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Abstract

In this article, I discuss the proof in [5] in more detail and add some details. The first part of the article
mainly gives some concepts and lemmas, such as the definition of some function spaces [6], Radon integral
and its basic properties [3], L'—seminorm [3], the definition of Lebesgue integral [3, [§] and so on. These
basic concepts and lemmas are very helpful in proving the main theorem later. The proof of the main
theorem is divided into two parts. The main idea is to locally approximate the transformation ¢ : U — V'
around a point a € U by an affine map. In order to be able to use this local approximation meaningfully,
we decompose the given function ¢ € C. (V) into a sum of functions with very small support, so that the
approximation of ¢ : U — V by the local affine approximation is very good. This is done with the help of
the (—function introduced below, which provides a practical partition of the one on R™ [5]. In the second
part, the proof will be performed on suitable approximations of any integrable function [5]. Lemma
shows that f is IR|U—integrable iff the trivial continuation frr : X — C is Ir—integrable. It is also very
important for the proof of the main theorem.

Some basic concepts and lemmata

Notation 1.1:
Let X be a locally compact topological space. Let f : X — C be a function. We call:

supp (f) :== {z € X : f (z) # 0}

the support of f . We denote the set of all continuous functions f: X — C with C (X) ,thus:

C(X):={f:X = C: f continuous} .

In this papar, we will make frequent use of the following function space:

C.(X):={feC(X):supp(f) is compact}.

We denote C* (X) and C% (X) for the analogously defined spaces of real-valued functions.

Lemma 1.1 (Urysohn):

Let X be a normal topological space and A, B C X closed and disjoint. Then there is a continuous function
f:X —=[0,1] with f|, =0 and f|, =1.

For the proof of Urysohn’s lemma please refer to [2]. A normal space is a topological space in which any two
disjoint closed sets can be separated by neighbourhoods. Urysohn’s lemma states that a topological space is
normal if and only if any two disjoint closed sets can be separated by a continuous function.

Definition 1.1 (Radon—Integral):

Let X be a locally compact space. A Radon-Integral [3] on X is a positive linear functional:

IR:CC(X)%C, f*—)IR(f)

Which means that Ig is linear and Ig > 0 if is f >0 .

Lemma ([1.2)) shows some elementary properties of Radon—integral.

Lemma 1.2:
Let Ip : Co (X) — C be a Radon-integral. Then:



(i). For all f € C®(X) holds Ir (f) € R .
(ZZ) ]ffl, f2 S C§ (X) with fl < f2 then IR (fl) < IR (fg) .
(iii). |Ir (f)| < Ir(|f]) for all f € Cc(X) .

Proof:
Let Ir : C. (X) — C be a Radon-integral.

(i). We break the function f € C,(X) into positive part f™ := max{f,0} > 0 and negative part f~ :=
min {—f,0} > 0. Then we can write f as the difference of the positive and negative part f = f* — f~ .
Because I is linear thus:

In(f)=Ir(LfT+ (1 f7)=Ur(fT)+(-VIr(f7) =Ir (f") —Ir(f7) €R. (1.5)
Because Ir (f*), Ir(f7)>0.

(ii). Actually because Ir is a linear functional, then Ig is linear and Ir(f) > 0 when f > 0 . For any
fi, fa € CB(X) := {f € C.(X): fisreal} with fi < fo holds fo — f1 > 0 and hence Ig (f2 — f1) =
Ir (f2) =Ir(f1) 20 .

(iii). We choose 6 € [0,27) and write f as |f|e? . Then I (f) = |Ig (f)|e” . Obviously holds I (fe=%) =
e Ir (f) = |Ig (f)| = 0. Thus without loss of generality we can assume I (fe=%) := I (f') > 0. We
write a f € C.(X) as f := f,. +if; and we know from the elementary property of complex number that
|f] > fr, fi - Thus we get:

e (f)l=1Ir(f) =Ir (fr) +ilr (fi) = Ir (fr) < IR (|f])- (1.6)

O

Definition 1.2 (Lower semicontinuous):
Let X be a locally compact space. A function f : X — R\ {—oc} is lower semicontinuous, if for all
a € (—0o, +00] holds:

f~((a,+o0]) open in X. (1.7)

We denote the set of all lower semicontinuous function f: X — R\ {—oo} as C, (X) .

In the next, we will prove some properties of Radon—integral.

Lemma 1.3:
For every f: X — R := [0, +oc] are equivalent:

(i) f€CT(X):={feCu(X):f=0}.
(it). f(z)=sup{p(z):peCH(X), o< f},VexeX . HereCH(X):={feC.(X): f>0}.
Definition 1.3:

For f € C} (X) we define:
I (f) =sup {Ir (p) : 0 € CT (X), 9 < f}. (1.8)

Lemma 1.4:
Cr(X)CCH(X) and I (¢) = Ir(p), Vo € CF (X) .

Proof:
Let f € CF (X) . Then f is a continuous function on X , thus f € C} (X) is lower semicontinuous on X .

Because f is a continuous on X iff it is lower semicontinuous and upper semicontinuous on X . Thus f € C;f (X)
. Which implies C;f (X) C C;f (X) . From definition ((1.3) we have:

I (@) ==sup{Ip(p): 0 € CF (X), o <} =Ir(p). (1.9)
0

Lemma 1.5: _ N N _
Is¢y € CF(X) and e > 0 . So exists a ¢ € CF (X) with ¢ < 1, IR(w—z/J) <eand Y (x) < (x), Vo €

surp (7) .



Proof:

For 6 > 0let 95 := (¢ — 6)V0 := max {¢) — 6,0} € CF (X) . Obviously hold ¢5 < ¢ and 95 (x) = ¢ (x)—0, Va €
supp (bs) . According to Urysohn’s lemma exists a xy € C.F (X) with x = 1 on supp (¢0) . Thus 0 < ¢ —1)5 < dx
and Ir (¢ —5) < dIr (x) . Now we can choose ¢ such that 61 (x) < ¢ .

