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It has been established that electronic and nuclear spectra can be calculated and formed using 

combinatorics and frequency distributions (FD) provided that electrons, nucleons and other 

elementary particles in the composition of an atom are represented as unit structureless elements. 

The examples given show a good match between the calculated spectra and the experimental ones. 

The program for calculating spectrograms has been compiled. 

 

1.   Introduction 

Electronic and nuclear spectra are characterized by a set of emission (absorption) spectral frequency 

lines arising from the excitation of atoms or by the energy spectrum of split off nucleons in the 

nuclear decay process. In electronic spectra the spectral lines position for hydrogen and for 

hydrogen-like atoms is determined by the Balmer-Rydberg formula for the radiation wavelength λe : 

 

                                                        λe = n2m2 / (m2 — n2) / (R∞ Z 2) ,          (1) 

 

where n  and  m are the quantum numbers or orbit numbers, R∞ is the Rydberg constant, Z is the 

element atomic number. 

   For other spectral transitions in multielectron atoms the Rydberg formula gives incorrect results, 

since the internal electrons screening varies, and for external electrons transitions it is not possible 

to make a similar correction in the formula to compensate for the nuclear charge weakening, as 

described above. Therefore, in the general case, to find the position of spectral lines, the Ritz 

combination principle [1], which has become the basis of modern spectroscopy, is used. 

Its validity has been confirmed by numerous experimental data. But it is not clear what regularities 

underlie it, what processes exactly exist, and how the atom internal structure is rearranged in order 

to cause the waves emission with a frequency corresponding to any spectral line. 

   Nuclear spectra arise when a nucleus is exposed to hard radiation or high-energy electrons. The 

nucleons split off in this case have the energy of tens of MeV and form the giant dipole resonance 

(GDR) [2]. The giant resonance is inherent in all nuclei, it has been studied since 1947 and it 

manifests itself so brightly and universally that, perhaps, not a single nuclear "event" can compare 

with it. The giant resonance nature is believed to lie in the nucleus dipole oscillations (displacement 

of all nucleus protons relative to all its neutrons) under the action of long-wavelength γ-radiation. 

When irradiated with electrons having an energy of more than 200 MeV, along with dipole 

vibrations, other types of vibrations can also be excited in the nucleus. These vibrations are of a 

collective nature and form giant multipole resonances (GMRs) [3]. The photonucleons energy 

spectra are not described by smooth curves, and when studying the cross sections for the (γ, n) 

reactions, maxima of the first and subsequent orders are found, forming the GDR structure of three 

types: rough (gross), intermediate, and fine. 

   There are several GDR theories, the most detailed being the multiparticle shell model [4]. Its 

development proceeds through a unified description of various collective motions (rotations, surface 

oscillations, nucleus dipole oscillations), as well as interactions between them. At present, theories 

are not yet able to give a good quantitative description of the width and fine structure of the giant 

resonance and the entire spectrum of nucleons separated during the nuclei decay, since there are 

large computational difficulties and a lack of reliable information about a number of important 

parameters of the theory. 

 

2   Initial conditions 

In this article, as in previous works, in accordance with the mechanistic interpretation of J. 
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Wheeler's idea, charged particles are considered to be the singular points on the three-dimensional 

surface of our world (conditionally this is the X -region), connected by vortex tubes (current lines of 

force) through an additional dimension (conditionally this is the Y -region), which is responsible for 

the electromagnetic forces and the “hidden” mass of the microparticles [5, 6].   

   If, as is commonly believed, the microparticles are oscillators, then the atom itself can be 

considered as a collective oscillator, which consists of the “oscillator- electrons“ (X -region) and the 

“oscillators-protons“ (Y -region), and these oscillators are elastically connected to each other by the 

vortex current tubes. At that, according to [7], the electrons located at the more distant orbits are 

associated with the protons located at the deeper nucleus levels; thus the layers or envelopes are 

formed in the nucleus that similarly to the electronic shells. 

    The multielectron atoms protons number’s increasing in proportion to the atomic number Z 

increases the bonds inflexibility, as if “stretching” the vortex tubes, which reduces the oscillators-

electrons wavelength in the X -region in accordance with the formula (1). At the same time, the 

protons mass’s increasing reduces the system as a whole inflexibility, therefore in the same 

proportion increases the oscillator-protons wavelength in the Y -region. 

