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Abstract
There are a large number of candidate hypotheses for the movement of diatoms,

a taxonomic group of Algae. In particular, the genus Bacillaria exhibits highly interesting
movement dynamics resembling a number of physical systems. None of these
hypotheses account for the information processing that might result from the connection
between environmental stimuli (e.g. photic, chemical, turbulence, and temperature
gradients, and mechanical constraints) and motility. Even when there is no significant
variation in terms of sensory input, the colonial structure is coordinated and mediated
through information processing. Here, we propose a series of perspectives on how the
concept of aneural cognition might explain the movement dynamics of individual
colonies. More specifically, we can use analogies of neuronal mechanisms such as
Collective Pattern Generators, Hebbian Learning, and predictive processing to
understand and explore the potential for behavior generation. Quantitatively, these
mechanisms can be summarized using psychophysical metrics, particularly the
Weber-Fechner law. This analogy could be extended to out-of-equilibrium behaviors
such as halting of oscillatory movement patterns, and further interpretations in terms of
pseudo-intelligent behavior, which is simulated but not necessarily autonomous. Taken
together, we can say that the psychophysical world can open up new avenues of
exploration for understanding the regulation of diatom movement.

Introduction
In the study of organismal behavior from across the tree of life, there are

traditionally two types of explanatory mechanism. The first is behavior that is generated
by neuronal processes (such as a network of neurons), and is restricted to organisms
with a nervous system. The second is behavior that is characterized by loosely-relevant
physical, mechanical, and social metaphors and generated by biophysical processes,
including at the single cell level (Schenz, 2019; Gershman, 2021; Brette, 2021). The
biophysics of individual cell motility applied in parallel is assumed to be the primary
explanatory paradigm. Yet there is an alternative explanatory framework that allows us
to view Bacillaria movement as a holistic, colony-level phenomenon: aneural cognition
(Drum et.al, 1971; Baluska and Levin, 2016; Boisseau et.al, 2016; Vogel and Dussutour,
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2016; Sims and Kiverstein, 2021) and the possibility of light piping between cells (Drum,
2003). While Bacillaria paradoxa has been divided into a few species (Jahn, 2007;
Schmid, 2007), we continue to use B. paradoxa as including all of them. This framework
ascribes information processing and decision-making capabilities to systems that lack a
formal nervous system structure. Rather, the information processing function occurs in
the biophysical substrate itself. One definition of cognition is as an ill-defined cluster of
capacities and mental (or psychophysical) phenomena (Nosofsky, 1992; Ramsey,
2017). While aneural cognition can benefit from a representational structure in the form
of neural codes (Nover et.al, 2005) and other such higher-dimensional pattern
generators (Kriegeskorte and Kievit, 2013), this does not need to be a part of a
cognitive system.

While the diatom genus Bacillaria does not have a nervous system, it
nevertheless exhibits organized behaviors and collective movement. Bacillaria consists
of a series of long, narrow cells arrayed in parallel, and the behaviors exhibited across
these filaments are temporally linked in a way that results in coordinated movement
(Gordon, 2016). Bacillaria cells can exhibit coordinated behavior by forming a colony
that oscillates from one end of the colony to another. The contraction and expansion
movements resemble the contractile motion of an accordion (see Figure 1). One
interpretation involves using a multitude of existing mechanical and physical metaphors
to interpret Bacillaria movement (Gordon, 2021). As an alternative view, we propose a
model of minimal cognition (van Duijn et.al, 2006) defined by the relationship between
stimulus intensity and adaptive movement can be used instead. This model of cognition
results in the production of behaviors related to taxis (Cohn, 2001), active materials
(McGivern, 2020), and even psychophysics (Reina et.al, 2018), which can be
distinguished from random behavior by separating an informational signal from noise.

Aneural cognition provides a context for diatom movement behaviors, particularly
in response to environmental stimuli. Taking a broader view of diatom morphology, most
diatoms are single-celled organisms that live in either a solitary or colonial context.
Diatoms are eukaryotic algae that have chlorophyll and silicate cell walls (Frazer, 2012).
In either the solitary or colonial setting, the cell cytoplasm and extracellular components
are all important for facilitating a diatom’s movement and other interactions with the
environment (Gordon, 2021). In general, there are three types of diatom morphology:
rod, flake, and three-dimensional shape. The raphid phenotype (which includes
Bacillaria) is around 300-500μm long and typically 10μm wide (Frazer, 2012). Bacillaria
colonies in particular are held together by secreted polymers that enable extracellular
adhesion and selective interactions with the external environment (Chen et.al, 2019). A
similar kind of externalization is also observed in slime mold colonies (Sims and
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Kiverstein, 2021). The morphology of a Bacillaria cell chain and moving colony are
shown in Figures 1A and 1B, respectively.

Ecologically, Bacillaria is native to estuary, littoral, and riverine environments.
These aquatic environments provide three main perceptual challenges to the organism.
The first involves changes in water chemistry as the colony moves through the water
column. Attraction or repulsion from different chemical gradients (e.g. salinity or acidity)
comes in the form of chemotaxis. Movement of cells through the water column (see
examples in Figure 1) also introduces them to light and chemical gradients. These
gradients can affect the mode of movement, the size of individual cells, and overall
colonial size (Svensson et.al, 2014). Encountering light gradients specifically leads to
phototaxis, which can be positive (attractive) or negative (repulsive). In a like manner,
chemical gradients lead to chemotaxis, and a combination of the two can lead to more
complex movement behaviors. Cell movement over broader spatial scales introduces
Bacillaria cells to temperature gradient exploration, which requires thermotaxis. If buried
in benthic sediments, their movements may allow extrication towards sunlight. These
three types of simple response allow us to move towards a model of aneural cognition
that characterizes trends in these behaviors.

Figure 1. An image of the Bacillaria colony, captured in its elongated (A) and contractile
(B) state. Thanks to Dr. Thomas Harbich. See also Kapinga (1987), Kapinga (1989),
and Kapinga (1992). There are many online movies of Bacillaria movement at many
magnifications.

The diatom cell and life cycles are also an important part of any adaptive
behaviors and aneural cognition. Diatom cell division occurs in a manner different from
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other eukaryotes, and plays a role in shaping the relationship between cell cycle
checkpoint and changes in physiological processes (Huysman et.al, 2014). In general,
diatom molecular processes play a key role in the perception of environmental stimuli
and regulation of associated physiological processes (Falciatore and Bowler, 2002). The
life cycle of a diatom (Edlund and Stoermer, 1993; Edlund and Stoermer, 1997; Amato
et.al, 2005) operates at a longer time scale, but is also affected by environmental
factors such as changes in the local concentrations of phosphate, iron, and dissolved
silicon (Huysman et.al, 2014). Overall, variation of the life-cycle is nonlinear and
high-dimensional (Sanchez et.al, 2019). Returning to the effects of environmental
stimuli, light not only results in reactive taxis, but can also trigger specific
acclimation-specific physiological responses. Light variation is also a feature of
day-night cycles (Harbich 2021) and relative position in the water column. More
generally, response to environmental conditions (sensing and signaling) are tightly
linked to cell cycle checkpoint activation (Huysman et.al, 2014). This not only means
that environmental factors affect simple output behaviors, but often affect
organismal-level features such as transformations in shape, growth, and surface texture
(Sarthou et.al, 2005; Sanchez et.al, 2019).