]

Lemma 1.6:
Are g, g1, 92 € C)F (X) and A >0 . Then \g and g1 + g2 are also in C;f (X) and hold:

Tr(91+92) = Ip(91) + IR (92), IR (Ag) = Mg (9). (1.10)

Proof:

Here we only prove first identity in equation (1.10). Are g, g1, g2 € C,f (X) . For any given ¢ > 0 .Then from
lemma (1.3) exist 1, g2 € CF (X) such that ¢ < g1 and @2 < go . Because I}, (g;), j = 1,2 are supremum,
thus holds I}, (9;) —€/2 < Ir (¢j), 7 =1,2 . Then because Ig is linear, thus:

Tr (91 +92) 2 I (o1 +¢2) = I (1) + I (p2) > IR (91) + I (92) — & (L.11)

Because ¢ > 0 random, then I (g1 + g2) > I% (g1) + 15 (g2) -
Given a £ > 0 again. Let ¢ € CF (X) with ¢ < g1 + g2 and I}, (g1 + g2) — € < Ir(¢) . From lemma ((1.5)
we know that exists ¢ € CF (X) with ¢ < ¢, ¥ (z) < ¢(z), Yz € supp () and Ig (¢ —¢) < € . Thus

¥ (x) < (g1 +g2) (x), Va €supp (¢) and I (¢) > I; (g1 + g2) — 2¢ .
Let = € supp (¢) fixed and define a function d, := (91 + ¢2) () — ¥ () > 0 . We consider the set:

os .

Vy = {zeX:gj(z)>gj(x)—3, 3—1,2}. (1.12)

Obviously elements in V, satisfy the condition z € g;l (g (x) — 65/3,4], j = 1,2 . Because g;, j = 1,2
2

are lower semicontinuous, thus V, = ﬂ g;l (9j (x) — 04/3,+0c] is an open set. Furthermore x € V, C V,
j=1

, thus V, is a open neighbourhood of z . Then form Urysohn’s lemma (1.1) exist p¥, % € CF (X) with

supp (@?) C Ve, 0<¢f <gj—0:/3 and ¢f (z) = gj (v) —6,/3, j = 1,2 . Thus ¢f < g;, j = 1,2 and

(7 +93)(x) > Y (x) . Let W, := {z: (¢ + ¢3)(2) > (x)} . Then W, is also a open neighbourhood of

n

2z . Because K := supp (¢) is compact thus exist z1,...,z, € K such that K C U W,, . Then define

j=1
pj = max ¢, j=1,2 then it follows ¢; < g;, j =1,2 and ¢ < ¢1 + 2 . Thus:
Ik (91) + 1R (92) = IR (01) + IR (p2) = IR (01 + @2) 2 IR (V) > I (91 + g2) — 2e. (1.13)
Because € > 0 random, then I}, (91) + I}, (92) > I (91 + g2) -
(]
Definition 1.4 (L'—seminorm):
Let f: X - C (or f: X -5 R\ {—00}) be any function. Then we define:
£l semi = inf {I} (9) : g € CF (X)), [f| < g} €[0,+00]. (1.14)

We call || f] ;.. the L' —seminorm of f .

,semi

Lemma 1.7:
For functions f, f1, fo: X — C and A € C hold:

(Z) Hfl + f2||L1,semi < ||f1||L1,semi + ||f2||L1,semi .
(“’) H>‘f||L1,semi =A ||fHL1,semi '
(“Z) |Hf|||L1,scmi = HfHLl,scmi '
(“)) (|fl| < |f2|) = (HflnLl,semi < ”fQHLl,semi) :

(v). If f € Cf (X) then holds || f|| 11 gomi = I (f) -



(vi). If p € C.(X) then holds H‘PHLl,semi =TI(lg|) -

Proof:
Here we only prove (i). Are fi, fo : X — C.We can without loss of generality assume || ;]| ,; <400, j=1,2

. Then exist functions g1, g2 € CF (X) with | f;| < g;, j =1,2 . Because || fj]| ;1 ,o,; are infimum, thus for any
+¢/2> T4 (g;), j=1,2. Then it follows |fi + fo| < [f1]+|f2| < g1 + g2 and:

,semi

given € > 0 we have || f;][ .

,semi
111+ foll 11 semi < TR (91 + 92) = TR (91) + IR (92) < /1l 12 semi + 1f2ll 11 somi — & (1.15)
Because ¢ > 0 is random then we get finally || f; + ngLl’SEm <|f1 ||L1,semi + ”f?HLl,semi )

O

Lemma 1.8:

Let f: X — C (or f: X — R\ {—00)) be any function, such that exists a sequence (¢n), e C Ce(X) with
1f = @nllpt somi = 0 - Then (Ir (¢n)),en @ Cauchy sequence in C . Is (¥n),cny € Ce (X) another sequence in
CC (X) with ||f - (anLl,semi —0 ,then:

lim Ig(p,) = nh_)rrgo Ik (n) - (1.16)

n— oo

Proof:

Let f: X — C (or f: X — R\ {—00}) be any function, such that exists a sequence (¢,),cy € Ce (X) with
1f = @nllp1 somi = 0 - Thus exists an N € N such that || f — onl| <eg/2for alln > N and any given £ > 0
. Then for all n, m > N with lemma (1.2) (iii) we have:

,semi

1R (pn) = Ir ()| = [Ir (on = em)| < IR (Ion — oml) - (1.17)

Because |¢, — pm| € CF (X) then from lemma (1.4) we know that I} (|on — ©m|) = Ir (|on — ©m|) and:

||507L _SOmHLl,semi
= inf {II*% (|30n - @m‘) : |50n - @m‘ € Cc+ (X)a |30n - (Pm| S “Pn - @m'}

_ (1.18)
= f {Ir (lon = oml) : lon — om| € CF (X)), on — m| < lon — ml}
= Ir(len —eml)-
Hence with lemma (|1.7) (i) we have:
e €
IR (lpn = pml) = lon = omllps semi < llon = Fllp somi 1 = @mllpsgomi < 5+ 5 =¢ (1.19)
Thus (Ig (¥n)),en is @ Cauchy sequence.
Let now (¢n),,en € Ce (X) be an another with ||f — @n|l 11 omi — 0 ;then:
R (on) = Ir (¥n)| = IR (on — ¥n)| < IR (lon — ¥nl) = [lon — wn”Ll,scmi (1.20)
< lon = Fllor semi + I1f = ¥nllis semi = 05 (n— 00).
([

Definition 1.5 (Ir—integrable): B
Let Ig : C.(X) — C be a Radon-integral. Then a function f : X — C (or f : X — R\ {—o00}) is called
Ir—integrable, if a sequence (¢n),cp C Ce (X) with || f —@nll 11 somi — 0 and then call:

/ f(x) dr,z = HILII;O Ig (on) (1.21)
'S

the Ir—integral of f . Obuviously from lemma @ we know that Igr—integral is well-defined.