   For multielectronic atoms, the numbers  m and  n  lose their meaning of the electron shell number, 

and n must be taken equal to Z, since in the limit, when m → ∞  and  n = Z, in accordance with (1) 

λ→ 1 / R∞ , and the atom becomes hydrogen-like one. For the radii smaller than 1 / R∞, i.e. when 

there is  “sinking” into the Y -region, quantum numbers formally become inverses of n and m, and 

the formula (1) for oscillator-protons takes the form: 

 

                                                        λp =
 ( Z 2 / R∞) /(m2 — n2) .       (2) 

 

   The dependence of wavelengths on Z 2 is understandable, since, unlike a simple one-dimensional 

oscillator, where the oscillation period depends on its inflexibility and on its mass to the power of 

½, the atom (taking into account the additional degree of freedom in Y) is a four-dimensional 

oscillator and (Z1/2)4 = Z 2. 

 

3   Formation of the electronic spectra 

The spectra revealed in physical experiments is obvious to be as a joint result of the electronic and 

proton oscillators oscillations superposition; it is clear that in this case, as a result of interference, 

both damping and amplification of certain frequencies of the spectrum occur. Therefore, to obtain 

the spectrum, it is necessary to calculate all possible wavelengths of oscillators-electrons according 

to (1), as well as all possible wavelengths of oscillators-protons according to (2) for all 

combinations of n and m, and multiply the results logically. 

   For this purpose, a calculation program has been drawn up (see Application). The essence of the 

program is as follows: to divide a certain spectrum region into intervals, to calculate the frequency 

distributions (FD) of all functions values according to (1) and (2) in the spectrum selected region, 

write them into the corresponding arrays and multiply these arrays. The type of the spectra obtained 

by this program depends on the number of values  λi  falling into the i-th interval (i.e., on the 

parameter q value in the program) and can have the histogram form of different detail (q - large) or 

the line spectra form (q - small) [8]. Moreover, the type of histograms can reflect some additional 

spectrum parameters, since the histogram peaks height is proportional to the probability (intensity) 

of the corresponding spectral parameter along the Y -ordinate. 

   Fig. 1 shows the experimental spectrum of the holmium liquid filter (240 - 650 nm) which is a 

solution of holmium dissolved in perchloric acid for checking the wavelength accuracy [9], and   

Fig. 2 shows the calculated histogram for 67Ho. Here and below, the intervals for substituting 

variables a and b in the calculation program are indicated. 

 



  

               Fig.1  Typical spectrum of holmium liquid filter (240 - 650 nm) [9] consists of a solution   
               of  holmium dissolved in perchloric acid  

 

 

                Fig. 2  Calculated spectrum for 67Ho : q = 0.026,  λe  (a, b) = 57 - 67,  λp (a, b) = 1- 67 

 

   Fig. 3 shows part of the 80Hg spectrum as a line spectrum. Above it, the spectral lines 

experimental values are shown and the brightness values of some of them are given. Note, when 

changing the interval of substitution of variables the histograms shape changes; in the case of a line 

spectrum it affects the spectral lines intensity, the presence or absence of some lines, but their 

position in the spectrum does not change. 

 



 

 

               Fig. 3  Calculated spectrum for 80Hg : q = 0.0021,  λe  (a, b) = 50 - 80,  λp (a, b) = 1 — 80 

 

   Obviously, the constructed spectra are in good agreement with the experimental ones. Of course, 

one cannot expect the calculated spectra to match exactly with the experimental ones, since the 

latter are influenced by various factors: the methods of excitation of atoms, the degree of their 

ionization, the presence of forbidden transitions, the medium which the element is locate in, etc. 

   Nevertheless, in a number of cases, for some sets of variables, even the external shape of the 

calculated non-line spectra (the histograms shape ) is very similar to the real non-line spectra (see 

Figs. 1 and 2), which, apparently, corresponds to certain physical conditions. Thus, limiting the 

function λe to variables within 57 - 67 means that when calculating the spectrum only the electrons 

in the outer shells of 67Ho (10 units) are taken into account. Indeed, it is known the inner shells 

electrons do not take part in the formation of the visible spectrum range for atoms having high 

numbers Z . For the 80Hg spectrum 30 electrons are taken into account. This turned out to be 

sufficient to form the spectrum. With a full set of variables, the short-wavelength spectrum part is 

enhanced and, in general, the spectrum detail is enhanced. 

