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If X is a set, M its monoid of self-maps and P its power set, then P can be viewed as a left M-set »;P or as a

right M-set Py;. We compute the monoids End p; P and End Py;.

Let X be a set, M = X¥ its monoid of self-maps (that is, M = {f : X — X}) and P its power
set (that is, P = {A | A C X}). Then P has a left M-set structure given by

fA=fA={fa|ac A}
and a right M-set structure given by

Af = ffA=f'"A={r e X | fx € A.

We denote these two M-sets by P and M-set Py; respectively. Our purpose is to compute the
monoids End 5, P and End Py;. In the sequel we denote fA and Af by f.A and f*A respectively.

Define the maps «, 5,7,0 : P — P by the formulas
aA=A, pA=2, yA=X\A, JA=A
(Here @ is the empty set and X \ A the complement of A in X.)

Theorem 1. We have End ,,P = {«, 5} and End Py, = {«, 8,7, 0}.

It suffices to show End , P C {a, 8} and End Py, C {«, 5,7,d}. Indeed, the converse inclusions
are clear. Moreover, to prove Theorem 1 we can, and do, assume that X has at least two elements.

1 The monoid End ;P

The M-sets considered in this section are left M -sets.

Lemma 2. Ife: P — P is a morphism of M-sets, then € € {«, 8}.

Proof. This will follow immediately from the four steps below.

Step 1: We have e@ = @. Proof: The equalities e@ = ¢f,& = f.e@ hold for all f in M. This
implies €@ = @.



Note: In view of Step 1 it suffices to show that we have either eA = @ for all Ain P, A # &, or
ceA=Aforall Ain P, A # @.

Step 2: We have ¢X € {@, X}. Proof: Since ef.X = f.eX for all fin M, we get eX = f.eX for
all surjection f: X — X, and thus eX € {&, X}.

Step 3: If eX = @, then ¢ = 3. Proof: We have ¢f. X = f,@ = & for all f in M. This entails
eA =@ forall Ain P, A # &, hence € = § by the Note.

Step 4: If eX = X, then € = a. Proof: We have ef, X = f, X for all f in M. This implies cA = A
for all Ain P, A # @, hence € = « by the Note. [

2 The monoid End Py,

The M-sets considered in this section are right M-sets.

Let € : P — P be a morphism of M-sets. We must show:

Lemma 3. Ife: P — P is a morphism of M-sets, then ¢ € {«, 5,7,0}.

Proof. We generalize slightly the notation used so far. Set 2 := {0,1}. For all set Y write Y* for the
set of subsets of Y and identify Y* to the set 2¥ of all maps Y — 2 by attaching to A C X the map
f defined by fz =1 if and only if x € A. Moreover we associate with a map ¢ : Z — Y the map
g* : Y* — Z* defined by g*A = g~ !(A). Note that, if f:Y — 2 is the map attached to A described
above, then the map Z — 2 attached to g*A is f o g, so that it is natural to denote this map by ¢*f.

Claim: If A is a nonempty proper subset of X, then e¢A € {@, A, X \ A, X }.

Proof of the claim. Let A be as above and f : X — 2 the map attached to A. Since for any B C 2
we have f*B € {@, A, X \ A, X}, it suffices to show that €A is of the form f*B with B C 2. Pick zg
in X\ A and z; in A, and define g : 2 — X by ¢g(i) = x;. Then f o g is the identity of 2, and we get

eA=cf=e(fogof)=cllgof)(f) =(gof)(cf)=f"(g"cf)
This proves the claim.

Recall that A is a nonempty proper subset of X. Let C' be any subset of X, define h € M by hx = x;
if x € C'and hx =z if x € X \ C, and observe the equalities h*A = C and eC = eh*A = h*cA. The
claim implies eA € {&, A, X \ A, X}. lf eA=@ then eC = h*0 = @. If cA = A then eC = h*A = C.
The cases €A = X \ A and €A = X are similar. This shows ¢ € {a, ,7,0}, as desired. ]

Now Theorem 1 follows from Lemmas 2 and 3.