Let:
A:C.(R)y—=C, f=A(f):= /_ f (z) de. (1.22)

The A—integrable function f : R — C (or f: R — R\ {—o0}) is called Lebesgue integrable function on R
and:

/ f(z) dyz (1.23)
R



is called the Lebesgue integral of f on R . Analogous is f € C. (R™) , thus:
+oo +oo
A () ::/ </ fxe, .. mp) dxn) dzq (1.24)
define a Radon integral on R™ . The A,—integrable functions are called Lebesgue integrable function on
R™ and if a function f: R — C (or f: R — R\ {—o0}) is Lebesgue integrable then we call:
(x) da, x (1.25)
R7l

the Lebesgue integral of f on R™ . Lemma (1.9)) [8] tell us:

Lemma 1.9:
Let f : (a,b) = R be a positive measurable (relating to the Borel o—algebra) function such that for every interval
[c,d] C (a,b) the function f|[C p is Riemann—integrable. Then the following statements are equivalent:

(i). f is improperly Riemann—integrable.
(ii). f is A\—integrable.

In this case:

b
/ f(z)de = f(z) dyz. (1.26)
a (a,b)
Where X\ is the 1—dimensional Lebesgue’s measure.

Because every (relating to the natural topologies (inductive by any norm) on R and C) continuous function
f : R — C is measurable (relating to the Borel c—algebras on R and C) [8]. Then for f € C.(R) C C (R) we
have:

—+o0
| r@a=ap= [ 1@ (L.27)

— 00

Analogous for n—dimensional case:

/:o (.../:Of(xl,...,xn> dx) dr =)= [ 169 dax (1.28)

Where A, is the n—dimensional Lebesgue’s measure. Lemma ([1.10)) [§] tell us the Lebesgue measure is invariant
under affine transformations:

Lemma 1.10:
Let T : R™ — R" be an affine transformation with the form:

T:R" - R", x+— T(x):=Ax+Db. (1.29)

Where b € R™ and A € GL(n,R) :={A € M (n x n,R) : A is invertible} . Hence:

1
= — . 1.
AT = T AL (1:30)
Is A €O (n,R):={A e M(nxn,R): Ais orthogonal} then we have:
AnT = An. (1.31)

The second conclusion in lemma ([1.10)) is trivial, because the determinant of an orthogonal matrix is +1 . Now
we can use the lemma (1.10)) on the A, —integrable function f and hence:

f(x) da,x = |det A] f(Ax+Db) da, x. (1.32)
R™ R"

Where A, 1 (f) = Ay, (f o T) . Thus with the equation (1.28) we get:
A (f) =|det Al A, (foT). (1.33)

The equation (1.32)) is also established for any f € C. (R™) [4].



Lemma 1.11:
Let Ip : C. (X) — C be the Radon-integral on X . We consider the set:

LY(X,Ig) :={f:C.(X) = C: fis Iy integrable} . (1.34)
Then LY (X, IR) is a C—wvector space. And the map:

/:El(X,IR)%(C, fr—>/f(:v) drz (1.35)
X X

is linear. Furthermore for every Igr—integrable function f is |f| also integrable, and:

‘/ f(CE) dIRx
X
Proof:

Are f7 g € ct (X’ IR) and (Son)neNa (wTL)nEN < C ( ) with ||f - SDWHLl,semi — 0 and ||g_wn||L1,semi — 0.
Thus:

< / £ @) i = [l somi - (1.36)
X

1f+g9—(on+ wn)”Ll,semi <|f- ‘PnHLl,semi + g — d)””Ll,semi — 0. (1.37)
Which f + g € £ (X, Ir) and from definition (1.5 we get:

J o i = lim TG ) = lim (T o)+ T (5,)

(1.38)
= hm Ig (on) + hm Ig (V) = / deRJ:—I—/ gdra.
Is A e C. Then:
IAf = Aenll 1 somi = AL = @nll 1 gomi = 0 (1.39)
hence:
[ 00 die = Jim T (en) = lim (Ma (62)
x A (1.40)

—/\hm Ir (on) )\/ fdr,z.

We still show the last statement. Because of the triangle inequality we know that ||f (z)| — |¢on (2)]] <

|f(z) — ¢n (z)|, Vo € X . Thus with (iii) in lemma (L1.7) we have ||[f| —|onlll 11 comi < If = @nll 11 somi — 0 -
Thus | f| is Igr—integrable and hence form (iii) in lemma (|1.2)):

/ Fldrgr = lim I (jpal) > lim |Ig (00)
X n—oo

(1.41)
nh—>H;cIR (pn ‘/ deR
Furthermore because of the triangle inequality we have:
||f||L1,semi —f- %On”Ll,semi <|[f-=(f- ‘Pn)HLl,semi = ”‘PnHLl,semi (1.42)
= If = (F =)l semi < Iflpr semi + 11 = @nll 22 semi -
Then for n — oo :
. de.
11 s = Jim2 Dl s T i T (o) “ 2 [ 171 a1 (1.43)
O

Definition 1.6:
Let I : C.(X) — C be a Radon integral and U C X . Is f : U — C a function. Then we call f : U — C is
Ir—integrable on U , if the trivial continuation of f : U — C :

frUCx scimd f@e el (1.44)
vomE 1o, ze (X \U) '

1s Ir—integrable on X and hence we define:

/deIRx ::/Xfudsz. (1.45)



2 Part 1 of the proof

First of all, we need some definitions and lemmata. The main lemma in this part is lemma (2.6]), which plays
an important role in the proof of theorem (3.1)).

Definition 2.1 ({—function):
we define a function from R to [0,1] by:

. L 1_‘x|v |x‘ <1,
C:R—=10,1], x+—((z):= (2.1)

0, x| > 1,

and call it {—function. We define the scaling of the (—function on the domain by . (z) :=  (x/e) . Similarly
define the scaled (—function in R™ by:

"¢ R = [0,1], x> "¢ (%) == [] ¢ (x5). (2.2)
j=1

Definition 2.2 (Translation in R"):

We define the translation in R by a operator T. :
T.f(x):=f(x—"). (2.3)

Lemma (2.1]) states that the support of the z—translated and e—scaled (—function in R,, is the closed ball in
with 2z as the center and ¢ as the radius with respect to the maximum norm.

Lemma 2.1 (Support of (—function):

supp (111"Cc) = By _ (z,6) = {x € R" : |x —z[| <&}, z€R" >0 (2.4)

with the mazimum norm ||x|| = max {|z1|,...,|z.|} and supp (f) the support of function f .