We will now consider the aneural cognition and adaptive behavioral generation of
Bacillaria. This will proceed by reviewing evidence for aneural cognition in a diverse
range of species. Then, we introduce a formulation of psychophysics that is relevant to
aneural cognition, particularly in the Bacillaria example. This will include considering the
ways in which adaptive behavior can be generated in a cognitive system, including
theories of neural function such as Hebbian learning and predictive processing. We will
then consider whether or not aneural cognition is an epiphenomenon, followed by a
review of potential measurement techniques. These include both singular equations that
produce characteristic functions and networks that advance a connectionist approach to
characterizing behavior (Hanson and Burr, 1990). To conclude, we discuss modeling the
dynamical systems complexity of Bacillaria psychophysics, and further describe this
model through the application of Collective Pattern Generators (CoPGs).

Aneural Architecture of Bacillaria
In this section, we will introduce the aneural architecture of Bacillaria. This

architecture generates behaviors from colony physiology. This includes both intracellular
microstructural elements proposed to be involved in motility and extracellular polymers
(Poulsen et.al, 1999). The Bacillaria behavior-generation system features three
architectural properties that define the coherent collective behavior of a colony.
Bacillaria cells can respond to changes in light, water salinity, and temperature, but
must regulate their response in accordance with the states of neighboring cells. This
regulation and interdependence can occur in two ways. The first is that individual cells
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secrete polymers that both encase the cell and act as sites of adhesion (Baluska and
Levin, 2016). Secondly, an extracellular space that acts as both a site of stigmergy and
a memory medium (Chen et.al, 2019). Stimergy is an important concept that is usually
applied to the collective behavior of insects (Heylighen, 2016; Oberst et.al, 2020). It is a
type of collective behavior that uses various features of the environment to guide
autonomous behavior. When we talk about aneural cognition, stimergy works in concert
with physiological mechanisms to produce an output that supersedes what single cells
can achieve on its own (Kuyucu et.al, 2015).

From this behavior-generating architecture, there are several behavioral
outcomes that provide a means for adaptive behavior. As we will see, these can take
the form of potentially goal-directed or even intelligent behaviors. There are three such
behaviors that can be observed among Bacillaria. 1) While Bacillaria colonies have no
formal representation of space, they do exhibit limited goal-directed behavior. Behaviors
are explicitly spatial in that multicellular chains move in certain directions (not simply via
Brownian motion). 2) According to Graziano (2009), movement is a source of
intelligence. Simple movements, even of Bacillaria single cells attached to a killed
neighboring cell, produce a set of rounded square waves (Drum et.al, 1971). A single
cell being able to identify and track the simple movements of neighboring cells and
other organisms is consistent with the processing of direct perceptual information
(Warren, 2005). 3) More complicated movement can result in other types of waveforms
and augment the processing of direct perceptual information, and results in a basic
oscillatory rhythm. For example, a colony (chain) of cells produces an oscillator lagged
n degrees out-of-phase.

Viewing Bacillaria movement in this way provides an alternative to purely
biophysical models of movement. While biophysics is the dominant mechanism for
generating movement, the same can also be said for cognition in the brain. Neural
cognition is generated by biophysical processes, and produces information that then
translates into what is considered to be cognition. Our aneural perspective allows us to
bridge the gap between purely biophysical models and analogies of cognition.
Biophysical models also do not provide a means to characterize the diverse behaviors
often observed across different life-history stages and environmental contexts.
Furthermore, there are many interpretations of these behaviors that involve information
processing and specific functional capacities. An aneural cognition model provides a
potential means for understanding all of this diversity.

Aneural cognition in a broader context
Observations of so-called psychic life in single cell organisms was initially

proposed by Binet (1888), while Verworn (1889) first proposed the psychophysiological
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study of protists around the same time. At the time, the amoeba was thought to be an
evolutionary linchpin that connected the behaviors of single-cell organisms with that of
humans (Reynolds, 2008), cognitive capacity being no exception. A persistent series of
studies on psychophysiology in unicellular organisms continued throughout the late 19th
and early 20th centuries (Schloegel and Schmidgen, 2002). One example of such work
involved studying stimulus-driven taxic responses in Stentor and Paramecium
(Jennings, 1899). While this work establishes the existence of simple mechanisms for
intelligent behavior, the highly metaphoric and analogical nature of this work obscures
its potential to provide insight.

To establish the intentionality and intelligent nature of different behavioral and
morphological functions, we can turn to examples ranging from marine invertebrates to
synthetic systems. For example, the cnidarian species Nematostella vectensis uses a
muscular hydrostatic mechanism to link morphogenesis and behavior during the larval
stage (Stokkermans et.al, 2021). This requires a tight integration between two biological
processes. Physarum (slime molds) also demonstrate a form of learning called
habituation (Boisseau et.al, 2016). Physarum colonies exhibit response decline (weaker
effect over time) and spontaneous recovery (responding after a significant period of
stimulus deprivation), both of which are hallmarks of habituation. We can further
observe the ability to produce intelligent behavior in minimal and non-biological
systems. Simple chemical systems such as oil droplet protocells can break their
symmetry when exposed to water (Hanczyc and Ikegami, 2010; Hanczyc, 2014). This
facilitates movement during the aqueous phase, which may provide clues as to the
origins of learned movement. In a synthetic biology context, the interactions between
protocells can be characterized using the language of control, cognition, and
communication (Bich, 2020).

To gain a broader perspective of what aneural cognition looks like in single-cell
organisms both without brains and with simple brains, we can turn to two other model
organisms: one being a single-celled organism from another taxonomic order, and the
other a larval crustacean with a highly rudimentary nervous system. One such taxon is
the genus Paramecium. Paramecium is able to regulate its swimming movements in an
intracellular fashion (Brette, 2021). Another type of adaptive behavior is associative
learning (Gershman et.al, 2021) which is controversial yet demonstrable in a single-cell
context. Many coordinated collective behaviors can result from the tuning of physical
parameters, which has been demonstrated in agent-based models that are analogous
to organisms such as the water flea (Daphnia - Mach and Schweitzer, 2007). Although
Paramecium does not have a nervous system and Daphnia has a simple brain While in
both cases there is a lack of direct mechanisms typically associated with a nervous
system, organisms in both groups nevertheless tend to minimize their free energy
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resulting in relatively complex behaviors (Friston and Stephan, 2007; Friston et.al,
2021). Free energy is also more directly tied to cognition by enforcing sites of
information encapsulation composed of specific networks and populations of cells and
the source of cognitive function (Beni, 2022).

As the examples given here are phylogenetically disparate, the question arises
as to the evolutionary origins of aneural cognitive mechanisms. The answer comes in
two forms: the common ancestry of cell biochemistry and the polyphyly of specific
mechanisms in different organisms. For example, both photoreceptors and
mechanosensors share a deep molecular homology (Arendt et al., 2004; Fritzsch and
Piatigorsky, 2005). As a result, cells that express sensory receptors appear in locations
far from the organism’s periphery where such cells would normally be found (Arendt
et.al, 2004). Furthermore, shared developmental cascades (Fritzsch and Piatigorsky,
2005) produce a wide variety of mechanisms and systems for information processing.
Yet many information processing systems involve more than conserved homologs and
paralogs. Particularly in single-cell organisms, these systems are often built upon simple
anatomical structures reconfigured in different ways. Thus, it is proposed that aneural
cognition is of polyphyletic origin, but is built upon structures and system components
with a deep shared evolutionary history.

