
Inconsistent number systems,nowel development.

Jaykov Foukzon

Israel Institute of Technology
jaykovfoukzon@gmail.com
jaykovfoukzon1@gmail.com

Abstract.In this paper we dealin using paraconsistent first order logic LP�
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1.Introduction
In this article we dealing using non-classical approach based on paraconsistent set
theory ZFC�

# [1-4].

2.The Graham Priest argument.
In this paper we dealin using paraconsistent first order logic LP�

# � �n�� LPn
# with

restricted modus ponens rule and infinite levels of a contradiction [1]-[4], where LPn
# is an

paraconsistent first order logic with n levels of a contradiction. Let ��
#
� ��

# LP�
# be the

formal language corresponding to logic LP�
# and let ��

#
be the set of the all wff’s of ��

#
.

Remark 2.1.In contrast with ordinary classical (unrestricted) modus ponens rule

A, A � B �UMP B �2. 1�

the restricted modus ponens rule reads

A, A � B �RMP B if and only if A � �1and A � B � �2, �2. 2�

where �1,�2 � ��
#
.Thus it is not in general true by using paraconsistent first order

logic LP�
# that if A � B holds and A holds then B holds.

Remark 2.2. In adition in logic LP�
# we distingvish a strong negation �sA and a

weak negation �wA. A strong negation that is ordinary classical negation, i.e. �sA

holds if and only if A � B, B � ��
#
.A weak negation that is nonclassical negation, i.e.

A � �wA might holds.
Remark.2.3. In particular, ��A � �wA� � B� � �A � �wA� might hold while B does not.
Remark.2.4.In particular is that this permit a solution to the following problem raised
by Graham Priest [5],[6]. Ordinarily one wants postulates such as the Cancellation

Law

�x ��x � 0� � �y�z�x � y � x � z � y � z� �2. 3�

to hold when moving from the classical theory of the rings to nonclassical theory of the



inconsistent rings.But canonical inconsistent fields [i.e. inconsistent fields based on
canonical inconsistent logic with unique negation �] have both

��xInc � 0� and xInc � 0 �2. 4�

for some xInc [for examle �xInc � 1� � �xInc � 0�] and therefore

�y�z�xInc � y � xInc � z � 0� �2. 5�

holding.Yet one does not want to detach every y � z or the theory is trivial. Yet one
also

does not want to forbid detachment for those x which are classically not identical with

zero.
Remark 2.5.Obviously Priest paradox arises from the statement:

x classically not identical with zero. �2. 6�

The statement (2.6) completely does not well defined by using canonical inconsistent

logic with unique negation �.Note that if the statement ��x � 0� treated classically i.e.

under definition of the strong negation �s (see Remark.2.1), this meant impossibilyty
x � 0, i.e. the statement x � 0 is not holds classically and assuming that both ��x � 0�

and x � 0 holding we conclude that the statement ��x � 0� is not holds classically

in contrary with Priest assumption (2.6).Cancellation Law (2.3) breaks down.
Remark 2.6.In order to avoid the difficultness mentioned above we
apply the logics LPn

#, n � 1and postulate the Cancellation Law in the following form

�x �s�x � 0� � �y�z�x � y � x � z � y � z� , �2. 7�

and

�x �w�x � 0� � �y,�z�x � y � x � z � y � z� . �2. 8�

We set now instead (2.4) that

�w�x � 0� and x � 0. �2. 9�

From (2.7) one to detach y � z only for such x which are classically not identical with

zero as it should be. However if we set �xInc � 1� � �xInc � 0� � �1 and
���xInc � 1� � �xInc � 0�� � 0 � 1� � �1 then

��xInc � 1� � �xInc � 0�� � 0 � 1 	RMP 0 � 1 �2. 10�

as it should be.

3.Inconsistent logic with restricted modus ponens rule
based on RM3-assignment.

The classical example of the inconsistent logic with restricted modus ponens rule
has been proposed by C.E. Mortensen, see ref.[5-7].
Let � be an canonical language consisting of simple terms (names), one for each real

number; function symbols �,�,
,�; atomic predicates �,�,�; variables x, y, z, . . . and
operators �,�,�.

Remind that any RM3-assignment [5],[6] is a function I assigning to the wff’s of �, or
the appropriate sublanguage of � under investigation at the time, values from the set



�T, N, F� in accordance with the following definition:
(i) for any atomic wff with terms t1, t2, we have I�t1 � t2�, I�t1 � t2� and I�t1 � t2� all
belong to �T, N, F�, (read ’true, neuter, false’);
(ii) I��A� and I�A � B� are given by the RM3-matrices:

� T N F �
�T T N F F
�N N N F N

F F F F T

�3. 1�

(iii) I��x�A� � min�y : for some term t, I�A�t|x�� � y�, where min is relative to the
ordering: false � neuter � true. A sentence A holds in an assignment I iff I�A� � �T, N�.

Let us consider now the classical standard model of the natural numbers, equipped
with names for the natural numbers. In view of the Extendability Lemma [8],[9], the set of
sentences holding therein can be extended by adding any collection of sentences of the
form ��n � n� and evaluating in an RM3-assignment. Note that the contradiction does
not spread to other sentences of the form ��m � m�. Similarly, collections of sentences
of the form n � m for distinct n, m, may be added with the same result.

This raises the following question [5]. If we add, for example, 0 � 2 to the standard
model of the natural numbers, then, in virtue of the substitutivity of identity and the fact
that ��0 � 2� also holds, have we not imported the further sentence ��0 � 0�? The
answer is no, and it illustrates the generality of the Extendability Lemma.

The rule of substitutivity of identity �SI� in the form if t1 � t2 holds, then Ft1 holds iff Ft2

holds (all terms t1, t2, with t2 replacing t1 in F1 at least one place) does not always hold in
RM3-assignments. What is the case, if the sentences holding in an RM3-assignment
include those holding in the standard model of the natural numbers, is that
�t1 � t2 � Ft1� � Ft2 holds, since it holds in the standard model.
Remark 3.1.But it is not in general true that if A � B holds and A holds then B holds.
In particular, ��A � �A� � B� � �A � �A� might hold while B does not, i.e.

�A � �A� � B 	RM3 B, �3. 2�

where by �RM3 we denote the rule of conclusion corresponding to RM3-assignments.
However, this leads to no loss of information from classical arithmetic, since we do

have
that if �A � B� � A holds, and if moreover �A � B� � A holds back in the standard

model
for arithmetic, then B holds (trivial).
Remark 3.2.(i) A special case of interest is this: if t1 � t2 � Ft1 holds and if moreover
��t1 � t2� and �Ft1 both do not hold, then Ft2 holds. (Reason: for then t1 � t2 � Ft1

holds back in the classical complete subtheory, wherein Ft2 could be detached.)
(ii) Thus the rule SI does not hold in all RM3-assignments.

