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If X is a set, M its monoid of self-maps and P its power set, then P can be viewed as a left M -set MP or as a

right M -set PM . We compute the monoids EndMP and EndPM .

Let X be a set, M = XX its monoid of self-maps (that is, M = {f : X → X}) and P its power
set (that is, P = {A | A ⊂ X}). Then P has a left M -set structure given by

fA = f∗A = {fa | a ∈ A}

and a right M -set structure given by

Af = f ∗A = f−1A = {x ∈ X | fx ∈ A}.

We denote these two M -sets by MP and M -set PM respectively. Our purpose is to compute the
monoids EndMP and EndPM . In the sequel we denote fA and Af by f∗A and f ∗A respectively.

Define the maps α, β, γ, δ : P → P by the formulas

αA = A, βA = ∅, γA = X \ A, δA = A.

(Here ∅ is the empty set and X \ A the complement of A in X.)

Theorem 1. We have EndMP = {α, β} and EndPM = {α, β, γ, δ}.

It suffices to show EndMP ⊂ {α, β} and EndPM ⊂ {α, β, γ, δ}. Indeed, the converse inclusions
are clear. Moreover, to prove Theorem 1 we can, and do, assume that X has at least two elements.

1 The monoid EndMP

The M -sets considered in this section are left M -sets.

Lemma 2. If ε : P → P is a morphism of M-sets, then ε ∈ {α, β}.

Proof. This will follow immediately from the four steps below.

Step 1: We have ε∅ = ∅. Proof: The equalities ε∅ = εf∗∅ = f∗ε∅ hold for all f in M . This
implies ε∅ = ∅.



Note: In view of Step 1 it suffices to show that we have either εA = ∅ for all A in P , A 6= ∅, or
εA = A for all A in P , A 6= ∅.

Step 2: We have εX ∈ {∅, X}. Proof: Since εf∗X = f∗εX for all f in M , we get εX = f∗εX for
all surjection f : X � X, and thus εX ∈ {∅, X}.

Step 3: If εX = ∅, then ε = β. Proof: We have εf∗X = f∗∅ = ∅ for all f in M . This entails
εA = ∅ for all A in P , A 6= ∅, hence ε = β by the Note.

Step 4: If εX = X, then ε = α. Proof: We have εf∗X = f∗X for all f in M . This implies εA = A

for all A in P , A 6= ∅, hence ε = α by the Note.

2 The monoid EndPM

The M -sets considered in this section are right M -sets.

Let ε : P → P be a morphism of M -sets. We must show:

Lemma 3. If ε : P → P is a morphism of M-sets, then ε ∈ {α, β, γ, δ}.

Proof. We generalize slightly the notation used so far. Set 2 := {0, 1}. For all set Y write Y ∗ for the
set of subsets of Y and identify Y ∗ to the set 2Y of all maps Y → 2 by attaching to A ⊂ X the map
f defined by fx = 1 if and only if x ∈ A. Moreover we associate with a map g : Z → Y the map
g∗ : Y ∗ → Z∗ defined by g∗A = g−1(A). Note that, if f : Y → 2 is the map attached to A described
above, then the map Z → 2 attached to g∗A is f ◦ g, so that it is natural to denote this map by g∗f .

Claim: If A is a nonempty proper subset of X, then εA ∈ {∅, A,X \ A,X}.

Proof of the claim. Let A be as above and f : X → 2 the map attached to A. Since for any B ⊂ 2

we have f ∗B ∈ {∅, A,X \ A,X}, it suffices to show that εA is of the form f ∗B with B ⊂ 2. Pick x0
in X \ A and x1 in A, and define g : 2→ X by g(i) = xi. Then f ◦ g is the identity of 2, and we get

εA = εf = ε(f ◦ g ◦ f) = ε((g ◦ f)∗(f)) = (g ◦ f)∗(εf) = f ∗(g∗εf).

This proves the claim.

Recall that A is a nonempty proper subset ofX. Let C be any subset ofX, define h ∈M by hx = x1
if x ∈ C and hx = x0 if x ∈ X \ C, and observe the equalities h∗A = C and εC = εh∗A = h∗εA. The
claim implies εA ∈ {∅, A,X \A,X}. If εA = ∅ then εC = h∗∅ = ∅. If εA = A then εC = h∗A = C.
The cases εA = X \ A and εA = X are similar. This shows ε ∈ {α, β, γ, δ}, as desired.

Now Theorem 1 follows from Lemmas 2 and 3.


