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Abstract 

DLSGAN proposed a learning-based GAN 

inversion method with maximum likelihood 

estimation. In this paper, I propose a method 

for unsupervised out-of-distribution detection 

using the encoder of DLSGAN. When the 

DLSGAN converged, since the entropy of the 

scaled latent random variable is optimal to 

express in-distribution data, in-distribution data 

is densely mapped to latent codes with high 

likelihood. This enables the log-likelihood of the 

predicted latent code to be used for out-of-

distribution detection. 

 

1. Out-of-distribution detection with DLSGAN 

DLSGAN [4] proposed a learning-based GAN 

inversion method with maximum likelihood 

estimation of the encoder. The encoder of 

DLSGAN maps input data to predicted latent 

code.  

In this paper, I propose a method for 

unsupervised out-of-distribution (OOD) 

detection using the encoder of DLSGAN. Simply, 

the log-likelihood of the predicted latent code 

of input data can be used for out-of-distribution 

detection. There are two characteristics that 

allow the DLSGAN encoder to be utilized for 

OOD detection. First is the entropy optimality. 

As DLSGAN training progresses, the entropy of 

scaled latent random variable decreases, and 

the entropy of the scaled encoder output 

increases. When DLSGAN is converged, the 

generator perfectly generates in-distribution 

data with a scaled latent random variable, and 

the entropy of scaled latent random variable 

and scaled encoder output becomes optimal 

entropy for expressing in-distribution data with 

generator and encoder. It means that in-

distribution data generated by the generator is 

densely mapped to latent codes with high 

likelihood. Therefore, by the pigeonhole 

principle, OOD data can only be mapped to 

latent codes with low likelihood. 

Secondly, elements of DLSGAN encoder 

output are independent of each other and 

follow a simple distribution (the same as latent 

distribution). Therefore, it is very easy to 

calculate the log-likelihood of predicted latent 

code. 

The following equation shows the negative 

log-likelihood of the predicted latent code of 
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input data. 

𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 = − ∑ log 𝑓(𝐸𝑖(𝑥)|𝜇𝑖 , 𝑣𝑖)

𝑑𝑧

𝑖=1

 

In the above equation, 𝑥 and 𝐸 represent the 

input data point and DLSGAN encoder, 

respectively. 𝐸(𝑥)  represents 𝑑𝑧 -dimensional 

predicted latent code of input data point 𝑥. 𝑓 

represents the probability density function of 

the i.i.d. latent random variable 𝑍 . 𝜇  and 𝑣 

represent mean and variance vector for the 

probability density function 𝑓 . 𝜇  is mean 

vector of latent random variable 𝑍 . 𝑣  is the 

same vector as traced variance vector of 

DLSGAN. 𝐸𝑖(𝑥) , 𝜇𝑖 , and 𝑣𝑖  represent 𝑖 -th 

element of 𝐸(𝑥), 𝜇, and 𝑣, respectively. 

Since each element of the encoder output 

𝐸(𝑋)  is independent of each other, the 

negative log-likelihood of the predicted latent 

code can be simply calculated by adding the 

negative log-likelihood of each element. 

The 𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 is the negative log-likelihood 

of the predicted latent code 𝐸(𝑥) . If the 

𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒  is greater than the threshold, the 

input data is classified as OOD data. Otherwise, 

it is classified as in-distribution data. 

The proposed method is an unsupervised 

OOD detection method, so it does not require 

any mutual information of training data (e.g., 

the label of the training data), and only one 

inference of encoder 𝐸 is required to classify 

input data. 

 

 

2. Experiments 

2.1 Experiments settings 

I used MNIST handwritten digits dataset [1] as 

an in-distribution dataset and corrupted MNIST 

dataset [2], fashion MNIST [7], and KMNIST [8] 

dataset as an OOD dataset. The following figure 

shows samples of in-distribution data and OOD 

data. 

 

 

Figure 1. Samples of the dataset. The first top 

image shows in-distribution data. Other images 

show OOD data. 

 

 I trained DLSGAN to generate in-distribution 

data with an MNIST handwritten digits training 

dataset, then measured the OOD detection 

performance of the proposed method. 10k test 

dataset of the MNIST dataset was used as the 

in-distribution dataset for evaluation, and the 

10k test dataset of each OOD dataset was used 

as the OOD dataset for evaluation. AUROC 

(area under ROC curve) was used for OOD 

detection performance evaluation. 

Following hyperparameters was used for 



DLSGAN training. 

 

𝜆𝑒𝑛𝑐 = 1 

𝜆𝑟1 = 1 

𝑍 = (𝑍𝑖)𝑖=1
256 ~

𝑖.𝑖.𝑑.
 𝑁(0,12) 

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = (

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001
𝑏𝑒𝑡𝑎1 = 0

𝑏𝑒𝑡𝑎2 = 0.99
) 

𝑒𝑝𝑜𝑐ℎ = 30 

 

Also, an exponential moving average with 

𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 = 0.999  was used to approximate 

the element-wise variance of the predicted 

latent vector for DLSGAN. NSGAN with R1 

regularization [3] was used for DLSGAN training.  

The following table shows the performance of 

trained DLSGAN. 

 

FID [5] 5.4527 

Precision [6] 0.7434 

Recall [6] 0.6728 

Fake PSNR 20.1497 

Fake SSIM 0.7599 

Real PSNR 16.4589 

Real SSIM 0.6129 

Figure 2. Performance of trained DLSGAN 

 

10k generated images and 10k test images 

were used for DLSGAN performance evaluation. 

 

 

2.2 Experiments results 

For the threshold value, 1000 intervals 

between the minimum and maximum values of 

the 𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒  of the in-distribution test 

dataset were used.  

 

 AUROC 

Shot noise 0.9732 

Impulse noise 1.0000 

Glass blur 0.9969 

Motion blur 0.9999 

Stripe 1.0000 

Fog 1.0000 

Spatter 0.9882 

Dotted line 0.9953 

Zigzag 0.9985 

Canny edges 1.0000 

Fashion MNIST 1.0000 

KMNIST 0.9984 

Figure 3. OOD detection performance 

 

Figure 3 shows the OOD detection 

performance of the proposed method. Each 

row of the table shows the AUROC performance 

according to each OOD dataset. One can see 

that the proposed method almost perfectly 

detected OOD data.  

 

3. Conclusion 

 In this paper, I found that the DLSGAN 

encoder can be used to estimate the likelihood 

of input data. The proposed unsupervised OOD 

detection method is very simple and showed 



high performance even for the OOD data very 

close to the in-distribution data.  
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