4. The da Costa type paraconsistent logic C�
# with infinite

levels of a contradictions and restricted modus ponens rule
can to save Naive Set Theory from a trivality.



.
It well known that canonical da Costa’s paraconsistent logics is invalid in order to

obtain non trivial paraconsistent set theory,see [8]. In order to resolve this tension we
consider the da Costa type paraconsistent logics C�

# with infinite levels of a
contradictions and restricted modus ponens rule mentioned above.

We remind that da Costa paraconsistent set theory is a paraconsistent set theory
whose underlying logic is one of da Costa’s paraconsistent logics Cn

�, 1 � n � �.
Definition 4.1.The postulates of C�

� are those of the positive intuitionistic first-order
logic with equality, plus:
(1) ��A � A,
(2) A 
 �A.
(3) unrestricted modus ponens rule : A,А � B �UMP B.
Definition 4.2.The postulates of Cn

�, 1 � n � �, are those of C�
� , plus:

(1) B�n� � �A � B� � �A � �B� � �A,
(2) A�n� � B�n� � �А � B��n� � �A � B��n� � �A 
 B��n�,
(3) ��x��A�x���n� � ���x�A�x���n� � ���x�A�x���n�,

where A�n� defined as follows: A1 � A0 � ��A � �A�, An�1 � �An�0, A�n� � A1 �. . .�An,
(4) unrestricted modus ponens rule :
A,А � B �UMP B.
In each , Cn

�, 1 � n � �, ��A is defined as �A � A�n�,and it is proved that satisfies all
the properties of the classical negation. Then classical logic can be obtained inside
these systems; consequently, they are finitely trivializable. For, from any formula of the
form A � �A � A�n� one can deduce any formula whatsoever. Nonetheless, C�

� is not
finitely trivializable. Moreover, each system terns in the hierarchy C1

�, C2
�, . . . , Cn

�, . . . , C�
� is

strictly stronger than the following ones. Thus, we may construct a hierarchy of da
Costa’s paraconsistent set theories in which, at least intuitively, it seems that each
system may admit more nonclassical sets than the preceding ones.

Definition 4.3.Let �� � ���C�
� � be the formal language corresponding to logic C�

� and
let W� � W����� be the set of the all wff’s of ��The postulates of C�

# are those of the
postulates of C�

� but with restricted modus ponens rule : A,А � B �RMP� B if and only
if �A, B� � �� � �� [instead unrestricted modus ponens rule (3)], where �� � W�.

Definition 4.4.Let �n � �n�Cn
�� be the formal language corresponding to logic Cn

� and
let Wn � Wn��n� be the set of the all wff’s of ��The postulates of Cn

#, 1 � n � �, are
those

of Cn
�, 1 � n � �,but with restricted modus ponens rule : A,А � B �RMPn B if and only if

�A, B� � �n � �ninstead unrestricted modus ponens rule (4), where �n � Wn�Cn
��

Definition 4.5.The postulates of C�
# ,are �

n�1

�

Cn
# with restricted modus ponens rule :

A,А � B �RMP� B if and only if �A, B� � �
n�1

�

�n � �n.

We remind that da Costa paraconsistent set theories NFn
C are constructed very

similarly
to NF.The main postulates of NF�

C are the following [8]:

I.Extensionality



�����x�x � � 	 x � � � � � ��. �4. 1�

II.Abstraction

���x�x � � 	 F�x��, �4. 2�

where � does not occur free in F�x� and F�x� is stratified or it does not contain any
formula of the form A � B.

5. The paraconsistent set theory NF�
# based on logic C�

#

with infinite levels of a contradiction.
Definition 5.1.The main postulates of NF�

# are those of the postulates of NF�
C but

with logic of type C�
# instead logic C�

� .
Definition 5.2.The main postulates of NFn

#, 1 � n � �, are those of the postulates of
NFn

C but with logic of type Cn
#, 1 � n � �, instead logic Cn

�.
Definition 5.3.The main postulates of NF�

# ,are those of the postulates of NF�
C but

with logic of type C�
# .

Da Costa’s paraconsistent set theories of type NF�
C and NFn

C, 1 � n � �. has been
studying A.I. Arruda [8].A.I. Arruda has been proved that da Costa’s formulation of the
axiom schema of abstraction (1.2.2) for the systems NFn, 1 � n � �, leads to the
trivialization of the systems (see [8]).

Remark 5.1.Note that in NF�
C, the restrictions regarding the use of non-stratified

formulas obstruct a direct proof of the paradox of Curry. Russell’s set �, defined as

x��x � x�, exists as well as many other non-classical sets. The paradox of Russell in the
form � � � � ��� � �� is derivable but apparently, it causes no ham to the system.

Due to its weakness, the primitive negation of NF�
C,�, is almost useless for

set-theoretical purposes. Thus, let us define

~A for A � �x�y�x � y � x � y�. �5. 1�

The universal set V is defined as 
x�x � x�, the empty set � as 
x ~�x � x�,and the
complement of a set �, �, as 
x~�x � a�.

Theorem 5.1.[8]. In NF�
C, ~ is a minimal intuitionistic negation.

Corollary 1. � A � �~A � ~B�, � �A � B� � �~B � ~A�.
Corollary 2. All the theorems of NF whose proofs depend only on the laws of the
minimal intuitionistic first-order logic with equality and on the postulates of

extensionality
and abstraction of NF are valid in NF�

C.
Theorem 5.2.[8].(Cantor’s Theorem) NF�

C � ~�� � P����.
Corollary.[8].(Cantor’s Paradox) NF�

C � �V � P�V�� � ~�V � P�V��.
Remark 5.2.Note that Cantor’s paradox does not trivialize NF�

C, since from A and �A
we cannot obtain any formula B whatsoever. For instance, apparently, we cannot

obtain
any formula of the form �B, where B is a nonatomic formula.
Theorem 5.3.[8].(i) NF�

C � ������� � �� � ~�� � ���, (ii) NF�
C � ��� � �� � ~�� � ���,

(iii) NF�
C � ��� � �� � ~�� � ���.