Proof:
Let z € R™ and € > 0 . By the definition of (—function in R™ :

N N (2.5)
= HC(% Zj) - H <1_ - Zj)’ S < Lvj=1,...,n
€ € €
j=1 j=1
Obviously, iff:

(lzj — 2| <e, Vi=1,...,n) = (max{|z; — z1|,...,|zn —2n|} <€) & ([[x — 2| <¢) (2.6)

211", (x) is not equal to 0 . This indicates:
supp (7I1"¢.) = {x e R" : ||x — z|| , < ¢}. (2.7)
O

Lemma 2.2:

3 I (x) = 1. (2.8)

jezn

where in this sum only finitely many summands are not equal to 0 .

Proof:

We first prove the lemma for the case n =1 and e = 1. Is € R random. Then 7;¢ (z) = ((z —j) # 0 iff
|z —j| <1for j € Z . Then in case x = j € Z we have 7;¢ (z) =((x —j) =((0) =1—10| =1 and ;¢ (z) # 0
foralli# je€Z.Isx ¢ Zthen j:= |z <z .Thus:

) ) . . (2.9)
Titi>aC () =C(z—j—-1)=1—|jz—j—-1l=1—-j—-14+axz=2—.



and 7;¢ () = ((x —i) =0forall i € Z\ {j,j + 1} . For example is the distance from x to j — 1 is the distance
from « to j plus the distance of j and j —1 , thus the total distance from z to j—1is1 < |z — j|+|j —j+ 1| =
|t —jl+1=|(x—j)+ 1| =|r—(j— 1) and hence 7;_1( () = ((x —j+ 1) =0 . Then we have:

dorc) = > @)+ > @) =1-z+j+z—j+) 0=1 (2.10)

JEZL je{m,m+1} FE(Z\{m,m~+1})

Now let any € > 0 . Then 7;.¢ () = (((z — je) Je) = ((z/e —j) = 7j¢(z/e) . Then we get from above

conclusion:
3 7t (@) ZTJ (2) = ZTJ ((FeR)=1. (2.11)

JEZL

We now show by induction on n that the claim also holds for all n € N . Obviously:
T(jyj)EH”'HCg (x,z) =TT (x — je, o — je) = 13. 11" (x) 752 () (2.12)

for all (x,z) € R"™! and (j,j) € Z"*! . For a fixed j € Z we get the subsum:

Do Tl () = | Y el (%) | el (@) = 10 7eCe (2) = e (2). (2.13)

jezn jezn

Where the last equation follows from the induction hypothesis. Finally:

S rplT G () =D [ D] TG (xa) | =D mele () = 1 (2.14)

(.g)ezn+t JEZ \JEL™ ez

It is evident from the above proof that in this sum only finitely many summands are not equal to 0 .

O
For every choice of coefficients a; € C and j € Z™ we get well-defined continuous functions:
g:R"—>C, x—g(x Z a; T3 11" (e (%) (2.15)
jeznr
We use this construction in the following lemma with a; := ¢ (je) .
Lemma 2.3:
Let ¢ € C. (R™) . Then for every r > 0 there exists an g9 > 0 with:
=Y W (Ge) || <7 Ve<eo (2.16)
jezn .
Here the set C. (R™) represents the set of all continuous functions with a compact support.
Proof:
Let ¢ € C. (R™) . Let r > 0 and x € R™ fixed. Then:
n .
Tk — JKE Tk — JKE Tk — JkE .
eI, (x Hc( ) H( ) D1 vi=1 @I
Thus iff |(zr — jre) /e] <1, Vj=1,...,nis 13.II"(. (x) # 0 . This is equivalent to:
(lok — jrel <e, Vi=1,...,n) = (max {|z1 — jie|,...,|zn — jne|} < &) & (|x —jell <€) (2.18)

This condition is only fulfilled for finitely many j € Z™ . Because 1 is continuous and has a compact support,
it is uniformly continuous. Now let us choose a g9 > 0 such that for all x, y € R™ with ||x —y||, < ¢ it follows



that ¢ (x) — ¢ (y)| <r, then for all 0 < € < &g and for all x € R™ :

— v () (Z 71T (x)) = 3 () eIl (%)

jezn jezn

¥ (%) = Y ¥ (§e) TG (x)

jezn

= |3 G (9 (0 () — v (<)

jezr
< 3 R () 1 () — 0 ()l
jezn
< Z T II"C (x)r =7
jezn

=1

Lemma 2.4:
ForallzeR" e>0andx,y e R" :

n n n
[mall"Ce (%) = Tll"C (¥)] < Z I = lloo -

Proof:

Without loss of generality let z =0 and € =1 . Because:
€ €

"¢ (x) - (y)| <nlx-yle, Vx yeR"

We use complete induction to prove.

"¢ (x) = 11I"C: (y)| =

we must prove:

(). In case n =1 the (—function is:

1—lz|, |2 <1,
0, |z| > 1,

H1<<x>:<<m>={

(1). For |z|, |yl <1:
IC(@) = CW) =1 —|z[ =1+ |yl = [[y| = |z[| < [z —y].

(2). For Jal, [yl <1
C@) = ¢ =10-0=0< e —yl.

(3). For (lz| < 1) A(ly[ = 1) :
IC(@) = CW)l=1—lz| =0 =1—|z[ < [y| - |z] < |y — 2|
(4). For (ly < 1) A(jz[ = 1) :
W) —C@) ==yl =0/ =1yl < || = |yl < |z —yl.
(ii). For (n+1) € N let (x,z) and (y,y) in R"*! Then first:
¢ (x,2) =" (x) ¢ (2), T (y,y) = TT"C(y) ¢ (v) -
Thus:
[T (x, ) = T (y, )| = [T17C (%) ¢ (2) = TTC (y)
I ¢ (x) ¢ () = "¢ (y) € ()] + IT"¢ (y) ¢ (x) = II"C (y) |
C(z) "¢ (x) —I"C(¥)| +I"C(¥) [C(2) = C(y)|,  (0<((z), T"C(y) <1)
"¢ (x) = I"¢ (y)| + ¢ (2) = ¢ (v)]
nlx =yl +lz—yl <+ x2) = (v, )l

y)
y)

INIAN I IA

Thus we close the complete induction.