From the perspective of adaptive value, the likelihood of observing aneural
cognition in other algae depends upon their environmental context. Sensory
accommodation and even rudimentary forms of decision-making are important aspects
of dealing with nutrient fluctuations and environmental stresses more generally (Nayaka
et al., 2017; Bondoc et al., 2018). For diatoms in general, physiological responses
involve a large number of parameters that are dependent on various forms of sensation
(Sarthou et al., 2005). For example, the diversity of chemical stimuli encountered in the
aquatic environment requires multiple fitness imperatives to be satisfied simultaneously.
Changes in Seminavis robusta behavior provide an optimal response to both nutrient
gradients and reproductive needs (Bondoc, 2018), which implies an internal mechanism
for temporal information integration (Lavoie et al., 2008). Among intertidal populations
of benthic diatoms, the ability to adapt behaviorally to changes in light intensity is
distinct from physiological adaptation to the same (Cartaxana et al., 2011). In
Thalassiosira pseudonana, the divergent response among temperature-dependent
responses evolved from 450 generations of experimental evolution points to a role for
evolutionary constraints and tradeoffs in shaping environment-specific information
processing (O'Donnell et al., 2018).

We will now revisit the basis for associative learning, habituation, and energy
minimization by looking at their natural connections to more formal mathematical
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representations such as psychophysics, Hebbian learning, and predictive processing.
These explanatory frameworks provide a linkage to the more conventional interpretation
of biophysical mechanisms. We will also make the connection between these processes
and the concept of minimal cognition (van Duijn et.al, 2006). Minimal cognition that has
an effect on behavioral dynamics of the individual and perhaps even natural selection
(Godfrey-Smith, 2016). This will be placed in the context of diatoms, who may share a
number of information processing properties with systems as diverse as Physarum
(Boisseau, 2016), Paramecium (Brette, 2021), and even protocells (Hanczyc, 2014).

Psychophysics as Diatom Information Processing
Psychophysics is the investigation of the relationship between mental

phenomena and physical stimuli, particularly the minimal differences in the variation of a
stimulus detectable by a nervous system (Grondin, 2016). Various psychophysical
behaviors are observed across a wide range of species, including mice, goldfish, and
humans (Stebbins, 1970; Sarris, 2006). While it is hard to demonstrate the mental
phenomenology of Bacillaria (or of diatoms more generally), the response to physical
stimuli has been previously demonstrated in the form of sensitivity to light intensity
(Cohn et.al, 2004; Cohn et.al, 2015; Cohn et.al, 2016). In general, diatom cells are
photophobic in conditions of high light intensity (Cohn 2004; Cohn 2004b).
Cross-species comparative work (Cohn et.al, 2015; Cohn, 2021) reveal multiple details
about this phenomenon. In general, multiple parameters can be used to understand the
psychophysical properties of diatom information processing.

Several sensory mechanisms are commonly found across diatom species. For
example, all species respond to high levels of light negatively by moving away from the
light. These movements are similar to phototaxis that are generated by both artificial
and simple nervous systems (Rano, 2009; Gorostiza et.al, 2016). There are also
characteristic response times for changes in direction due to light exposure despite
differences in species-specific optimal light frequencies that can be linked to ecological
adaptations (Prins et.al, 2020). There is also evidence of habituation in the duration and
direction of how a cell is irradiated. Using a light spot assay, Cohn et.al (2016) exposes
the end of diatom cells to a light source, which leads to accumulations of cells in
particular spatial locations at a characteristic rate. This rate is species-specific, but in
cases where members of different species are in close proximity, this rate can be
attenuated.

This research up until now has not been interpreted using a theoretical
framework. In this work, a suitable psychophysical model typically describes a
systematic response in the form of a mathematical model. In the case of Bacillaria light
response, this description is both curvilinear and multidimensional. This suggests that

8



psychophysical models are not a sufficient means to describe Bacillaria aneural
cognition. Indeed, we also introduce a number of complementary models that view
Bacillaria aneural cognition as an input-output system constituting an internal model. It
is these input-output models, rather than the mental phenomenon per se, that
characterizes the stimulus-response relationship. Viewing aneural cognition in terms of
inputs and outputs also allows us to view aneural cognition in terms of broader
phenomena such as biological homeostasis (Biswas and Iglesias, 2021) or active
inference and perception (Bentley et.al, 2014; Ueltzhöffer, 2018; Zakirov et.al, 2020) at
the behavioral level. In a generic sense, these input-output are often referred to as
internal models (Orban de Xivry and Ethier, 2008; McNamee and Wolpert, 2019).
Therefore, our goal will be to review suitable mathematical models that provide a
reasonable description of behaviors relative to a potential stimulus. With this definition in
mind, there are a number of psychophysical phenomena that are demonstrated by
Bacillaria, and perhaps even diatoms more generally. These include, but are not limited
to, flow detection, resonance detection, obstacle detection (Gordon, 2021), and
phototaxis thresholding. More generally, there are four basic regularities of
psychophysics as discussed in Lubashevsky (2019). The first regularity involves range
effects leading to the overestimation of weak stimuli and the underestimation of strong
stimuli. Secondly, a predictable response to environmental stimuli can be found in the
form of the Weber-Fechner law. Related to this, the effects of sequential presentation
can serve as the structure for a memory encoding mechanism. Finally, dynamic range
allows for behaviors that adapt to a range of states between the lower- and
upper-bound extremes of stimulus intensities or sensory magnitudes. Psychophysical
models allow for dynamic range to be modeled with respect to a stimulus of variable
intensities presented over time.

These regularities will apply broadly to systems both with and without a nervous
system. This leads us to two assumptions when applying the cognition metaphor to
Bacillaria. The first assumption is that movement of a Bacillaria colony is driven by
information processing. This information processing is neuronal in scope, which means
that Bacillaria behavior is both reactive and adaptive. A second assumption involves a
distinction between the behavior of Bacillaria and behavior generated by a network of
neurons that produce electrical potentials. However, as our multitude of models will
demonstrate, this may be a distinction without a functional difference.

Information Processing and Aneural Cognition
Traditionally, information processing in nervous systems and organisms more

generally has been assessed using an information theoretic approach. For our
purposes, this means the production, transmission, and storage of various output
processes are considered from the perspective of probabilistic channels (Wibrall et al.,
2015). Information theory is particularly useful for examining multiple realizations of
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random processes (Sayood, 2018). In models of the nervous system, the type of
modulation determines the information-carrying capacity of specific links (MacKay and
McCulloch, 1952). When extended to aneural systems, the properties of connective
components within and immediate to the cells themselves determine the rate of
transmission. Yet information is about more than simply transmission. Stimulus structure
is of great importance, and goes well beyond activating the sensory apparatus (Garner,
1974). Part of this structure involves redundancy, and in a biological context serves to
enrich interactions of the organism beyond simple reactivity (Garner, 1974).