Proof. By the corollaries of theorems 5.1 and 5.2, we obtain



x � x � �,

� 	 ������� � �� � �� � ���
�5. 24�

Thus, as x � x, then ������ � ��. By the same corollaries we also obtain
�����~�� � ���.The proof of part (ii) is similar to that of part (i). Part (iii) is an

immediate consequence of part (ii).
Remark 5.3. We introduce now the logic of type C�

# with �� � ��
� such that

�x � x,�� � ��
� .Thus in NF�

# with �� � ��
� Theorem 1.2.3 no longer holds.

Remark 5.4. Note that: (i) By Theorem 1.2.3, it could seem that NF�
C is trivial.

Nonetheless, apparently this is not the case.
(ii) However, though it is nontrivial, NF�

C is without interest, for not only are every two
sets identical, but also every set belongs and does not belong to itself.
Remark 5.5.In order to avoid the results mentioned in Theorem 5.3, one could
think of introducing more restrictions in da Costa’s formulation of the axiom schema of
abstraction when F�x� is non-stratified. Nonetheless, we be live that this is a worthless
effort. For:
(i)The only non-stratified formula used in the proof of Cantor’s Theorem
(which is fundamental in the proof of Theorem 5.3) is a non-stratified formula of the
form � � �. Then, the new restrictions must avoid those nonstratified atomic formulas
of the form � � � which determine a set.
(ii) A new proof of Theorem 5.3 may be obtained in the following way: in NF the
formula у � �x� cannot determine a relaticm because �x, y� � �x, y� � �y � �x�� is non-
stratified. But, such a formula does not contain any subformula of the form A � B;
then, in NF�

C it determines a relation S such that S � 1 
 1, see [7],pp.12. With such a
relation we prove that � � P���. In NF�

C we also prove that ~�� � P����. Then, these
new

restrictions must also avoid that those non-stratified formulas whose atomic sub
formulas

are of the form � � � determine а set.
(iii) From the above remarks (i) and (ii) we conclude that, in order to avoid the
counterintuive results mentioned in Theorem 5.3, the axiom schema of abstraction in
NF�

C should be formulated as in NF.
Remark 5.6.Due to the paradoxes obtained in NF�

C, we conclude that in these
system the axiom schema of abstraction should be formulated as in NF. Thus, if we

want
these theories to be paraconsistent set theories, we need to postulate directly the
existence of contradictory sets. .Apparently, we may postulate the existence of

Russell’s
set without any problem. Nonetheless, due to the two above considerations about the
non-stratified formulas that lead to the proof of the paradox of identity, we believe that,
besides Russell’s set, very few other non-classical sets may exist in NFn, 1 � n � �.
Definition 5.4.[8].Let us denote by DCn any da Costa set theory based on the
respective Cn

�, where Russell’s class is a set. Thus, in DCn, 1 � n � �, the defined
negation ��A 	 �A � A�n� is a classical negation; and in DC� the defined negation
~A 	 A � �x�y�x � y � x � y� is a minimal intuitionistic negation.
Theorem 5.4.[8].Let � be Russell’s set. In DCn, 1 � n � �,� �� is the universal set.



Definition 5.5.[8].Let DC�
V be a DC� with universal set V defined as 
x�x � x�.

Let us define x � V for �y�~�y � x��.We introduce now the postulate:
P1.�x��x � V� 
 �x � V��.
Theorem 1.2.5.[8]. In DC�

V � P1 is derivable � �� � V.

6. The paraconsistent set theory ZF�
# based on logic C�

#

with infinite levels of a contradiction.
In this section da Costa’s set theories of type ZF we denoted by ZFn, 1 � n � �.
A.I. Arruda has been proved that da Costa’s set theories of type ZF incompatible with

the existence of Russell’s set � [8].
Le us consider the set theories ZFn, 1 � n � �, in which the axioms of pairing and inion

are postulated in general, and in which we also postulate the existence of the espty set
amI of RusselltsS set. Moreover, let us suppose that there is no universal set, i.e.,

Sn. �x�y����y � x��, in ZFn, 1 � n � �;
S�. �x�y �~�y � x��, in ZF�.
Theorem 6.1.[8].The set theories ZFn, 1 � n � � plus Sn are trivial.
Proof. By Sn there exists у such that ���y � � ���. By part II of Lemma 4.3 [7], and
part I of Lemma 4.4 [8], we obtain �x�x � � ���. Consequently,

у � � �� � ���y � � ���, �6. 1�

and this formula trivializes the system.
Theorem 6.2.[8]. The paradox of identity is derivable in ZF� plus S�.
Proof. By S� there exists у such that ~�у � � ���. Using part II of Lemma 4.3 [8],

we obtain у � � ��. Consequently, by the definition of ~ it follows �x�y�x � y � x � y�
and therefore, the paradox of identity, �x�y�x � y�,follows.
Theorem 6.3.[8].. The systems ZFn , 1 � n � � with Russell’s set and the axiom
schema of separation postulate for all sets are trivial.
Proof.If the axiom schema of separation is postulated for all sets then there exists a
subset � of � such that (1) �x x � � 	 �x � �� � �x � x��n� .From (1) we obtain

(2) � � � 	 ��� � �� � �� � ���n�.Consequently, we have �� � �� � ���� � ��,and
this formula trivializes the system.

Definition 6.1.We introduce now paraconsistent logic of type C�
# ,� �

n�1

�

Cn
# with

restricted modus ponens rule : A,А � B �RMP� B if and only if �A, B� � �� � �
n�1

�

�n,

and we choose a set �� such that

�� � �� � ���� � �� �RMP� �, �6. 2�

i.e.,from �� � �� � ���� � �� we cannot obtain any formula whatsoever.
Definition 6.2.(i)The main postulates of ZFn

# are those of the postulates of ZFn
# but

with logic of type Cn
# instead logic Cn

�. (ii) The main postulates of ZF�
# are �

n�1

�

ZFn
# with

logic of type C�
# mentioned above in Definition 6.1.

7. Nonclassical bivalent propositional language with a
strong negation �s and a weak negation �w.



Remind that any syntactic system comprises a vocabulary and a grammar.The
vocabulary of a syntactic system is a nonempty set of elements called words. An
expression is any finite sequence of words. If A is the expression �e1, . . . , en � we shall
simply write it as e1. . . en. In addition, we define the operation of concatenation: the
concatenation AB of two expressions A and B is defined by �e1, . . . , em � �em�1, . . . , en � �
�e1, . . . , em, em�1, . . . , en �.With any syntactic system there is associated a wellordering of the
expressions, called the alphabetical order. The grammar of the system consists in the
division of the set of expressions into the class of nouns, the class of sentences, classes
of functors of various kinds (and possibly a remainder of expressions that have no
significant role at all). When a noun or sentence belongs to the vocabulary itself, it is
generally called atomic; expressions that are not words are called molecular. When the
system is defined, the grammatical division of the vocabulary may be given at once, and
used to define the molecular nouns and sentences. As an example, we take the
language of the propositional calculus.