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)



O

Lemma 2.5:
Let K C R™ compact. Let f : K — R" continuous. Then there is a monotonically increasing function
0210, +00) := RS — R with limn (£) =0 :

—

If )~ £l <n(lx-yl)., VxyekK (2.30)
Here ||-|| and ||-||' are any norms on R™ and R™ respectively.
Proof:
For t > 0 we define a function n by:
0 (t) :=sup {|If (x) ~£(y)| :x, y € K, [x—y[ <t}. (2.31)

(i). Obviously the function 7 is defined on R and the codomain is also R} bescause of the positive semi-
definiteness of norms |-|| and ||-||" .

(ii). Because K C R™ is compact and f : K — R™ continuous, thus f : K — R is uniformly continuous [7],
then:
Ve>0Vx,y e K36>0|x—y|' <e:|f(x)-f(y)]| <0 (2.32)

This implies n(0) =0 .

(iii). For t:= [|x —y|’ :

n(lx—yl') =sup{lIf (x) —f(y)|:x, y €K, [x—y| <|x—y|}

(2.33)
= sup{[[f (x) —f(y)ll: x, ¥y € K} = [[f(x) = £(y)].-
(iv). Because f : K — R™ is uniformly continuous, exist 26 > 0 for all 2¢ > 0 and x, y € K such that:
Ix =yl < 2 : ||f (x) — £ (y)[| < 26. (2.34)

This implies that the function 7 : [0, +00) := R — R{ is monotonically increasing.

(v). Because f : K — R™ is uniformly continuous, therefore for all € > 0 exist a 6 > 0 , such that for all
x,y e K:
!/
1) = sup {IEx) — )] % y € K, [x—y] <=} <o (2.35)

Thus 0 <n(t) <n(e) < ¢ forall 0 <t < e is established. Thus }iH(l)?] (t)=0.
L—

In summary, the function 7 : [0, +00) := Rf — R{ is well-defined.

Lemma 2.6:
Let U, V CR" open and let ¢ : U =V a C'—diffeomorphism. Then:

/ B (y) da,y = / (¢ (%) [det D (2)] dn,x, Voo € Co (V). (2.36)
1% U

with C. (V) :={¢ € C. (R™) : supp (¢)) CV} .

Proof:
First we define a new function z’/;(x) =1 (¢ (x)) |det ¢ (x)| . Then VecC, (R™) with supp (zZ) C U . Because

supp (¢) € V and supp (12) C U are compact, exist a €1 > 0 ,such that for all y € supp (¢») and for all
X € supp (@Z) :
BH‘HOQ (y,sl) cV, BH'HOO (X,ffl) cU. (2.37)

Because B (y,e1) and By (x,e1) are two closed and bounded sets in R™ ,thus they are also compact.
Now we consider a continuous map F : R” x R” - R", (x,y) — F(x,y) := x+y . This map maps compact

sets supp (¢) x By _ (0,€1) and supp (12) x By (0,e1) to compact sets Sy = supp (¢) + B, _ (0,1) and

S = supp (12) + By (0,1) respectively [1]. For example means supp (¢) + B _ (0,e1) that each point x
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in supp (¢) is assigned a closed ball with radius €1 ,whose center is x .
For A € M (n xn,K) wir define the matrix norm [|A| := sup {[|Ax|[, : [[x],, <1} . Because Sy, Sy are

compact and x — D¢ (x), y = D¢~ ! (y) are continuous then there is a C > 0 with:
Do (x|, [P~ (v)|| <C. Vx e85, yeSy. (2.38)

With the mean value theorem we have:

t=1

600 - 6@l =| [ Dot x-a)x-a) a

oo

S/t: 1D (a+t (x — a)) (x — )|, dt

=0

= (2.39)
= /t:o |[Dp (a+1t(x—a))(x—a)l, dt
<C

t=1
<[ Clx-aldt=Clx-al,
t=0

for all a € supp (12) and x € B _ (a,e1) . similarly, we have:

t=

Dp (bt tly b))y ) |

o7 -6 0l =

t=0 o]

g/: IDe™" (b+t(y —Db)) (y D), dt
t=0

t=1 (2.40)
= [ Ipe bty =)l Iy B

<C

t=1
g/ Clly bl dt=Clly bl
t=

for all b € supp () and y € By _ (b,e1) . Then follows from this:
¢ (Bl (a,6)) € By (¢(2),Ce), ¢~ (B (b,e)) € By (&' (b),Ce) (2.41)
forall 0 < e <e¢g; . In fact:

(]f)(BHHOO (a,ES&l)) :¢({X€Rn : ||x—a||oo <€S61})

(2.42)
={p(x)eR": [[x—al  <e<er}.
Thus if ¢ (x) € ¢ (BH,Hoo (a,e < 1)) then can be inferred from equation 1D that:
SXexe]
l¢(x) —d(a)l, <Clx—-all, < Ce<Ceq (2.43)

which implies ¢ (x) € By _(¢(a),Ce) . Thus ¢ (B _(a,e)) € By_(¢(a),Ce) . Similar reason for
¢ (y) €@ (Byy_(be<e)).
Let now g3 :=1/C > 0 .For every 0 < € < €5 define the map . by:

Ye = Y 1 (je) IT"Ce. (2.44)

jezn

Then from lemma (2.3)) it can be deduced that:

[ = Cellpn = [ = D @ (o) IIC|| =0, (e —0). (2.45)
sezn -
Then:
supp (¢e) := U {BH'HDC (je,e): J€Z", je € supp (w)} C Sy. (2.46)

11



In fact:

=Y v ) G (0 = Y o) [[ ¢ (” _J’“E)- (247)
k=1

jezn jezn
Thus:
(e (x > 0 (e) H (“ _9’“5) #0
jezn k=1
— JkE
& (¥ (je) #£0) A (Hc( )#0> (2.48)

< (jeesupp(¥))

<:>(‘(CE’\"7JIC€)/E‘S17 Vk:17“‘1n)
< (J €supp () A (max {lzy —jiel, ... [on — Jnel} =[x —jell o <€)
& (je esupp (¥)) A (x € By (e,e < £1)).