Sensory and internal states also determine the rate of information processing.
This has been characterized in terms of active inference, where organisms must
minimize their free energy to retain their integrity as individuals (Kirchhoff et al., 2018).
However, this also minimizes information content characterized in the form of surprise.
The minimization of surprise, or unexpected information from external states (Friston et
al., 2021), protects an organism’s internal states from drastic changes. The relationship
between surprise and organismal information processing relies upon a Bayesian
formulation of information as opposed to a probabilistic one (Baldi and Itti, 2010). This
type of Bayesian approach, commonly utilized in predictive processing models, also
provides a dynamic perspective on causality (Aalen et al., 2012; Hipolito, 2021). Using
this formulation, continually updating the internal state with information has a cost. This
leads to fluctuations in information processing over time, and results in some behaviors
having a higher utility than others (Zenon et al., 2019).

Hebbian Intelligence and Predictive Processing
The assumptions posed in this paper also allow us to borrow approaches from

the neuroscience literature to more broadly understand how behaviors are generated
among Bacillaria colonies. This section will review two candidates for interpreting the
mechanisms responsible for a colony’s information processing capacity. The first
candidate approach is Hebbian learning, or more broadly Hebbian interactivity. Hebbian
interactivity allows for higher-order patterns such as dynamic inhibition between
processing units (O’Reilly, 2001), which in the Bacillaria context might be single cells or
intracellular units. Hebbian associations occur when two or more units behave in a
synchronized manner, thus strengthening future associations. A somewhat related
approach is predictive processing, or the ability of an internal model to anticipate future
environmental events. This also involves association between processing units that
explicitly represents predictions of sensory inputs based on comparing prior and current
observations (Bubic et.al, 2010).

We can apply a version of Hebbian learning where the site of action is cell
coupling sites rather than synapses. Hebbian learning can be summarized as the causal
association of activated neurons (Hebb, 1949), often summarized as “neurons that wire
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together, fire together” (Shatz, 1992). In our case, cells that are adjoint also provide
each other with a learning signal. This learning signal provides the basis for a
coordinated, sliding motion. Once a pair of cells learn movements of their neighbors,
their independent phase oscillations become entrained to each other (du Bois and
Elliott, 2017). While this seems to happen as a result of mechanical constraints with the
onset of movement generation, we ask a more fundamental question: how does this
behavior become organized in the development of a Bacillaria colony? The answer is
through a form of differential Hebbian learning (Cocchi et.al, 2017). Differential Hebbian
learning is concerned with the temporal difference between activation and response
rather than the causality of the activation itself. The synchronization of Bacillaria cells
may indeed be due to active associative processes.

While Hebbian learning is a convenient metaphor and heuristic mechanism, this
type of mechanism is not observed in diatoms. While the components can synchronize,
diatoms use something more similar to aneural connectionist learning. Connectionist
learning (Hinton, 1989; Hanson and Burr, 1990) involves the temporal association of two
connected components. Even in neural systems, but particularly as a metaphor for
aneural systems, Hebbian learning presents many drawbacks to producing a capacity
for cognition. Hebbian models are typically oversimplified models of neural processing
and not precise with respect to specific connected components. While this may not be
important for aneural purposes, in their most general context, Hebbian mechanisms
have been shown not to implement learning on their own (Rosenblatt, 1958).

In Hebbian models, feedback is captured in the form of updated weights between
connected components. This can be superior to other models of simple learning, such
as classic conditioning. Classic conditioning has been shown to exist experimentally in
rabbits (Gormezano et al., 1962; Yeo et al., 1985), sea slugs (Glantzman, 1995;
Lechner et al., 2000), and other organisms from across animal phylogeny. In this form of
learning, a stimulus results in a predictable response in only a few exposures to the
stimulus. Yet even in this simple form of learning, there are multiple neural processing
steps (Hawkins, 1984; Glantzman, 1995). What is needed for many forms of aneural
cognition is a feedback loop that provides a predictive path between interacting
components, environmental stimuli, and future behavior. Therefore, a stronger
mechanism that establishes more intentional behavior in a behavioral substrate is active
inference and predictive processing.

Approaching aneural intelligence from a broader perspective, we can turn to
predictive processing for clues as to how the proposed network is able to maintain its
coordination across the colony. The mechanism behind predictive processing is active
inference (Friston et.al, 2010; Nave et.al, 2020), which in turn is based on a free-energy
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minimization approach to constraining behavioral outputs (Friston, 2009). The predictive
processing and active inference approaches are particularly useful in cases where the
colony shifts orientation and behavioral mode. This combined approach offers us a
mathematical framework for action and perception (Buckley et.al, 2017) that is
compatible with psychophysical laws describing a more general perception-action
relationship. More specifically, active inference offers a formal feedback mechanism for
the relationship between perception, action, and even learning (Bogacz, 2017). This can
in turn be more fully understood using more formal tools such as a PID controller
(Baltieri and Buckley, 2019) or a Bayesian model (Millidge et.al, 2021). Overall, active
inference allows us to build upon Bacillaria aneural cognition in two ways. Active
inference makes an explicit connection between our behavioral analogue and
biophysical processes, particularly energy minimization. Secondly, the link between
active inference and predictive processing also provides a regulatory rationale for
understanding processes such as prediction and anticipation.

Returning to our Bacillaria network, how is information processed in a way that
not only maintains coordination over seconds to hours, but enables the network to
operate under a wide range of conditions? While we address this issue later on, one
way to hypothesize about this is to turn to the adaptive aspects of the network’s nodes
and edges. Processing occurs through a perceptual output, which then drives cell
behaviors. These cell behaviors must be coordinated in a way that does not require a
leader (Gao et.al, 2019). This requires a decentralized structure that must integrate
information on multiple timescales.

Measurement techniques
In this section, we will discuss various measurement techniques that allow us to

uncover details about how Bacillaria processes information and produces adaptive
behavior without a centralized nervous system. We will begin by introducing the
Weber-Fechner law (Mackay, 1963), then move to more complex psychophysical laws.
Then we will talk about connectionist models of behavior generation, from artificial
neural systems to decentralized networks that coordinate coherent and adaptive
behaviors.

Weber-Fechner law
We can apply the Weber-Fechner law to demonstrate how Bacillaria may utilize

psychophysics to process environmental information. To accomplish this, we introduce a
generalized version of a psychophysical law for measuring the magnitude of stimulus
intensity. The Weber-Fechner law is a mathematical function that describes the ability to
distinguish between light sources of different intensities. It can be stated as shown in
Equation 1
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p = k (ln )𝑠
𝑠

0

[1]

where the sensation (input of S) is proportional to the logarithm of the stimulus intensity.
is the reference stimulus and S is the change from the reference to the target𝑆

0

stimulus. The term ln is the log difference between a model of the stimulus and the𝑠
𝑠

0

observed stimulus. This can be thought of as a predictive process, or even as a
differential process that allows for more sophisticated computation.

Given that a model of the stimulus is involved, it may also be possible to modify
the discrimination capacity of the colony by introducing it to a wide range of stimulus
intensities. Particularly as information from the sensory gradient becomes highly
unexpected or qualitatively unusual, the response itself may be able to be sharpened.
This can be demonstrated through biased random walk behaviors exhibited by motile
bacteria with flagella in response to chemical gradients (Thar and Kuhl, 2003). In
diatoms, a similar effect may result as a consequence of greater experience with a
wider range of phenomena. Alternately, feedback resulting from changes in shape
memory are stored in the extracellular structure or raphe secretions, and act as a
contributor to cognition.