Definition 7.1. A propositional classical syntactic system (PCLS) is a triple �A, L, S�,
where:
(a) A is a set, at most denumerable (the atomic sentences);
(b) L is a set of four distinct elements ��,�s, �, �� (logical signs), disjoint from A ;
(c) S (the set of sentences) is the smallest set including A � S and such that if A, B are
in S, so are (i) �sA and (ii) A � B.
Definition 7.2. A propositional nonclassical syntactic system (PNCLS) is a triple
�A#, L#, S# �,where:
(a) A# is a set, at most denumerable (the atomic sentences);
(b) L# is a set of four distinct elements ��,�s,�w, �, �� (logical signs), disjoint from A#;
(c) S# (the set of sentences) is the smallest set including A# � S# and such that if A, B
are in S, so are (i) �sA, (ii) �wA and (iii) A � B.
Remind that a valuation of a syntactic system is a function that assigns T (true) to

some of its sentences, and/or F (false) to some of its sentences. We do not rule out that
not all sentences are assigned T or F, nor that no sentence is assigned T (respectively,
F), nor that some sentences are assigned something else. Precisely, a valuation maps
a nonempty subset of the set of sentences into the set �T, F�.

Definition 7.3. We call a valuation bivalent iff it maps all the sentences into �T, F�.
In general, some of the symbols have an intended meaning, and this leads to a
distinction between admissible and inadmissible valuations. A language � comprises
exactly a syntactic system (its syntax) and nonempty class of valuations of that

syntactic
system (its admissible valuations). The expressions of the syntax of � are
also called expressions of �. As an example we consider again the propositional
calculus.
In that subject, one is generally concerned with a kind of language that we shall
call a bivalent propositional language.
Definition 7.4. �0 is a classical bivalent propositional language with a strong negation
�sA iff its syntax is a PCLS and its admissible valuations are the functions

v : S � �T, F�
such that for all sentences A, B of � :
(i) v�A� � �T, F�;



(ii) v��sA� � T iff v�A� � F;
(iii) v�A � B� � T iff v�A� � v�B� � T.
Example 7.1.Classical bivalent propositional language with a strong negation �s and
with just two atomic sentences,p and q.This language has just four admissible

valuations,
which are partially depicted by the following truth table:

� p q �sp �sq p � �sq p � �sp

v1 T T

v2 T F

v3 F T

v4 F F

�7. 1�

Definition 7.5. �0
# is a nonclassical bivalent propositional language with a strong

negation �sA and a weak negation �w, corresponding to praconsistent logic with zero
levels of a contradictions LP0

# (see sect.8) iff its syntax is a PNCLS and its admissible
valuations are the functions v# : S# � �T, F�,where S# � S1

#
�S2

#, S1
#�S2

# � � such that
for all sentences A, B of �0

# :
(i) v#�A� � �T, F�;
(i) v#�A � B� � T iff v#�A� � v#�B� � T.
(ii) for any A � S1

# : v#��sA� � T iff v#�A� � F;
(iii) for any A � S1

# : v#��wA� � T iff v#�A� � F;
(iv) for any A � S2

# : v#��wA� � T iff v#��sA� � F and
v#��wA� � F iff v#��sA� � T;
Remark 7.1.Note that for A � S1

# any admissible valuation has the same truth tables
for both strong negation �sA and a weak negation �wA.However for A � S1

# any
admissible valuation has the truth tables
Example 7.2.Nonclassical bivalent propositional language with a strong negation �s

and
with just two atomic sentences,p and q.This language has just four admissible

valuations,
which are partially depicted by the following truth table:

� p � S1
# q � S2

# �sp �wp �sq �wq

v1 T T F F T F

v2 T T

v3 F F

v4 F F

�7. 2�

Definition 7.6. �1
# is a nonclassical bivalent propositional language with a strong

negation �sA and a weak negation �w, corresponding to praconsistent logic with one
level of a contradictions iff its syntax is a PNCLS and its admissible valuations are the
functions v# : S# � �T, F�,where S# � S1

#
�S2

##�S3
#, S1

#�S2
# � � such that for all

sentences
A, B of �1

# :
(i) v#�A� � �T, F�;



(ii) for any A � S# : v#��sA� � T iff v#�A� � F;
(iii) v#�A � B� � T iff v#�A� � v#�B� � T.
(iv) for any A � S1

# : v#��wA� � T iff v#�A� � F;
(v) for any A � S2

# : v#��wA� � T iff �wA � S2
# and v#�A� � T;

(vi) for any A � S2
# : v#��wA � A� � T iff �wA � S2

# and v#�A� � T;
(vii) for any A � S2

# : v#����wA � A� � �w��wA � A��� � F and v#�A� � �T, F�;
Note that the property (vii) means that �w��wA � A� � S2

#.
Definition 7.7.Abbreviation ��k�1� stands for ���k����1� � ��k� � �w��k�, 1 � k � n,
where ��0� � �,��1� � �� � �w��.
Definition 7.8. �n

# is a nonclassical bivalent propositional language with a strong
negation �sA and a weak negation �w, corresponding to praconsistent logic with n
levels of a contradictions iff its syntax is a PNCLS and its admissible valuations are

the
functions v# : S# � �T, F�,where S# � S1

#
�S2

#, S1
#�S2

# � � such that for all sentences
A, B of �n

# :
(i) v#�A� � �T, F�;
(ii) for any A � S# : v#��sA� � T iff v#�A� � F;
(iii) v#�A � B� � T iff v#�A� � v#�B� � T.
(iv) for any A � S1

# : v#��wA� � T iff v#�A� � F;
(v) for any A � S2

# : v#��wA� � T iff �wA � S2
# and v#�A� � T;

(vi) for any A � S2
# : v#��wA � A� � T iff �wA � S2

# and v#�A� � T;
(vii) A � S2

# : v#�A�k�� � T iff �w�A�k�� � S2
# for any k � n and v#�A� � T;

(vii) for any A � S2
# : v#�A�n�1�� � F and v#�A� � �T, F�;

Note that the property (vii) means that �w�A�n�� � S2
#.

Remark 7.1.