This implies that equation (2.46)) is the support set of 1. . Thus 1. converges to v even in the inductive
limit-topology, and it follows:

tim [ e () da,y = /V b (y) da,y. (2.49)

e—0

We define now 1. (x) == ¥ (¢ (x)) |det D¢(x)| and C := max |det D¢ (x)| . Thus with equation (2.44) the
XEo5

function 1. can be written as:

be (x) = > ¥ (je) lI"Ce (¢ (%)) [det Db (x)]

jezn
= JGZZ W (je) 311" (¢ (%)) |det Dep ()| (2.50)
- v ]I¢ (J) det Db (x)].

jeznr k=1

Now we want to find the support of @E . Let 125 (x) # 0 then we have:

n

> v (e) H < )d t D (x)| # 0, (2.51)
jezn k=1
which means je € supp (¢) and ¢ (x) € m(js, ¢) .Thus with equation 1) we get:
xep ! (m (je,e)) C m (¢~ " (je),Ce <e1). (2.52)
Totally we get the support of the function 155 :
supp (@) U{o ! (Bl (e.9) 15 € Z", je € supp (¢) }
C U {Bjy. (97" (&), Ce <e1) :j€Z", je €supp ()} C Sy

[3

(2.53)

And:

g =0 =0 (2.54)
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In fact for all x € SA

wH with lemma

S 0 () LI (¢ (%)) [det D (x)] — 0 (x)

jezn

= | ¢ (o) 1" (¢ (x)) |det D (x (Z T3I1"C (¢ )zﬁ( )

be () = 0 ()| =

jeznr jezn

= |3 (@ Ge) [det D ()] = & (x)) TG ( ()

< 3 [ (32) [det D (x)] — & (x)] 73:T"C. (¢ (x) (2.55)
= Z [ (j) |det D ()| — 1 (¢ (x)) |det Dep ()| 75-11"C- (b ()
i
= Z [det D ()] |4 () — 1 (¢ (x))| 7311"C- ( (x)
;
< o |det Dep (x |J§Z:n\¢ je) x))| 73 11" (@ (%))
= OZZ |4 (je) (%)) 75 T1"C (@ (%)) = 0, (e —0).
jezr
Similar to equation we get:
lim / - (8 60) et D () da,x = [ (6 () ldet Db ()] (2.56)
Now it only remains to show, that:
lim /wg ))|det D (x)] da, x—/ e (y) da,y| =0 (2.57)

holds. As already indicated, we approximate the C! —diffeomorphism ¢ locally around a € U by the affine map:

AR >R x—= A, (x):=¢(a)+Dp(a)(x—a). (2.58)

Claim 1:
There is a monotonically increasing function 7 : [0,&1] — R with }in(l) 1 (t) = 0 such that for all a € supp (1/)) C
—

U and for all x € By, _(a,e1)

[# (%) — Aa (%)l <n(llx—all,)llx—all, (2.59)
Proof:

With the mean value theorem we have for all x € By (a,e1) C U :

1609~ Al < ([ 100 (@10 a) ~ Do @] at) x -~ al.. (2.60)
In fact:
P(x)—Aa(x) =o¢(x)—¢(a)—D¢(a)(x—a)

:/_ Dé(a+t(x—a))(x—a) dt — D (a) (x — a) (2:61)

t=0
t=1
:/ (D (a+ 1t (x —a)) (x — a) — Dep () (x — a)) dt.
t=0
Because D¢ : S — M (n x n,R) is continuous, we use lemma (2.5) on D¢ in terms of the matrix norm |-

and the maximum norm |-[|  on R™ | it follows for the there given function n: Rf — Ry :

t=1 t=1
/ IDg (a+t (x — a)) — Db (a)]| dts/ n (It (x — a)]l,.) dt
t=0 t=0 (2.62)

t=1 =1
- /t—o n(|tlx —all) dtg/t_o n(x—all.) dt=n(|x—al.).
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O (Claim 1)

Claim 2:
Let 1, C > 0 and &5 := &1 /C as above. Then there is a function ¢ : [0, 2] — Ry with £ (0) = 0 and ¢ continuous
in 0 , such that:

/U I, (¢ (x)) |det D (x)] dy, x — / WII"C (y) da,y| < €(e)€” (2.63)

v

for all b € supp (¢) and 0 < e < es .
Proof: R
Let a:= ¢! (b) € supp (1#) and 7 : [0,&;] — Ry as in claim 1. Then it follows with claim 1 and lemma 1|

[I1"C (6 () = W IT"C (g1 ()| < 7 (160 = Agmr) (9] (2.64)
< (lx=o" b)l|) [x— o (b)]|
for all x € B _ (a,e1) . With equation if ¢ (x) € B _ (b, e) then it follows:
x € ¢ (By_ (b,e)) CBy_ (¢ (b),Cc) =By _ (a,Ce). (2.65)

We get an analogous statement for the map x — A, (x) = D¢ (a) (x —a) + ¢ (a) . From lemma 1 we know
that supp (7p11"C.) = By _ (b,€) , thus it follows for all ¢ < 3 = 1/C , that:

supp (TpI1"¢. 0 @) C BH'Hm (a,Ce) C BH.H& (a,e1) C 512

e e ’ (2.66)
supp (Tb11"(c 0 Xa) C By _ (a,Ce) € By, _ (a,e1) C S
In fact:
n _ n _ . ¢k (X) — bk
(oI1"C 0 ¢) (x) = IT"¢: (& (%)) = [[ ¢ (——— ), (2.67)
=1

so TpII"Cc 0 @ # 0 iff [(¢r (x) — by) /e[ < 1forall kK =1,...,n ,which equivalent to ¢ (x) € By _ (b,e) . Thus
with equation we know that x € B)_(a,Ce < e1) C By (a,e1) , which implies the first inclusion
relation in equation . Similar reason to another inclusion relation in equation . Together with
equation it now follows:

[BITC (¢ (%)) = TIT"C (Ap1(b) (%)) | < gn(C’e) Ce, Vxel. (2.68)

Obviously for all x € U\supp (1pI1I"(. o ¢) and x € U\supp (7pI1" (e © Aa) holds 711", (¢ (%)) = 71" (e (Aa (X))
0 <nCn(Ce) .

