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Abstract: This paper presents a binomial series of summation of multiple times of a geometric 

series. This will be useful for the researchers who are involving to solve the scientific problems. 
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Summation of multiple times of a geometric series: 
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                     (1) 

The left side of Equ.(1) is the summation of multiple times of a geometric series[1-5] and the 

right side of Equ.(1) is a binomial series derived from the computation of multiple times of a 

geometric series. Here, the optimized combination [1-5] is shown below:  

𝑉𝑟
𝑛 =

(𝑟 + 1)(𝑟 + 2) ⋯ ⋯ (𝑟 + 𝑛)

𝑛!
=

(𝑛 + 1)(𝑛 + 2)) ⋯ ⋯ (𝑛 + 𝑟)

𝑟!
= 𝑉𝑛

𝑟 , 

𝑖. 𝑒., 𝑉𝑟
𝑛 = ∏

𝑟 + 𝑖

𝑛!

𝑛

𝑖=1

= ∏
𝑛 + 𝑖

𝑟!

𝑟

𝑖=1

=  𝑉𝑛
𝑟   ( 𝑛, 𝑟 ∈ 𝑁), 

where 𝑁 = {0, 1, 2,3, ⋯ ⋯ }, 𝑉𝑟
𝑛 is a binomial coefficient, and 𝑛! is the  factorial of 𝑛. 

 

Some results [1, 2] of the optimized combination are provided below: 

i).       𝑉𝑛
0 = 𝑉0

𝑛 = 1 (𝑛 ≥ 1   &    𝑛 ∈ 𝑁), 

         where 𝑉𝑛
0 alaway implies 𝑉0

𝑛 , 𝑖. 𝑒. , 𝑉𝑛
0 ⟹ 𝑉0

𝑛. 

          Note that  𝑉𝑟
𝑛 = 𝑉𝑛

𝑟 = (𝑛 + 𝑟)𝐶𝑟 = (𝑛 + 𝑟)𝐶𝑛 =
(𝑛 + 𝑟)!

𝑛! 𝑟!
and  𝑉0

0 = 1. 

ii).     𝑉𝑟
𝑛 = 𝑉𝑛

𝑟  (𝑛, 𝑟 ≥ 1 &  𝑛, 𝑟 ∈ 𝑁) &   𝑉𝑛
0 = 𝑉0

𝑛. 
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When substituting r = 1, Equ. (1) becomes the summation of two times of a geometric series, 
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When substituting r = 2, Equ. (1) becomes the summation of three times of a geometric series, 
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Similarly, if the above process continues upto r times, the r
th

 equation becomes as follows: 
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If substituting r = 0, Equ. (2) becomes the actual geometric series, 

∑ 𝑉𝑖
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𝑖 = 1, 𝑖 ∈ 𝑁). 
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