The Weber-Fechner expression can be extended to a number of other models,
including Input-Output Relationship (Lan and Tu, 2016) and active perception in cells
(Zaikrov et.al, 2020). In these cases, our measurement is not simply a difference, but
indicative of more sophisticated indicators such as Signal Detection Theory (SDT) and
fold-change detection (Kerkhof and Enquist, 2009; Kello et.al, 2010; Kamino et.al, 2017;
Adler and Alon, 2018). SDT is an important mathematical model for understanding the
Weber-Fechner regularity as a signal-to-noise ratio. In particular, the ability to conduct
magnitude estimation (Poulton, 1968) provides us with a route to laws and principles
(Shepard, 1987; Chater and Brown, 1999; Chater and Brown, 2008). In terms of an
input-output relationship, let us consider the input of a light or chemical gradient, and an
output of a movement response. The movement is activated when a difference in the
stimulus intensity is detected from one sampling point to the next. Movement will also
increase or decrease when the intensity increases by a n-fold difference over a fixed
unit of time. Fold-change of the stimulus (FC) can be described mathematically as

FC = )𝑙𝑜𝑔
2
 (

𝑡
1

𝑡
0

[2]
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where t0 is the initial condition and t1 is the sensory input at the time point to be
compared.

In the case of cell colonies where each unit moves in a correlated fashion, it is
useful to have a measure of feedforward and feedback with regard to sensory
information taken in from the environment at a single cell and propagated across the
colony. While the Weber-Fechner law allows for us to make a connection between
stimulus and response, this does not account for noise that might degrade or otherwise
mask the environmental stimulus. We can thus turn to Signal Detection Theory (SDT) to
characterize the signal-to-noise ratio. In aneural systems, SDT is conceived of in a
slightly different way than that of neural systems. The mathematical formulation of SDT
involves two (generally Gaussian) distributions: one representing pure signal, and the
other representing pure noise. When completely separated, we have a signal in the
absence of noise. As the two distributions overlap, the degree of noise interacting with
the signal increases. The primary measurement of SDT is d’, which can be defined in
the following form

d’ = z(FP) - z(TP) [3]

where d’ is the difference between the z-scores of all false positives and all true
positives in a series of discrete sensory observations. A true positive is the coupling
between a sensory signal and an output behavior, whereas a false positive is the lack of
coupling between a sensory signal and behavior. This lack of coupling is characterized
by the generation of a behavior without a corresponding sensory signal. In a neural
system, the causal relationship between sensory input and behavioral output is provided
by an internal information processing mechanism defined by a nervous system. In
aneural systems, this internal information processing mechanism can be defined much
more broadly, often defined using a physicochemical dynamical system.

In Buckley et.al (2017), two different types of density models can be used to
approximate both the production of internal states and the generation of output
behaviors. In the case of the former, so-called recognition (or R-) density is the
mechanism by which the brain encodes environmental states. R-density provides a
means for which environmental information is encoded as a collection of internal states.
This process can be captured through a Bayesian model that consists of a prior
distribution, environmental samples (or empirical observations), and a posterior
distribution that updates the prior distribution with the current observation. The Bayesian
model is essentially a statistical feedback model. By contrast, generative (or G-) density
uses a statistical distribution to produce behavior in a feedforward manner. In many
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cases, a Gaussian model is sufficient in producing a behavioral output representing
oscillatory movement.

Connectionist Network
The network formed through the cytoskeleton and extracellular components of a

Bacillaria colony can be modeled as a special class of connectionist network. Using a
network as a means to connect cells and their components of movement allows us to
build an internal model with inputs, outputs, processing units, and interactions. In this
way, certain behaviors should yield a linear or curvilinear output function that
corresponds in a systematic way to sensory input.

Figure 2 demonstrates the presence of light and the effects of this light source on
the proposed aneural internal model. This is characterized by a hypothetical
connectionist network of points across the surface of each cell in the colony. Rather
than representing connections between synapses, however, our network is a set of
interacting cytoplasms of individual cells. Given what we know about the generalized
diatom response to light intensity, this model of interactions provides us a way to find
universal patterns of movement modalities over a variety of raphid diatoms that form a
multicellular colony.

Algorithmic Information
To further characterize halting behavior in colonies, and to differentiate between

continual movement and instances of halting, we can utilize a measure of algorithmic
information. Algorithmic Information can be quantified as the length of the shortest
description of a sequence of events, and in various applications allows us to capture
information content in both the probabilistic (Shannon) and dynamic (Bayesian) sense
(Devine, 2009). Mathematically, we can use the definition of Kolmogorov (1965), stated
as

k(x) = min(l(p)) [4]

where p is the length of a description in bits, and min(l(p)) is the shortest lossless
description, or minimal description retaining all the information of larger descriptions. To
yield a description, we want to encode the string as a conventional program, a
time-series measurement, or a short equation. The use of an equation allows us to plug
in our formulation of the Weber-Fechner law, but descriptions involving sensory inputs
and/or behavioral outputs can also be plugged into any number of psychophysical
models.
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In a computational context, the description measure must run on a machine that
transforms the description code into something observable. In the context of diatom
morphology, we can bridge the length of a binary string and a complex phenotype by
treating cell colony movement as a model that exhibits the Principle of Computational
Equivalence (Wolfram, 2002; Nguyen, 2017). Let us consider the string in question as a
momentum vector measured along the trajectory of a single cell moving in concert with
other cells in the colony. When considered as a series of discrete states, this sequence
can be evaluated both in terms of its absolute minimum length (represented in terms of
a pure sinusoid with no zero or negative momentum) and  halting behavior.

Collective Pattern Generator
Figure 3 takes our connectionist network a bit further by proposing a specific

circuit that operates as a Collective Pattern Generator (CoPG). In general, signals
between cells prompt pattern formation and other forms of intercellular coordination.
This is demonstrated by Portegys (2002) using a 2-D Cellular Automata. A CoPG can
be defined as a distributed network of oscillators coordinated by its periodic behavior.
CoPGs are analogous to Central Pattern Generators (CPGs - Arshavsky, 2003; Marder
and Bucher, 2011), which allow for periodic signals to emerge from distributed networks
of excitable cells (Figure 3). Examples of CPGs can be found in the movement of insect
locomotion or cardiac pacemaking (Mantzirria et.al, 2020; Dickinson, 2006).

Figure 2. Sensory thresholds (just noticeable differences). Differences in light intensity
measured by output movement weights (Wmm,nn). Network shown as edges and nodes
that connect all cells in the colony.
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Dynamical States of the CoPG
One alternative to thinking about CoPGs as a connectionist model is to contrast

them with CPGs. While CPGs are generally consistent across the lifespan, being
disrupted only in times of injury or neurodegeneration, there are not a lot of good
models for understanding their dissolution. In Bacillaria and their associated CoPGs,
however, we consistently see degeneration of oscillatory behavior. We propose that this
halting behavior is driven by a dynamical state transition occurring at points where the
colony is fully elongated (Figure 1A) and/or fully contracted (Figure 1B). At either point
in the oscillation, we observe either a gradual contraction at a characteristic rate, or
halting behavior that freezes the colony in this position for a random interval of time
(Figure 4).