The most important concept as in classical case is that of satisfaction.
Definition 7.9. A set X of sentences of �n

# is satisfied by an admissible valuation v# of
�n

# iff v#�A� � T for every A � X.We shall also say “v# satisfies A” when v# satisfies
�A�,and “X (respectively, A) is satisfiable (in �n

#)” when some admissible valuation of
�n

#

satisfies X (respectively, A).
Definition 7.9. A is a valid sentence (in symbols, � A) in �n

# iff every admissible
valuation of �n

# satisfies A.
Definition 7.10. X is an unassailable set of sentences of �n

# iff X is (a set of
sentences of �n

#) such that every admissible valuation of �# satisfies some member
of X.Thus A is valid iff �A� is unassailable; unassailability is a generalization of validity.
Note that “X is unassailable” is not the same as “no admissible valuation assigns
F to every member of X” unless all the admissible valuations are bivalent. (This is why
we could not use “not falsifiable” instead of the contrived term “unassailable.”)
Definition 7.11. X semantically entails A �X �n A� in �n

# iff every admissible valuation
of �# that satisfies X also satisfies A.
We write “A �n B” for “�A� �n B”; is called the (double) turnstile. It is fairly easy to see
that A in �n

# if and only if � �n A in �n
#, because all admissible valuations of �n

# satisfy
all sentences in the empty set, vacuously.
Syntactic transformations may preserve certain semantic properties. We call a



mapping
f of sets of sentences to sentences truth-preserving in language �n

# when if v satisfies
X,

then v satisfies f�X� holds for all arguments X of f and all admissible valuations v of �n
#.

Similarly, we say that f preserves validity in �n
# when the following property:

if A for all sentences A in X, then f�X�, and if B, then f�B�
holds for all arguments X, B of f and all admissible valuations v of �n

#. The first part of
the following theorem says that a truth-preserving transformation also preserves

validity.
Theorem 7.1. (a) If X �n f�X� for every argument X of f, then f preserves validity.
(i) If A � X, then X �n A.
(ii) If X � Y, and X �n A, then Y �n A.
(iii) If X �n A for every A � Y, and Y �n B, then X �n B.
Let �n

# be a language and V�n
# the set of its admissible valuations. We shall think of

the members of V�n
# as the points in an abstract space, the “valuation space” of

�n
#.Regions in that space are just sets of these points, that is, subsets of V�n

#. An
important kind of region is that usually designated as “elementary class.”

Definition 7.12. If A is a sentence of �n
# and V�n

# the set of admissible valuations of
�#,

Hn
#�A� � �v � V�n

# : v#�A� � T�;and a set of X � V�n
# is an elementary class iff there is

a sentence A such that X � Hn
#�A�. Hn

#�A� may be called the truth set of A; if we were to
discuss several languages at once, we would obviously use expressions such as

“Hn
#�A�
in �n

#.”
Definition 7.13. The valuation space of �n

# is H# �
V�#,�H�A� : A a sentence of �#� .

Definition 7.14. We call the members of V�n
# the points in H#, and write x � H# when

x
is such a point, or X# � H# when X# is a class of such points (region). So the valuation
space consists of a set of points, plus a family of regions that are singled out for

special
consideration. These regions, which we call the elementary classes, are also called
“arithmetical classes” or “axiomatic model classes.” Sometimes infinite intersections
Hn

#�X#� � 
A�X
Hn

#�A� � the set of all admissible valuations that satisfy Xare also

called
elementary classes. We shall accept this shorthand notation, but we shall not extend

the
term “elementary class” in this way.Note that Hn

#��� � Hn
# by the above definition, and

restricting the range of our variables to Hn
#.

The basic semantic concepts are easily expressed in terms of the valuation space:
(i) A is a valid sentence iff Hn

#�A� � Hn
#.

(ii) X is unassailable iff �A�X
Hn

#�A� � Hn
#.

(iii) X is satisfiable iff 
A�X
Hn

#�A� � �.

(iv) B semantically entails A iff Hn
#�B� � Hn

#�A�.
(v) X semantically entails A iff Hn

#�X� � Hn
#�A�.



Let us take as an examples of the classical and nonclassical bivalent propositional
languages with a strong negation �s and with a weak negation �w and with just two
atomic sentences,p and q.

Example 7.1.Classical bivalent propositional language with a strong negation �s and
with just two atomic sentences,p and q.
This language has just four admissible valuations, which are partially depicted by the
following truth table:

� p q �sp �sq p � �sq p � �sp

v1 T T

v2 T F

v3 F T

v4 F F

�7. 1�

Here H�p� � �v1, v2�; H��sp� � �v3, v4�; H�q� � �v1, v3�; H��sq� � �v2, v4�
H�p � q� � �v1�; H�p � �sp� � �.
We also say that H � �v1, v2, v3, v4� - although this is clearly an inaccurate way of

speaking-hence H and �function as the universal and null set here. Note that just
as � is the elementary class defined by a contradiction, so H is the elementary class

defined by a tautology.

8.First order paraconsistent propositional logic with zero
levels of a contradictions LP0

#.
The postulates of propositional paraconsistent logic LP0

# � LP0
#��1,�2 � are the

following. Let �0
# � �0

#�LP0
#� be the formal language corresponding to logic LP0

# and let
�0

# be the set of the all wff’s of �0
#,where

�1,�2 � �0
#. �8. 1�

The language �0
# of paraconsistent logic LP0

# � LP0
#��1,�2 � has as primitive symbols:

(i) countable set of propositional variables (formulas that are not analyzed at the
propositional level);(ii) the connectives

�w,�s,�,
,� �8. 2�

and (iii) the parentheses (,).
Formulas are defined as follows: (i) any propositional variable is a formula;
(ii) if α and β are formulas, then

α � β,α � β,α 
 β,�sα,�wα �8. 3�

are formulas;
(iii) the only formulas are those obtained from the preceding conditions (i) and (ii).
Definition 8.1. α � β � �α � β� � �β � α�.
Remark 8.1.Note that in logic LP0

# we distinguish a weak negation �w and a strong
negation �s :
(i) a strong negation �s is a classical negation, i.e. �sA meant A � B if �sA holds;
(ii) a weak negation �w is a nonclassical negation, i.e. �wA meant A � B if and only if
B � �1 despite the fact that �wA � A holds and therefore �wA � A 	RMP B.