 

4   Formation of the nuclear spectra 

The region of the giant dipole resonance extends within the energy range of tens of MeV, and its 

shape and structure are extremely diverse. When the nucleus is exposed to gamma radiation or high-

energy electrons, there is both proton and neutron’s splitting off. Thus, the nucleus as an oscillator 

should contain the maximum number of unit elements (oscillators-nucleons) equal to its mass 

number A. On the other hand, by analogy with oscillators- electrons, one can imagine that there are 

oscillators-pions or other mesons, which, as expected, exist in the proton close environment in the 

form of a virtual meson “coat” [10]. 

   So, to build a nuclear spectrum one should use the same formulas (1) and (2), replacing the 

element number Z with the mass number A, but at the same time, as it were, “going deeper” along 

the Y -axis, that is, moving to smaller sizes and higher energies. The transition coefficient, as it 

turned out, is equal to a3 - the fine structure constant in the cube (1/137)3. Thus, for the nuclear 

resonance wavelengths, denoting them  λπ and  λn , we have: 

 

                                                  λπ =  a3n2m2  / (m2 — n2) / (A2 R∞) ,        (3) 

 

                                                   λn =  a3(A2 / R∞) /(m2 — n2).                 (4) 

 



   These formulas, passing to the frequencies and further to the energies in MeV, are written as: 

 

                                        Eπ  =  [(m2 — n2) / n2m2] A2 R∞ c h / (a3 k) ,         (5)      

  

                                                 En = (m2 — n2) R∞ c h / (a3 k A2) ,            (6) 

 

where c is the light speed, h is the Planck's constant, k is the conversion factor 1.602*10-13 [J/MeV].  

Calculating the constants, we get: 

                                                  Eπ  = 35.02 A2 (m2 — n2) / n2m2,                     (7) 

  

                                                        En = 35.02 (m2 — n2) / A2                     (8) 

 

   The general view of the giant resonance for light and heavy nuclei, obtained from the calculation 

in accordance with (7) and (8), is shown in Fig. 4, which generally agrees with the experimental 

results. Indeed, in the experiments with irradiation of the nuclei with low mass numbers, even at 

low resolution, maxima are found in the giant resonance, in contrast to the heavy nuclei, where 

numerous weak peaks are detected only at high resolution. 

                    
                         Fig. 4  General view of the GDR for light and heavy nuclei : q = 0.1,  A = 28:   
                        Eπ , En  (a, b) = 1 - 28,  A = 207:  Eπ (a, b) = 1 - 207,  En (a, b) = 142 - 207 

   

   The giant resonance has been established to be formed in the heavy nuclei with the participation 

of nucleons from the two outermost nuclear shells, while the main nucleon core lying under the 

outer shells is not affected at all by the photodisintegration process. At that, with an increase in the 

mass number A, the neutron fraction knocked out of the nucleus increases, while the proton fraction 



decreases, reaching only about 1% in a nucleus with A ≈ 200 [11]. 

   Therefore, if one takes into account only those nucleons (neutrons) that are not included in 

clusters and therefore easily splitting off from the nucleus (for Pb207, as indicated in [7], there are 65 

units), then when forming a spectrogram for Pb207, one should limit the variables range for En 

within 142 – 207. In this case, the maximum of the spectrogram shifts to the range of 11–12 MeV 

and it takes the form close to the Poisson distribution; this is generally match to the experimental 

data. As in the case of the electronic spectrum, this is, as it were, the formal restriction on the range 

of variables, coincides with the physical meaning of the phenomenon, otherwise the GDR peak 

would be shifted towards higher energies. 

   Fig. 5  shows the experimental cross sections for reactions 27Al(p,γ0)28Si according to [12], and  

fig. 6 shows the calculated spectrogram in the histogram form. Obviously, the main peaks of the 

reaction cross section (p,γ0) coincide with those in the calculated spectrogram.  

 

 

                     Fig. 5  Reaction cross sections  27Al(p,γ0)28Si [12]  and data of theoretical calculations.   
                     

                                      

                    Fig.6   Calculated spectrum for Al 27 Si28 :  A = 27.5,  q = 0.007,  Eπ , En (a, b) = 1 - 27.    