Because the map |det D¢| : Sj — Ry is uniformly continuous, thus lemma (2.5) can be used, thus we can find
a monotonically increasing function 7' : Rf — R with }% n' (t) =0 =mn"(0) such that:

[det Dgs ()] — |det D (a)[| < of (Ix — all..), Va, x € 5 (2.69)

With C := sup |det D¢ (x)| we have for all 0 < & < &5 and for all x € U :
x€S$
|TeII" ¢ (¢ (x)) |det Dep (x)| — ToI1"Ce (Aa (%)) |[det Dep (a)]|
< [l (¢ (%) [det D (x)] = T (e (Aa (%)) [det Db (x)]|
+ Il (Aa (x)) [det Do (x)] = 711" (Aa (x)) [det D (a)|

CmI1" ¢ (¢ (%)) = IT"C (Aa (%))] + 1IT"C: (Xa (x)) [[det D (x)| — |det Db (a)|

< égn(Ce) Ce+1n' (Ce) := ﬁ (e)-

—~~

(2.70)

IN

In fact, when x € U \ supp (1pI1"(: 0 An) we get m,I11"¢ (Aa (x)) = 0 . For all x € supp (mp,I1"¢. 0 Ag) is
THbII"(: (Aa (x)) = 1 and because the function 7’ monotonically increasing, thus:

|det D¢ (x)| — |det D (a)|| < 7' ([[x — all.) < ' (Ce). (2.71)
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for all x € supp (,II"(; 0 Aa) . This is why the last inequality of equation (2.70) holds. The function & :
[0,e2] — Ry defined in this way naturally also satisfies the condition lirr(1) &(e) =0 . Together with equation
e—

(2.66)) we have:

TbH (e (¢ (x)) |det Do (x)] da, x — /UTanCE (Aa (x)) |[det D¢ (a)] dx,x

IA

/|TanCs (x)) [det D (x)| — TpII" (e (Aa (x)) [det Dep (a)|| dx,x (2.72)

d = "
< e O = 0:

Here the volume of the closed ball By (a,Ce) in R™ is (2¢C)" . Because the closed "ball” By, _(a, Ce)
is an n—dimensional cube with edge length 2¢C' . On the other hand, the formula holds for the affine map

X Aa (x) = ¢ (a) + D¢ (a) (x — a) with lemma (L.10). We define:
T(x):=Xa(x)=¢(a) + D¢ (a)(x—a):=Ax+c. (2.73)

Then A = D¢ (a) is invertible and f := 111" € C,. (R™) thus with equation (1.32)) we get finally:

[ BIPG (a (0) det Do (@) da,x = [ G (3) da,y. (2.74)
U %
O (Claim 2)
Now we define:
¢E = Z P (jg) TjEHnCE (275)
jezn

as above. We use claim 2 for all j € Z™ and je € supp (¢) thus:

/wg ) da,y - /wg )) det D (x)] da, x

| S vt name o) duy = [ 3 00051 (6 () [det D ()] d, x
Ve Ciez (2.76)

IN

> 1w Ge| /V BTG (v) d,y = [ 7TG (6 () [det D ()] x

jezn

S el

jezn

eq

If N € N with supp (¢) C [N, N]" , then (at least for 0 < € < 1) there exist at most:

(F)-[5]=) = (Fe) 2" () 1)

[-N,N]" . So that it follows:

elements j € Z™ with je € supp (¢)

[ v any = [ (660t Do ] axx| < 3 el
jezn
ON +1\" . (2.78)
< ( - ) [l € () €™ = @N + 1) [6llgn € (€) 5 0, (¢ 0).

O (Lemma
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3 Part 2 of the proof

If X is a locally compact space and () = U C X is open, then U is also locally compact and the following holds:
If ¢ : U — C is continuous with compact support supp (¢)) in U , then the trivial continuation:

- - Y(z), zel,

is also continuous on X with supp (¢yy) = supp () compact in X .We know that the compactness of a set
K C X depends only on the topology induced on K , but not on the larger space X . Actually, we can let
(X, Tx) be a topological space and K C X . Then:

Tx|e={KNU:UeTx c2*} c2¥ (3.2)

is the topology induced by Tx . It is also a topology on K . Now we let K C X compact. Then for each open

cover {O; :i € I} of K holds K C U O; . Now we assume O; € TX|K for each 4 € I . Then for each 7 € I

il
exists a U; € Tx such that O; = K NU; . Thus:
KclJo={JKnUui=Kn|JUu c|JU. (3.3)
iel iel i€l iel

Thus {U; € Tx : i € I} is a open cover of K . Because of the compactness of K in X | exists 41,...,4, € I such
n

that K C | J U;; and O, = K N U, . Finally we get:

j=1

KgK:KQOUi_j:LTJKOUij:OOij. (3.4)
Jj=1 j=1 j=1

If we then use ¢ with the trivial continuation identify ¢y , we get the identification:

C.(U) :={Yy =9 € C.(X) : supp (vy) = supp (v) CU}. (3.5)

Now we let Ig : C.(X) — C a Radon—integral, then we can define the restriction IR|U : C.(U) —» C by
Ir|, (¥) = Ir (¢) .

Lemma 3.1:

Let X be a locally compact space and O # U C X be open. Let Ig : C.(X) — C be a Radon—integral, we can
define the restriction IR|U :C.(U) = C by IR’U () :=Ir () . Let f: U — C be any function. Then f is
IR’U—mtegmble iff the trivial continuation fy : X — C is Ir—integrable, and then holds:

/ fo (@) dipz = / f@)d, (3.6)
X U Rly
Proof:
First, a function g : U — [0, +00] is lower semicontinuous iff the trivial continuation:
g(x), zel,
gu : U C X — [0, +00] := (3.7)
0, xz e (X\U)

on X is lower semicontinuous. In fact, according to the definition of lower semicontinuous and equation (3.7)),
for any a > 0 holds:
95" ((a,+00]) = g7 ((a, +o0]) CU (3.8)

and hence g;;* ((a,4+00]) C X is open iff g1 ((a, +00]) C U is open. In fact if g=! ((a, +00]) C U is open, then
g ((a,+0]) € TX‘U , thus there is a O € Tx such that g~ ((a, +00]) = g ((a,+00]) = UNO . Because
U, O C X are open, thus g;;' ((a,+0c]) is open in X . Necessity is similarly. Next we prove:

I (gu) = Iil, (9), VgeCF(U):={feC,(U): f>0}. (3.9)

Here C, (U) is the set of all lower semicontinuous f : U — R\ {—co} . Now we consider the set S :=
{p € CF(U) : ¢ < g} C CF(X) and obviously the set S meets the following properties.
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(i). v < g for all ¢ € S . This term is trivial.

(ii). (¢1, Yo € F) = (max (¢1,1%9) € S) . In fact, without loss of generality, it can be assumed that ¥; < g .
Then 91, 2 € F implies that 11 < 19 < g hence ¥ = max (¢1,1¢2) € S .

(iii). g (z) =sup{¢ (z) :¢p € S} . This is also trivial.