Remark 8.2.Note that in contrast with a classical negation �sA which always meant
the

absolute impossibility of the statement A the nonclassical negation �wA does not
always

meant the absolute impossibility of the statement A.Thus there exists a set �
such that for any A � � the statement A � �wA does not trivialize the system LP0

# but
however the statement A � �wA is excluded by the law of excluded 4-th, see (8.4).
I. Logical postulates:
�1� A � �B � A�,
�2� �A � B� � ��A � �B � C�� � �A � C��,
�3� A � �B � A � B�,
�4� A � B � A,
�5� A � B � B,
�6� A � �A 
 B�,
�7� B � �A 
 B�,
�8� �A � C� � ��B � C� � �A 
 B � C��,

�9� �s�sA � A,
�10� �sA 	 �wA,
�11� �s�wA 	 A,
�12� �w�wA 	 A,
�13� A � ��sA � B�,
�14� A � ��wA � B� if B � �1,
where A, B, C � �0

#.
�15� The law of excluded 5-th

�A
�sA 
�wA
��sA ��wA�� � �s�A � �wA�. �8. 4�

Remark 8.3.Note that (7.4) obviously means that A � �wA is not holds in LP0
# since

by the Restricted Modus Ponens rule: A � �wA,�s�A � �wA��RMP	.
II.Rules of a conclusion:
Restricted Modus Ponens rule RMP:
(i) A, A � B �RMP B if A � B � �2.
(ii) A,�sA �RMPB ��0

#.
Modus Tollens rule for a strong negation:
P � Q,�sQ � �sP.

9.First order paraconsistent quantificational logic with zero
levels of a contradiction LP0

#.
Corresponding to the propositional paraconsistent relevant logic LP0

#��
 1,�
 2 � we
construct the corresponding paraconsistent relevant first-order predicate calculus
LP0

# � LP0
#��
 1,�
 2 �.Let �0

# � �0
# LP0

# be the formal language corresponding to logic

LP0
# and let �0

#
be the set of the all wff’s of �0

#
,where

�1,�2 � �0
#
. �9. 1�

Remark 9.1.Note that in contrast with a set �1 and a set �2 the set �1 and the set �2

are recursively undecidable.



The language of the paraconsistent predicate calculus LP0
#, denoted above by �0

#
, is

an
extension of the language �0

# introduced above, by adding:
(i) for every m � �, denumerable families of m-ary consistent (or strong) predicate
symbols �con � �
 � R
 1

m, R
 2
m, . . . , R
 n

m, . . . and m-ary consistent function symbols
f
1

m, f
2
m, . . . , f
n

m, . . . ,which depend only on classical consistent object (or consistent set)
variables;
(ii) for every m � �, denumerable families of m-ary inconsistent predicate symbols

R� 1
m, R� 2

m, . . . , R� n
m, . . . ,and m-ary inconsistent function symbols f�1

m, f�2
m, . . . , f�n

m, . . . ,
which depend only on non classical inconsistent object (or inconsistent set) variables;
(iii) for every m, l � �, denumerable families of m1 � m2-ary mixed predicate symbols
R
 1

m1�m2 , R
 2
m1�m2 , . . . , R
 n

m1�m2 , . . . ,and m1 � m2-ary mixed function symbols

f
1
m1�m2 , f
2

m1�m2 , . . . , f
n
m1�m2 , . . . ,which depend on classical consistent object variables and

on non classical inconsistent object (or inconsistent set) variables;
(iv) the universal � and existential � quantifiers.

We assume throughout that: the language �0
#

contains also
(i) the classical numerals 0, 1,� ;
(ii) countable set �
 of the classical consistent object (or consistent set) variables
�Con � �
 � �x
, y
, z
, . . . � � �xcon, ycon, zcon. . . �;

(iii) countable set �� of the non classical inconsistent object (or inconsistent set)
variables �Inc � �� � �x�, y�, z�, . . . � � �x inc, y inc, zinc. . . �;
(iv) countable set �
 of the classical non-logical constants �
 � �ā, b
 , c
. . . �;
(v) countable set �� of the non classical non-logical constants �� � ă, b� , c�. . . ;

(vi)The notions of formula, free and bound variables in a formula, sentence (formula
without free variables) etc. are standard. The notations and metalogical conventions
extend those made for the propositional calculi.
The postulates of LP0

# are those of LP0
# (suitably adapted), i.e.

�1� A � �B � A�,
�2� �A � B� � ��A � �B � C�� � �A � C��,
�3� A � �B � A � B�,
�4� A � B � A,
�5� A � B � B,
�6� A � �A 
 B�,
�7� B � �A 
 B�,
�8� �A � C� � ��B � C� � �A 
 B � C��,

�9� �s�sA � A,
�10� �sA 	 �wA,
�11� �s�wA 	 A,
�12� �w�wA 	 A,
�13� A � ��sA � B�,
�14� A � ��wA � B� if B ��1,

where A, B, C � �0
#
.

�15� The law of excluded 5-th:

�A
�sA 
�wA
��sA ��wA�� � �s�A � �wA�. �9. 2�



Remark 9.2.Note that (8.2) obviously means that A � �wA is not holds in LP0
#since

by the Restricted Modus Ponens rule: A � �wA,�s�A � �wA��RMP	.
Plus the following:

(1a)
� � ��x
�

� � �x
��x
�
, (1b)

� � ��x��
� � �x���x��

, (1c)
� � ��x
, y��

� � �x
�y���x
, y��
,

(2a) �x
��x
� � ��y
�, (2b) �x���x�� � ��y��, (2c) �x
�y���x
, y�� � ��x
, y��,

(3a) ��x
� � �x
��x
�, (3b) ��x�� � �x���x��, (3c) ��x
, y�� � �x
�y���x
, y��,

(4a)
��x
� � �

�x
��x
� � �
, (4b)

��x�� � �
�x���x�� � �

, (4c)
��x
, y�� � �

�x
�y���x
, y�� � �
,

(5a) �x
����x
��� � ��x
��x
��, (5b) �x�����x����0� � � ��x���x����0�,

(5c) �x
�y�����x
, y����0� � � ��x
�y���x
, y����0�,
where we have used the following definition.
Definition 9.2.��0� � � � �s�� � �w��.
Where the variables x
, x�, y
, y� and the formulas � and � satisfy the usual definition.
From the calculi LP0

#,one can construct the following predicate calculus with equality.
This is done by adding to their languages the binary predicates symbol of a strong
(consistent) equality �� �s �� and a weak equality�� �w �� with suitable modifications in
the concept of formula, and by adding the following postulates:

(1) �x
�x
 �s x
�,
(2) �x
�y
�x
 �s y
 � ���x
� � ��y
���,
(3) �x
�y
�z
��x
 �s y
 � � �y
 �s z
� � x
 �s z
�,
(4) �x���x� �w x���0� �,
(5) �x��y� �x� �w y� ��0� � ����x����0� � ���y����0�� ,

(6) �x��y��z���x� �w y� � � �y� �w z�� � x� �w z��,
(7) �y
�x��y
 �w x��0�,
(8) �y��x��y �w x��0�,
(9) �x��y����x� �w y�� 
 �s�x� �w y�� 
 �w�x� �w y��� � �x� �w y���0� �,
(10) �x��y��z��x� �w y� � � �y� �w z�� � x� �w z��
(11) �x��y��z �x� �w y� ��0� � �y� �w z���0� � �x� �w z���0� .