 

At the same time, a large number of narrow peaks with a width of 50–100 keV are observed in the 

reaction cross section against the intermediate structure background (resonances with a width of 



0.4–1.0 MeV). The existing theory does not explain the nature of these peaks. But in the calculated 

spectrograms they are revealed as the parameter q decreases. These coincidences point to the 

manifestation of combinatorics, to the fact that any maximum is not the result of any particular 

resonance, but the superposition of many single events.  

   Fig. 7  shows the experimental spectrum for Ca40 [13], and fig. 8 shows the calculated 

spectrogram. It also demonstrates good agreement with the experimental data both in terms of the 

peaks number  and the peaks positions for Ca40. 

                               

               
                Fig. 7  Spectrum of photoprotons from Ca40 upon irradiation with the bremsstrahlung spectrum  
                 of γ-quanta with Eγ max = 25 MeV and calculated spectrum in the shell model (smooth curve) 
 

 

                         

 

                           Fig. 8  Calculated spectrum for  Ca40 :  q = 0.003,  Eπ , En (a, b) = 1 - 40.   

 

 



    In the process of the studying the atomic nuclei structure by the method of scattering of electrons 

with energies up to 225 MeV new giant multipole resonances (GMR) were discovered. These 

resonances go beyond the GDR, which arise during photodisintegration. They have a much more 

complex structure than that obtained from photonuclear experiments and theoretical predictions. To 

explain them, quadrupole, octupole, and other types of oscillations was assumed can be excited in 

the nucleus. 

   The parameters of the giant resonance in Fe56  Eres, MeV are given in [3] (p. 142) (the plus or 

minus errors in absolute value are shown in parentheses): 

 

                                       9.5(0.1)   10.1(0.1)   10.3(0.3)   11.3(0.5) 

                                      11.9(0.9)   13.0(0.3)   13.0(0.9)   13.1(0.1) 

                                      14.6(0.3)   15.0(0.4)   15.6(1.2)   16.0(0.2) 

                                      16.1(0.5)   16.3(0.1)   16.9(0.1)   17.3(0.1) 

                                      17.9(0.2)   18.2(0.1)   18.3(0.1)   19.0(0.5) 

                                      19.8(0.3)   23.9(0.3) 

 

   On fig. 9  the calculated spectrogram for Fe56 is shown. It can be seen that almost all of the above 

energy values, within the limits of errors, coincide with the peaks of the first (most) and second 

orders in the calculated spectrogram. 

 

                      

                             Fig. 9   Calculated spectrum for  Fe56 : q = 0.005,  Eπ , En (a, b) = 1- 56. 

 

 

   On fig. 10  a part of the spectrogram for Fe54 in the line spectrum form is shown. Here there is a 

good agreement with experimental data [3, p. 149]  too. 

 

                                     9.7(0.1)   12.4(0.5)   12.6(0.4)   13.4(0.2)   13.8(0.2) 

                                   15.0(0.9)   15.0(1.3)   17.5(0.2)   17.9(0.2)   19.2(0.1) 

                                   20.2(0.1)   20.3(0.1)   23.9(0.3)   25.4(0.4) 

    



                        

                            Fig.10  Calculated spectrum for  Fe54 :  q = 0.007,  Eπ , En (a, b) = 1 — 54. 

 

   Of course, as in the case of electronic spectra, the calculated nuclear spectrograms cannot 

completely coincide with the real ones, because in addition, there is an incomplete agreement 

between the data of different experiments. The instrumental functions of the experiments have very 

complex shapes, so that the determined cross sections differ in all the main parameters – shape, 

size, and energy position. It should also be noted that in the above method for calculating 

spectrograms, the mass number A is the sum of neutrons and protons, and the spectrograms do not 

differ for nuclei with the same A. The accuracy of the calculated spectra can be improved by 

introducing additional restrictions or additions to the set of variables. 

   Nevertheless, the obtained results show this method of analysis can be used as an addition to the 

instrumental spectrography methods, since it makes it possible to quickly, almost instantly find the 

statistically most probable form of electronic and nuclear spectra. 

 

5   Conclusions and generalization 

The main conclusion from the foregoing is not so much the fact of the emergence of a new 

analytical method, but that it is possible to obtain results close to reality by considering the complex 

structure of electronic and nuclear shells as a set of structureless single uniform elements. 