Now what we want to prove the equation 1) With lemma l) we can find a IZ € CH(X) with 1; (z) <
g(z), Ya € supp (1;) and:

In (9= ) = In(9) = In (¥) < Ii(9) — In (V) <. (3.10)

For all € supp (1;) exists because of (iii) a ¥, € F with ¢ (z) < ¢, (z) < g(z) . We define V, :=
1 ~

(wm —1/}) (0,400) , thus V, ist a neighbourhood of = with ¢ (2) < ¢, (2) < g(2), Yz € V, . Because

supp (7#) is compact, thus exists z1,...,x, with supp (1/}) C LJIV%. . Hence define v = 11%1%)(” e, thus it
j:

follows with (i) that ¢ € F with ¢ < ¢ < g and hence I (9) —Ir(¥) <e.
Hence we get:
I (gv) =sup {Ir () 19 € CF (U), ¢ < g} = Ij|,; (9) (3.11)

which is correspond equation (3.9)).
Let now f: U — C any function. Thus it follows for all h € C;} (X) :

(Iful <h) & (IfI <h|, eChE)). (3.12)

Actually, if |fy| < h :
S et 3.13
|fol = 0. re(X\U) (3.13)

and h = h|U, Vo € U holds |f| < h‘U . Conversely, if |f| < h‘U ,we write hy := lyh < h and obviously
hy = (h|U)U , thus | fy| < (h|U)U = hy = lyh < h . Obviously for all z € U holds hy = h = h|U . Thus it
follows because of |fy| < hy < h:
1ol somi = inf {Ix (h) : h € CT (X)), |fu| <h}
= inf {I}‘% (h’U) : h|U ceCH, Ifl < h’U}

=inf {I} (hv) : h € CF (U), |f| < h} (3.14)
ca-E9) inf {I}|,, (h) : h e CF (U), |f] < h}
= AL e
We now show that for every function ¢ € C.(X) and for every ¢ > 0 there exists a ¢ € C.(U) with
H (b’U _ wHLl,scmi < € . By breaking it down into real and imaginary parts, we can assume that 1 is real,

and by breaking down the real function ¢ = ¢+ — ¢~ into the positive and negative parts ¢* and ¢ we can
then assume without loss of generality that ¢ > 0 , thus ¢ € C (X) . According to the above discussion we
know that the trivial continuation of (b’U e Cr(U) is (¢‘U)U =1ly¢p:=¢y < pon X and ¢y = ¢ = (b’U for
all z € U . Thus from lemma we get:

Tl (6]y) = T ((9]) ) = T (60) < T3 (6) = In (6) < +oc. (3.15)

Claim 3:
Let f € Cf (X) . Then f is integrable iff I}, (f) < oo and hence holds:

[ fane =130, (3.16)
X

Proof:

We choose a sequence (¢,),cy € CF (X) with ¢, < f, Vn € N and Ig (¢n) — If (f) . This is well-defined,
because If, (f) =sup{lg (¢):¢ € CFH(X), ¥ < f} . Then (f — ¢,) € C;f (X) thus:

If = Pnllpr semi = Tr (f = &n) = IR (f) = IR (¢n) = IR (f) — Ir (¢n) = 0. (3.17)
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O (Claim 3)
Is then ¢ € CF (U) with ¢ < (b’U and IR‘U (V) > Ix|, (q’)‘U) — ¢, thus it follows from lemma (1.34) because

ofqﬁ‘U—z/)ZO:

[l = s s = [ @l @ =0 @), 3

_ . (3.18)
*/U¢|U( Il /lﬁ
=Inly, (0],) —Irn(¥) <e.

Is fu integrable over X and is (¢n),cy a sequence in Ce (X) with ||fu — ¢nllp1 g — O sthus we choose for
every n € N a ¢, € C. (U) with ||¢"’U - wanl <1/n . Then:

,semi

1F = nlTs semi < 1 = nlullrn o + 0nly = ¥nll],

,semi ,semi

| (3.19)
S ||fU7¢n||L1,semi+ﬁ 4)07 (TL*)OO)

Hence f is also integrable over U in terms of [ R|U . Conversely, if f is integrable over U, and if (1), oy in

CH(U) with ||f — 7/’n||gl,semi — 0, then because of equation 1)
U
1 = Gl soms = 1 = G)irln ot = 1 = 0nll%s s = O (3.20)

Where we have taken C, (U) as a subset of C. (X) . It then follows:

[ 0@ drg = lim T (@) = lin Tely ) = [ F@)d, ) (3:21)
X U

R‘U
O (Lemma[3.1)
Finally, we give the rule of change of variable in multiple integral and prove it.

Theorem 3.1 (Change of variable in multiple integral):
Let U, V CR"™ open and let ¢ : U = V a C'—diffeomorphism. Then for any function f:V — C is integrable
over V iff the function x — f (¢ (x)) |det D¢ (z)] is integrable over U and hence:

/ Fy) day = / £ (6 (%)) |det Db ()] d, x. (3.22)

Proof:
We define first f(x) = f(¢(x))|det D@ (z)| . Then the map f — f is bijective. Thus for every f: U — C a
unique f: V — C can be found such that f — f . Thus the map f — f maps the space C. (V) (C. (U)) to the

space CF (V) (CF (U)) such that for all g, h: V — R holds (g < h) < (g < Tz) . Actually for all ¢ (x) € V
we can find if g (¢ (x)) < h (¢ (x)) :

g(x) =g (¢ (x))|det D¢ (z)| < h (¢ (x))|det D¢ ()| = h(x). (3.23)
With equation and lemma we know that:

) = [ v any = [ 0@ )1t D @) dax
(3.24)
=/ J ) da,x = A, (w)
U
for all » € C. (V) . Then for g € C;f (V) and with equation (1.8)) we have:
An(g) =sup{An(¢): 0 €CI(V), ¢ <g} -
N~ ~ 3.25
=sup{ A, (9) 10 CF(U), 6<T} =N (@)
Isthen f:V — C (or f:V — RY) any function, with equation (3.14)) we have:
17t somi = mE{N; (9) 19 € CH (V). |1 < g}
(3.26)

— inf {A; G):GeCHU

) [ <a} =71,

L' semi
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If then (¢n),cy is a sequence in C. (V) , then it holds:

\%4 T o~
(17 = oalfs e = 0) = (|7~ 0

Y — 0) . (3.27)

L' semi

So f is integrable over V iff fis integrable over U , and it follows with definition lb equation 1' lemma
(2.6) and lemma (3.1)):

[ £(660) et D ()] da,x = [ Fo0) dax = lim A (30)
v v (3.28)
= lim [ &, (x)dx,x= lim / o (y) da,y = Tim X, (on) = / f(y) day-
Vv 14

n—oo U
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