑

1≤d≤t

∑
1≤l≤n

2
1≤i≤k

2r
√
k r
√

Inf(xli)

d

≥
∑

1≤d≤t

2r
√
k

d

∑
1≤l≤n

2

1

=
∑

1≤d≤t

n 2r
√
k

2d

=
n 2r
√
k

2

∑
1≤d≤t

1

d

and the lower bound follows. �
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