This contradicts the quantum provisions, according to which elementary particles differ in a set of 

quantum numbers. On the other hand, each element acquires individuality, since it (and all of them 

at the same time) moves in the space of variables ni - mi , and any movement of any element is 

accompanied by the release of an individual portion of energy Ei , which, being mutually 

superimposed, eventually form the spectrum. But this again contradicts the quantum principle, this 

time it contradicts the principle of indistinguishability of identical particles. 

    Applying a FD to an array of values of the functions Eπ  and  En, i.e. to just a set of numbers, 

gives physically reliable results, but this fact should not be surprising. So in the work of S.E. Shnol 

[13], when processing the FD of the experimental data array of the various physical processes, 

obtained initially in the normal distributions form, these distributions was found are discrete and 

depend on the algorithms that determine these processes. 

   The fact that simple formulas for the i -th wavelength or the energy value give results, otherwise 

obtained through the laborious experiments and complex calculations, leads to the question - do 

dipole and other resonances affect the nuclear spectra and do they exist in the nucleus at all? Is it 

really necessary to calculate the nuclear spectra consider nuclei and their components to be the 

sources of oscillations, or is a set of statistical methods sufficient? This question can only be 

answered by further wide application of the method described both to the electronic and nuclear 

spectra and to other physical phenomena in those cases, where it is possible to apply the FD to the 

functions describing these phenomena. 



   But now, summing up the above, we can conclude: 

-  the electronic spectra are reproduced at a deeper level of matter in the nuclear spectra form, 

-  the type of spectrograms is mainly determined by combinatorics and the frequency distributions 

of elementary particles, considered as structureless unit elements in the range of their atomic 

numbers or their mass numbers. 

 

Application 

 A  C++ program is written to calculate the wavelength in nanometers. When calculating nuclear 

spectra, the atomic number Z is replaced by the mass number A. and M is a dimensional coefficient. 

 

   #include <iomanip> 

   #include <stdlib.h> 

   #include <algorithm> 

   #include <stdio.h>  

   

   using namespace std;    

   struct preobr: binary_function <double, double, double> {     

             double operator()(double x, double y) const {return x*y;} };  

                  

   float R, M;  

   float f1(float x, float y, float z) { return M*(x*x*y*y)/(y*y - x*x)/z/z/R ;}; 

   float f2(float x, float y, float z) { return M*z*z/(y*y - x*x)/R ;};      

       

   FILE *fp = fopen("uuu", "w"); 

   

   int main() {    

   

   int n=1000000;  float*m1 = new float[n]; float*my1 = new float[n]; 

                             float*my2 = new float[n]; float*my12 = new float[n]; 

                   

   for (int c=0; c<n; c++) m1[c] = my1[c] = my2[c] = my12[c] = 0;     

   

   float  z=80, xn=300, xm=500, q=0.002, t=0, c=0; int j=0; R=1.0974e+7, M=1e+9; 

                                                                                            // xn  and  xm  -  range limits                                                                                                                            
                                                                                                                      

   for(t=xn; t<xm; t=t+0.001*t)  {                                       // dividing the range into segments 
                                                                                            // proportional to its current value      
   j++,  m1[j] = t;                                    
     

   for(int a=1; a<=80; a++)         {                        
   for(int b=1; b<=80; b++)           {     

       

   if(b>a) c = f1(a,b,z);    

                                        

   if(fabs(m1[j] - c) < fabs(q*c))  my1[j]++ ;                     // recording the number of values in intervals for f1 
      } 

   }       

   for(int a=1; a<=80; a++)       { 
   for(int b=1; b<=80; b++)         {  

    

   if(b>a) c = f2(a,b,z);   

                                  

   if(fabs(m1[j] - c) < fabs(q*c))  my2[j]++ ;                     // recording the number of values in intervals for f2 
         } 

      }    



   }                   

   transform(my1, my1+j, my2, my12, preobr());     
 

   for(int i=0; i<j; i++)   { 

 

   if(m1[i]!=0)  

 

   fprintf(fp, "%20f %20f\n", m1[i], my12[i]);                    // writing results to the file "uuu"    
                                   

    std::cout << m1[i] <<"      "<< my12[i] << std::endl;    // outputting results to the terminal 
     }      

  } 
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