II.Rules of a conclusion:
Restricted Modus Ponens rule RMP :
(i) A, A � B �RMP B if A � B ��2.
(ii) A,�sA �RMPB ��0

#.
Modus Tollens rule for a strong negation:
P � Q,�sQ � �sP.

10.First order paraconsistent propositional logic with one
level of a contradiction LP1

#.
The postulates of propositional paraconsistent logic LP1

# � LP1
#��1,�2 � are the

following. Let �1
# � �1

#�LP1
#� be the formal language corresponding to logic LP1

# and let
�1

# be the set of the all wff’s of �1
#,where

�1,�2 � �1
#. �10. 1�

The language �1
# of paraconsistent logic LP1

# � LP1
#��1,�2 � has as primitive symbols:



(i) countable set of propositional variables (formulas that are not analyzed at the
propositional level);(ii) the connectives

�w,�s,�,
,� �10. 2�

and (iii) the parentheses (,).
Formulas are defined as follows: (i) any propositional variable is a formula;
(ii) if α and β are formulas, then

α � β,α � β,α 
 β,�sα,�wα �10. 3�

are formulas;
(iii) the only formulas are those obtained from the preceding conditions (i) and (ii).
Definition 10.1. α � β � �α � β� � �β � α�.
Remark 10.1.Note that in logic LP1

# we distinguish a weak negation �w and a strong
negation �s :
(i) a strong negation �s is a classical negation, i.e. A � �sA � B
(ii) a weak negation �w is a nonclassical negation, i.e. �wA meant A 	RMP B if B � �1.
Remark 10.2.Note that in contrast with a classical negation �sA which always meant

the
absolute impossibility of the statement A the nonclassical negation �wA does not

always
meant the absolute impossibility of the statement A.Thus there exists a set �
such that for any A � � the statement A � �wA does not trivialize the system LP1

#.
I. Logical postulates:
�1� A � �B � A�,
�2� �A � B� � ��A � �B � C�� � �A � C��,
�3� A � �B � A � B�,
�4� A � B � A,
�5� A � B � B,
�6� A � �A 
 B�,
�7� B � �A 
 B�,
�8� �A � C� � ��B � C� � �A 
 B � C��,

�9��s�sA � A,
�10� �s�wA � A,
�11� �w�wA 	 A,
�12� A � ��sA � B�,
�13� A � ��wA � B� if B � �1

�14� A � �wA if A � �2,
�15� The law of excluded 8-th

A
�sA 
�wA
��sA ��wA� 
�A ��wA�
�w�A ��wA� 


�w��A ��wA���w�A ��wA�� �

���s��A ��wA���w�A ��wA���,

�10. 4�

where A, B, C � �1
#.

II.Rules of a conclusion:
Restricted Modus Ponens rule RMP:
(i)A, A � B �RMP B if A � B � �2.



(ii) A,�sA �RMPB ��0
#.

Modus Tollens rules: P � Q,�sQ � �sP.

11.First order paraconsistent quantificational logic with one
level of a contradiction LP1

#.
Corresponding to the propositional paraconsistent relevant logic LP1

#��
 1,�
 2 � we
construct the corresponding paraconsistent relevant first-order predicate calculus
LP1

# � LP1
#��
 1,�
 2 �.Let �1

# � �1
# LP1

# be the formal language corresponding to logic

LP1
# and let �1

#
be the set of the all wff’s of �1

#
,where

�1,�2 � �1
#
. �11. 1�

Remark 10.1.Note that in contrast with a set �1 and a set �2 the set �1 and the set �2

are recursively undecidable.

The language of the paraconsistent predicate calculus LP1
#, denoted above by �1

#
, is

an
extension of the language �1

# introduced above, by adding:
(i) for every m � �, denumerable families of m-ary consistent (or strong) predicate
symbols �con � �
 � R
 1

m, R
 2
m, . . . , R
 n

m, . . . and m-ary consistent function symbols
f
1

m, f
2
m, . . . , f
n

m, . . . ,which depend only on classical consistent object (or consistent set)
variables;
(ii) for every m � �, denumerable families of m-ary inconsistent predicate symbols

R� 1
m, R� 2

m, . . . , R� n
m, . . . ,and m-ary inconsistent function symbols f�1

m, f�2
m, . . . , f�n

m, . . . ,
which depend only on non classical inconsistent object (or inconsistent set) variables;
(iii) for every m, l � �, denumerable families of m1 � m2-ary mixed predicate symbols
R
 1

m1�m2 , R
 2
m1�m2 , . . . , R
 n

m1�m2 , . . . ,and m1 � m2-ary mixed function symbols

f
1
m1�m2 , f
2

m1�m2 , . . . , f
n
m1�m2 , . . . ,which depend on classical consistent object variables and

on non classical inconsistent object (or inconsistent set) variables;
(iv) the universal � and existential � quantifiers.

We assume throughout that: the language �1
#

contains also
(i) the classical numerals 0, 1,� ;
(ii) countable set �
 of the classical consistent object (or consistent set) variables
�Con � �
 � �x
, y
, z
, . . . � � �xcon, ycon, zcon. . . �;

(iii) countable set �� of the non classical inconsistent object (or inconsistent set)
variables �Inc � �� � �x�, y�, z�, . . . � � �x inc, y inc, zinc. . . �;
(iv) countable set �
 of the classical non-logical constants �
 � �ā, b
 , c
. . . �;
(v) countable set �� of the non classical non-logical constants �� � ă, b� , c�. . . ;

(vi)The notions of formula, free and bound variables in a formula, sentence (formula
without free variables) etc. are standard. The notations and metalogical conventions
extend those made for the propositional calculi.
The postulates of LP1

# are those of LP1
# (suitably adapted), i.e.

�1� A � �B � A�,
�2� �A � B� � ��A � �B � C�� � �A � C��,
�3� A � �B � A � B�,
�4� A � B � A,



�5� A � B � B,
�6� A � �A 
 B�,
�7� B � �A 
 B�,
�8� �A � C� � ��B � C� � �A 
 B � C��,

�9��s�sA � A,

�10� �s�wA � A,
�11� �w�wA 	 A,
�12� A � ��sA � B�,
�13� A � ��wA � B� if B ��1

�14� A � �wA if A ��2,
�15� The law of excluded 8-th:

A
�sA 
�wA
��sA ��wA� 
�A ��wA�
�w�A ��wA� 


�w��A ��wA���w�A ��wA�� �

���s��A ��wA���w�A ��wA���,

�11. 2�

where A, B, C � �1
#
.

