Summation of multiple times of a geometric series and its binomial series
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Abstract: This paper presents a binomial series of summation of multiple times of a geometric
series. This will be useful for the researchers who are involving to solve the scientific problems.
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Summation of multiple times of a geometric series:
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The left side of Equ.(1) is the summation of multiple times of a geometric series[1-5] and the
right side of Equ.(1) is a binomial series derived from the computation of multiple times of a
geometric series. Here, the optimized combination [1-5] is shown below:
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where N ={0,1,2,3,:-- - }, V™ is a binomial coefficient, and n! is the factorial of n.

Some results [1, 2] of the optimized combination are provided below:
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When substituting r = 1, Equ. (1) becomes the summation of two times of a geometric series,
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When substituting r = 2, Equ. (1) becomes the summation of three times of a geometric series,
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Similarly, if the above process continues upto r times, the r'" equation becomes as follows:
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If substituting r = 0, Equ. (2) becomes the actual geometric series,
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