CPGs vs. CoPGs

We now return to the notion of CoPGs as an analogy with generators of cyclical
electrical activity. While it has been established that electrophysiology plays a role in
diatom cellular biology, it is unknown to what extent significant electrophysiological
activity plays a role in Bacillaria rhythmic movement. In the diatom species
Coscinodiscus wailesii, electrophysiological activity is enhanced after nitrogen
starvation (Boyd and Gradmann, 1999). Unlike the case with coordinated CPGs,
Bacillaria does not utilize action potentials. An example of how CoPGs might work
comes from the pennate diatom Pseudo-nitzschia fraudulenta (Rocha et.al, 2018). In
this species, single cells use paracrine signaling to coordinate Ca2+ dynamics between
cells. More generally, ion channel flux is driven by exposure to light, chemicals, motility,
and temperature (Bondoc et.al, 2016; Trewavas et.al, 1997). This is similar to what we
observe in a broader group of diatoms in terms of behavioral response to stimulus
gradients.

Now that we have considered the potential role of electrophysiology in Bacillaria
movement, as well as its connection to collective behavior and psychophysics, we can
find the right level of analysis of this oscillatory behavior. While ion channel activity does
not lead to action potentials, there are nonetheless relationships between
electrophysiology and forms of aneural cognition in a variety of organisms and
life-history contexts (Bonzanni et.al, 2020; Rutenberg et.al, 2020). Rather than including
physiological detail in our model, we will proceed through the use of sine waves,
sinusoidals, and hybrid sinusoidal-tangent functions. This maps to various features of
the cell phenotype such as bounding boxes that define the edges of each cell and cell
centroids that move in space relative to one another (Alicea et.al, 2021). This provides a
framework we call the Digital Bacillaria that provides a quantitative framework for a
dynamic model.
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Figure 3. Deviations from the Collective Pattern Generator (CoPG). Difference between
a Central Pattern Generator (CPG), characterizing a neural circuit (A), and Collective
Pattern Generator (CoPG), characterizing collective behavior (B). In Panel A, black
circles denote inhibitory synapses and black triangles denote excitatory synapses.

Each pair of digital Bacillaria cells acts as an oscillatory unit in a CoPG, in which
a single cell oscillates. Oscillatory units overlap, so that a colony of three cells consists
of two oscillatory units as shown in Figure 3B. While these oscillatory units (or pairs of
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cells) generally produce a sine wave, they can also stretch to a maximal value and stay
there for long periods of time. Initially, we introduce chains of x interconnected
oscillatory units. At subsequent time steps, we model the modes of movement behavior
using a sinusoidal function as the baseline condition. We can also introduce an offset of
phase in movement between neighboring oscillatory units, so that any two units move at
different rates. Noise in the form of higher-order changes in velocity and acceleration
can also be introduced, particularly at the extent of the oscillation.

How does this compare with models of CPGs and collective biological
locomotion? We can look to stick insects (Daun et.al, 2019) to understand synergistic
CPGs (Delcomyn, 2004; Buschges, 2012; Ayali, 2015; Emanuel, 2020). In this case of
the genus Phasmatodea, the movement of multiple legs are integrated into a neuronal
network. The activity of this network is generated by nerves in each leg, and the
bilateral symmetry of the insect body results in an oscillatory electrical signal. The
measurement of nerve activity is electrical activity exhibiting significant complexity. Not
only is there information at multiple time scales, but noise can be both introduced
through the regulatory capacity of peripheral sensory information (Bidaye et.al, 2018)
and dampened by ion channel activity (Goldammer et.al, 2018). Yet it is essentially
oscillatory, and allows for movement to be coordinated for each pair of legs. In this
sense, we can return to Bacillaria and our connectionist model of collective movement.
In the CoPG case, we also see pairwise coordination between units of analysis.
However, the oscillations can be much simpler, and the regulatory mechanisms less
complex. Nevertheless, we can use an aneural model and psychophysical estimation to
understand how this integration between oscillatory elements is coordinated over time,
particularly in the face of environmental stimuli.

To demonstrate how we can model Bacillaria psychophysics, we introduce a
series of characterizations of cell movement in a pairwise, nearest-neighbor cell
comparison. The movement of two cells oscillating against one another is characterized
by two overlapping sine waves. Yet before we discuss the overlapping case, let us look
at the case of a single oscillator that halts after ¼ and ¾ phase of a single cycle (Figure
4). This halting behavior results in a tangent representing the cessation of
anterior-posterior movement. Figure 5 features overlapping sine waves without halting
between two neighboring cells for the ¼ and ¾ phase cases. We can add random noise
to the sine wave to approximate noisy movement (Figure 6, top). The addition of noise
(in this case Gaussian) represents changes in acceleration, orientation, and colonial
integration over time. The non-halting pairwise case can be mapped to an attractor
map. Figure 6 (bottom) shows the signal for an idealized movement trace (sine wave),
which does not fully represent biological movement. Nevertheless, we can use such a
comparison to understand the pairwise relationships that define a CoPG.
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The non-halting case provides us with a full cycle that characterizes the
information processing potential of a CoPG. While the full cycle is modeled using a pure
sine wave, prior analysis of these cell tracking signatures shows instabilities and
higher-order noise at both minimal and maximal amplitudes (Alicea et.al, 2021). This
may represent a regulatory role for noise in the stretch dynamics of each cell. From an
information processing perspective, the interaction between cells results in an offset
between the trace of neighboring cells. Changes in the strength of an environmental
stimulus should change aspects of these traces. In some cases, the offset might be
reduced either over time or sporadically. Alternatively, instability at the amplitude
extremes with an additive effect of environmental signal might lead to halting in
subsequent movement cycles.

Halting behavior and its variants can be captured through the application of
Algorithmic Information Theory. Likewise AIT can be used to better understand the
relationship between out-of-phase behavior and halting, particularly in cases where
pairs of cells begin to oscillate at different phases and desynchronize (Nanjundiah,
1986). Bacillaria paxillifer colonies demonstrate a very specific halting behavior related
to a photokinetic response: during light periods, the colony is motile, while during dark
periods, cells in the colony are arrhythmic and align in a stacked formation (Kapinga
and Gordon, 1992). In some diatom species, it has been found that a chemical signal
from predators can lead to a reduction in colony size (number of cells in colony)
measured as chain length (Rigby and Selander, 2021). In solving this conundrum, AIT is
helpful in two ways. First, AIT can describe the length of the colony in terms of optimal
information given specific environmental conditions. Second, suppose that each cell in a
colony has a set of instructions that guide behavior. When these instructions match
(either in length or in type), cells are synchronized. When these instruction sets become
mismatched, then desynchronization may occur. Reductions in colony size might
become either a runaway or dampened process under the right environmental
conditions, and one that is best explained by information processing dynamics.

In a case where pairs of cells begin to lag out-of-phase, this can have one of two
outcomes. Either the instability continues and the colony becomes incoherent, or the
instability is overcome, and the oscillations return to a stable state. A question for future
research is whether colonial movement must be tightly synchronized or whether it can
exist in a stable and persistent lagged state. If the former is true, excessive lag might
provide a so-called tipping point for colony dissolution, perhaps based on immediate or
temporally-integrated environmental cues. AIT might also help us understand this by
understanding the set of behavioral instructions shared between cells that leads to
stability.
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Figure 4. Movement trace of a single cell that halts at different points in a single
oscillation. Top: Sine wave with tangent at quarter-phase, Bottom: Sine wave with
tangent at three-quarter phase.
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Figure 5. Movement trace of a single cell that halts at different points in a single
oscillation. Top: Two adjacent and overlapping pairs of oscillatory cell movements (sine
waves, three-quarter phase), Bottom: Two adjacent and overlapping pairs of oscillatory
cell movements (sine waves, quarter-phase).
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Figure 6. Single oscillations with noise and compared with another cell. Top: Sine wave
with random (white) noise, Bottom: Attractor map (based on sine waves,
quarter-phase).

23



Potential of Predictive Processing
Predictive processing provides us with more than a quantitative framework to

analyze the relationship between brain and cognition. Theoretical frameworks such as
the Free Energy Principle (FEP - Friston and Kiebel, 2009) may also provide a means to
understand aneural systems. The connections between Markov Blankets, energy
minimization, and the processing of information by a morphological system that
minimizes its energetic expenditures with respect to movement, are particularly
interesting. This connects psychophysics and biological physics in a unique and
informative manner.

For example, a Markov Blanket can be defined as all variables which exclusively
and conditionally predict a random variable of interest. This subset of variables is
independent of all other variables in the system (Friston, 2009). In the case of Bacillaria
motility, the group of variables that predict oscillatory motion might include photic inputs,
water chemistry, mechanical forces, predation, orientation to light (McFarland, 2020),
and resonance from other cells. Moreover, these variables act as conditional
probabilities to predict the likelihood of movement in response to a stimulus at any given
time. Formulating Bacillaria motility in this way also allows us to see how some
variables are not at all predictive of coherent movement. This is connected to energy
minimization in the sense that movement patterns will be optimized according to the
strongest informational signal available. In other words, if the driving strength of
resonance is stronger than that of the photic signal, then this should affect the phase,
smoothness, and continuity of the movement output.

Phase Transitions in Bacillaria Movement
In the course of considering aneural cognition in diatoms (Bacillaria), we have

considered not only the role of psychophysics, but the nature of colonial movement and
intentionality of movements as well. We have proposed that Bacillaria movement can be
characterized as a CoPG, which is the aneural analogue to a CPG. Like the CPG, the
CoPG can be represented using a connectionist network. Unlike the CPG, the CoPG
can undergo phase transitions (Kelso, 2010) that enable halting behaviors without
associated dissolution or separation phenotypes (Bentley et.al, 2012). In the underlying
representation, this is enabled by the structure of our connectionist network: the weights
between connective components represent both intracellular microstructure and the
extracellular milieu rather than synaptic connectivity driven by changes in the coupled
ion channel activity. As such, CoPGs and their associated connectionist networks can
represent non-equilibrium phenomena such as the decoupling of neighboring cells,
damping of forward acceleration, and even halting of the entire colony at certain phases
of movement.
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The analogy between CPG and CoPG suggests that simple oscillators can
provide a means for intelligent behavior, or at the very least adaptive information
processing. In the case of CoPGs, the oscillatory behavior provides a deterministic
signal that entrains behavior and thus is not directly associated with information content.
On the other hand, phase transitions such as the switch from oscillation at a
characteristic speed and halting at random intervals may provide information content to
individual cell and colony-wide behaviors. Moreover, different modes of dynamic and
static behavior have different types of information content. While stretching and halting
is part of a colony-wide phase transition, this behavior also enables symmetry breaking
at the level of coupled cells, where the bonds between cells dissolve and irrevocably
shape the future dynamics of a colony.

One alternative means to explore the rhythmicity of collective behavior is to
understand cell movement at the colony level as an array of Kuramoto oscillators
(Acebron et.al, 2005; Breakspear, 2010). While we will not explore this hypothesis in
detail, a system of coupled oscillators (Winfree, 1967) is an alternative to the
connectionist models as introduced here, and allows us to model synchronized activity
in a way that is consistent with the neurocognitive metaphor. This type of model stands
in parallel to our CoPG approach, and describes synchronization rather than the
rhythmicity of a cell colony. In our more generic connectionist model, nodes (neuronal
units) act as aneural oscillators, but such oscillatory behavior is not the only type of
coherent behavioral output.

Our aneural model of movement behavior has only one requirement: as the
intensity of a sensory input varies by intensity, a corresponding intensity of behavioral
response must also occur. We can also return to the concept of stigmergy to understand
the relationship between extracellular components and internal physiological
mechanisms. The connectionist model in particular also reveals how extracellular
components adjacent to different parts of the colony can serve a heterogeneous role in
aneural cognition. This is an important feature that allows for a coherent psychophysical
response that is regulated depending on the environmental context. Taken together, this
provides a means to extrapolate even further, from aneural cognition to the regulation of
aneural cognition.

Aneurnal regulation
Now that we have considered the potential for aneural information processing in

Bacillaria and demonstrated how we might understand and measure this phenomenon,
we are ready to propose a potential path towards the regulation of aneural cognition.
The first step involves Hebbian learning involving environmental (sensory) inputs. In
aneural Hebbian learning, units that are active simultaneously couple their behavior.

25



Over time, this synchronization is reinforced. In Bacillaria, each cell in the colony
exhibits sliding motion. This sliding motion is coupled to neighboring oscillatory units,
and establishes Hebbian learning. This can be demonstrated computationally using our
connectionist model. This coupling results in a rhythmic oscillation occurring at multiple
timescales, and can be approximated by our CoPG model. The last step in our path is
how feedback is regulated. In diatom sensory systems, feedback comes in a number of
forms: from shape memories of gradient position to physical resonance between
oscillating cells. Yet regulation often comes in more universal forms, that are
well-represented in models such as CoPGs, forms of Hebbian interactivity such as
learning, and the free energy principle. The role of direct sensory information and
feedback can be summarized by the concept of direct perception (Gibson, 1979). While
direct perception has not typically been applied to aneural systems, the concept allows
us to think of the relationship between cells, organisms, and their environment. The
notion that the environment provides dynamic structure for goal-directed behaviors and
information processing is attractive for describing behavior of organisms that do not
have a nervous system.

Our approach describes only one mode of Bacillaria behavior, and only briefly
draws from potential physiological mechanisms. In the initial step of the above model,
neuronal behavior is generated by an analogy to a decentralized nervous system with
electrical activity. This involves both intra- and extracellular mechanisms that leverage
internal information processing and is augmented by stigmergy. We can explain a
variety of behavioral modes using this model, including colony halting. This halting
mode of behavior can be approximated using Algorithmic Information Theory.
Eventually, this might lead to the development of a behavioral Turing test (French, 2000;
Saygin et.al, 2003) for distinguishing neuronal-generated from aneural-generated
behavior. Yet such a definitive standard for distinguishing neural behaviors from
simulated ones requires us to address what exactly demarcates real behavior from
simulated (but real-life looking behavior). We can generate realistic simulated behaviors
using physics engines (Palyanov et.al, 2018; Larson et.al, 2018) and a class of agents
called Animats (Watts, 1998; Boden, 2006). But the connection between the underlying
mechanisms of such behaviors has not been properly established. Therefore, to better
understand what kinds of behaviors are possible with aneural architectures and their
relative complexity, we will discuss the phenomenon of pseudo-intelligence.

Broader Picture of Intelligence and Emergence

Pseudo-intelligence
To place the contemporary concepts in neuroscience presented here in

perspective, we return to the fact that some seemingly neuronal behaviors are
generated by cellular motors along with other components of the colonial cellular matrix.
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The question might be asked: Is the synchronization of movements across cells in the
colony simply the result of mechanical interactions, or is there a greater degree of
autonomous behavior at work? If the former is the predominant explanation, then
aneural cognition is merely a form of pseudo-intelligence. Yet if the latter holds true,
then we face a dilemma of whether or not our output is cognitively realistic. Drawing this
distinction relies on a definition of intelligence as a nonlinear and interactive process
that is difficult to control using standard methodologies. Bacillaria colonies fall into the
category of highly interactive, nonlinear systems (Pagliarini, 2008). But how do we
understand the distinction between intelligent behavior and mimicry? In another context,
Li (2018) defines strong Artificial Life as simulated life that exhibits characteristics of real
life. This description provides a standard for interpreting the generation of realistic
neural behaviors using aneural systems. In investigating realistic vs. fake-looking
Artificial Life (Witkowski, 2020), contestants used methods to distinguish between
movement trajectories from living organisms (Sharks, Ants, Spiders, and Jaguars) and
non-living agents (simulated bird flocks and insect swarms, Artificial Chemical
Compounds). Among the examples listed above, living organisms generate their
movement behaviors through biologically neuronal systems. This can be contrasted with
the latter examples, which utilize either non-biological neural or biologically aneural
systems. The general relation between neuronal and aneural systems can be
partitioned as is done in Table 1.

Table 1 demonstrates that any single instance of behavior (feeding, taxis
movements, quiescence) can be classified as a neural or aneural behavior, which can
be generated by neural or aneural processes. This provides us with a classification
problem that can be fit into an SDT model. For example, if a neural behavior is
generated by a neural process, then it is a true positive. The true positive is produced
entirely through the intentional component. Bacillaria occupy a unique position in this
typology: a neuronal instance of behavior generated by aneural processes. This is
considered a false positive, as the behavior is generated through both an intentional
signal and an unintentional component (which roughly maps to the signal and noise
components of the SDT model). Both neural and aneural behaviors can be simulated
using deep learning and/or reinforcement learning techniques. This will also allow us to
propose different neuronal-like cooperative behavioral states generated in our aneural
context. Such behavioral states might include feedforward movement generation,
density-dependent feedback, light-responsive feedback, and resonant feedback.

To further understand the role of halting and persistence of movement in
Bacillaria colonies, it is worth expanding beyond the cognition metaphor and consider
the connection between Turing Machines and more formal mathematical formulations of
algorithmic information. Specifically, algorithmic information theory (Chaitin, 2012) may
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allow us to approximate whether these patterns are random or something that
approximates perceptual information (Gauvrit et.al, 2016). If the entire sequence of
behaviors observed is random, then the behaviors captured by the CoPG model might
be due to exogenous forces such as colonial aging or hydrodynamics. If it is not
random, then there is some endogenous control that might be due to connectionist
network dynamics or a consequence of sensory inputs captured using a Weber-Fechner
law analogue.

Table 1. A demonstration of how autonomy can be partitioned into generated and
observed components.

Generated by

Neural Aneural

Instance of
Behavior

Neural Brain Bacillaria chains

Aneural Jellyfish Steam Engine

Discussion
We suggest that the motion of Bacillaria colonies is neuronal behavior generated

by aneural processes. Some have suggested that physical principles can be used to
understand how complex spatial information is integrated among slime molds and
ciliates (Schenz et.al, 2019). Here, we not only suggest that formal information
processing mechanisms are important for understanding the generative outputs of
internal processing, but also provide a series of formal approaches for modeling and
analysis. While we begin with a reliance on simple psychophysical models such as the
Weber-Fechner law and models that make a distinction between signal and noise (e.g.
SDT), generative mechanisms such as Hebbian Learning and predictive processing
provide a more formal means to describe the production of a large number of degrees
of freedom that enable adaptive behaviors (Hart et.al, 2018). Connectionist models also
allow us to bridge between cells, and the effects of sensory stimuli on the interactions
between cells as they each respond internally to a stimulus from their own point of view.
As a connectionist model allows for Hebbian interactivity and extracellular information
processing, the adaptive behaviors that result represent alternate paths to the same
problem. Ultimately, externalized network behavior (e.g. CoPG) unfolds over time in
terms of the adjacent possible (Tria et.al, 2014; Monechi et.al, 2017), and the output of
such models as emergent phenomena (Fernandez-Leon, 2012; Rosas et.al, 2020). We
also consider oscillatory halting behaviors through the lens of algorithmic information,
and consider how aneural information processing is a form of pseudo-intelligence.

Bacillaria colonies form by cells dividing as a clone in which cells adhere to one
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another, forming an accordion-like structure. As they age, Bacillaria colonies break.
These colonies also undergo periods of extended elongation and/or quiescence in other
positions. Despite periods of colonial breakage, we might be able to nonetheless utilize
an aneural cognitive approach to understand if coherent behavior breaks down during
this process. In particular, the uncoupling of predictive processing and the
corresponding lack of tight feedback between cells in a colony may predict aperiodic
oscillations by the proposed connectionist CoPG model. This leads us to an
understanding of halting and dissolution behaviors using other techniques such as AIT.
But in fact, colonies may simply break due to turbulence (as with a blender, Harbich,
2020, personal communication). Additional experimental validation and modeling may
provide a definitive answer.

Now that we have posited a form of aneural cognition for diatoms and walked
through a series of models demonstrating a collection of information processing
mechanisms, we can return to our original motivation. What does the psychophysical
milieu of diatoms look like? Bacillaria psychophysics results from a light dependent
input/output curve for a single cell. This quantitative regularity determines how much
input results in a corresponding degree of output. An alternate way to approach this is to
apply one of our candidate psychophysical models to a behaving diatom colony, which
yields predictable movement and even shape behaviors. One example of this is to build
a receiver operator characteristics (ROC) curve from our SDT model, which yields the
colony’s ability to detect signal from noise. This might allow us to assess whether or not
an aneural behavior is similar to neural processing. Yet a third way to answer this
question is to consider the psychophysical milieu for different modes of colony (or
collective cell) movement. This can be measured using an approach such as AIT, which
enables us to measure halting behaviors and understand discrete temporal transitions
in the internal state.

An alternate way to approach this is to utilize computational agents of simple
neural systems as an analogue for what might be possible in aneural systems. We can
base this on work involving developmental Braitenberg Vehicles (dBVs - Dvoretskii et.al,
2020). dBVs are computational agents where the brain is gradually constructed over the
course of development. During this progression, behaviors come online as neurons and
their connections emerge. This in turn provides an indicator as to what constitutes the
minimal components of a small nervous system (Herrera-Rincon and Levin, 2018;
Alicea, 2020) as well what might be controllable with an aneural analogue. Using the
dBV as a comparison also allows us to leverage the power of Braitenberg Vehicles as
they emerge in development in order to determine the complexity threshold between
goal-directed neurally-produced behaviors (Busseniers et.al, 2021) and incoherent
behaviors.
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In this paper, we have taken the position that organisms in the genus Bacillaria
exhibit information processing capabilities that resemble cognition, despite the lack of a
formal nervous system. The evidence for this rests on two aspects of Bacillaria lifestyle:
the ability to adaptively respond to sensory stimuli, and the collective coordination of
behavioral output across cells constituting a colony. We bring several paradigms for
adaptive information processing to bear on this problem. These include the application
of psychophysical laws, Hebbian interactivity, Connectionist models, and predictive
processing. Taken together, these models, mathematical tools, and novel conceptual
models provide us with new ways to understand the world of diatoms.
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