Plus the following:

(1a)
� � ��x
�

� � �x
��x
�
, (1b)

� � ��x��
� � �x���x��

, (1c)
� � ��x
, y��

� � �x
�y���x
, y��
,

(2a) �x
��x
� � ��y
�, (2b) �x���x�� � ��y��, (2c) �x
�y���x
, y�� � ��x
, y��,

(3a) ��x
� � �x
��x
�, (3b) ��x�� � �x���x��, (3c) ��x
, y�� � �x
�y���x
, y��,

(4a)
��x
� � �

�x
��x
� � �
, (4b)

��x�� � �
�x���x�� � �

, (4c)
��x
, y�� � �

�x
�y���x
, y�� � �
,

(5a) �x
����x
���1� � � ��x
��x
���1�, (5b) �x�����x����1� � � ��x���x����1�,
(5c) �x
�y�����x
, y����1� � � ��x
�y���x
, y����1�,
(6a) ��x
����x
����1� � ��x
��x
�� � ��x
�w��x
��,
(6b) ��x�����x�����1� � ��x���x��� � ��x��w��x���,
(6c) ��x
�y�����x
, y�����1� � ��x
�y���x
, y��� � ��x
�y��w��x
, y���,
where we have used the following definition.
Definition 11.2.��0� � � � �s�� � �w��, ��1� � � � �w� and ��1� � ��0� 
 ��1�.
Where the variables x
, x�, y
, y� and the formulas � and � satisfy the usual definition.
From the calculi LP1

#,one can construct the following predicate calculus with equality.
This is done by adding to their languages the binary predicates symbol of a strong
(consistent) equality �� �s �� and a weak equality�� �w �� with suitable modifications in
the concept of formula, and by adding the following postulates:

(1) �x
�x
 �s x
�,
(2) �x
�y
�x
 �s y
 � ���x
� � ��y
���,
(3) �x
�y
�z
��x
 �s y
 � � �y
 �s z
� � x
 �s z
�,
(4) �x���x� �w x���1� �,
(5) �x��y� �x� �w y� ��1� � ����x����1� � ���y����1�� ,

(6) �x��y��z���x� �w y� � � �y� �w z�� � x� �w z��,
(7) �y
�x��y
 �w x�,



(8) �y��x��y �w x��1�,
(9) �x��y���x� �w y�� 
 �s�x� �w y�� 
 �w�x� �w y�� 
 �x� �w y���1� �,
(10) �x��y��z��x� �w y� � � �y� �w z�� � x� �w z��
(11) �x��y��z �x� �w y� ��1� � �y� �w z���1� � �x� �w z���1� .

II.Rules of a conclusion:
Restricted Modus Ponens rule RMP :
(i) A, A � B �RMP B if A � B ��2.
(ii) A,�sA �RMPB ��0

#.
Remark 11.2.For example if we set ��1 �w y� � �y �w 0� � 0 �w 1� � �2

�1 �w y� � �y �w 0�, �1 �w y� � �y �w 0� � 0 �w 1	RMP 0 �w 1.
Modus Tollens rules: P � Q,�sQ � �sP.
Remark 11.3.Note that in contrast with classical rules of a conclusion the restricted
modus Ponens rule RMP is not recursive rule of a conclusion, since the set �1 and

the
set �2 are recursively undecidable.

12. First order paraconsistent propositional logic with n
levels of a contradiction LPn

#.
The postulates of propositional paraconsistent logic LPn

# � LPn
# �1

�n�,�2
�n� are the

following.Let �n
# � �n

#�LP1
#� be the formal language corresponding to logic LPn

# and
let �n

# be the set of the all wff’s of �n
#,where

�1
�n�,�2

�n� � �n
#. �12. 1�

The language �n
# of paraconsistent propositional logic LPn

# has as primitive symbols
(i) countable set of a propositional variables, (ii) the connectives �w,�s,�,
,� and
(iii) the parentheses (,).
A, B, C, ... will be used as metalanguage variables which indicate formulas of
LPn

# �1
�n�,�2

�n� .

Definition 12.1. ��0� � � � �s� � �w�,��1� � �� � �w��.
��k�1� stands for ���k����1� � ��k� � �w��k�, 1 � k � n,
Definition 12.2. ��n� stands for ��n� � ��0� 
 ��1� 
. . .
��n�, 1 � n.
I. Logical postulates:
�1� A � �B � A�,
�2� �A � B� � ��A � �B � C�� � �A � C��,
�3� A � �B � A � B�,
�4� A � B � A,
�5� A � B � B,
�6� A � �A 
 B�,
�7� B � �A 
 B�,
�8� �A � C� � ��B � C� � �A 
 B � C��,

�9��s�sA � A,
�10� �s�wA � A,
�11� �w�wA 	 A,
�12� A � ��sA � B�,



�13� A � ��wA � B� if B � �1
�n�,

�14� A � �wA if A � �2
�n�,

�15� The law of excluded �n � 8�-th:

��A 
 �sA 
 �wA�
��sA � �wA�
�A � �wA�
�w�A � �wA� 


A�2� 
. . .
A�k� 
. . .
A�n�� � �sA�n�1�,
�12. 2�

where A, B, C � �n
#.

II.Rules of a conclusion:
Restricted Modus Ponens rule RMP:
(i)A, A � B �RMP B if A � B � �2

�n�.
(ii) A,�sA �RMPB ��0

#.
Modus Tollens rules: P � Q,�sQ � �sP.

13. First order paraconsistent quantificational logic with n
levels of a contradiction LPn

#.
Corresponding to the propositional paraconsistent relevant logic LPn

# �
 1
�n�,�
 2

�n� we

construct the corresponding paraconsistent relevant first-order predicate calculus
LPn

# � LPn
# �
 1

�n�,�
 2
�n� .Let �n

# � �n
# LPn

# be the formal language corresponding to

logic LPn
# and let �n

#
be the set of the all wff’s of �n

#
,where

�1
�n�,�2

�n� � �n
#
. �13. 1�

Remark 13.1.Note that in contrast with a set �1
�n� and a set �2

�n� the set �1
�n� and the

set �2
�n�are recursively undecidable.

The language of the paraconsistent predicate calculus LPn
#, denoted by �n

#
, is an

extension of the language �n
# introduced above, by adding:

(i) for every m � �, denumerable families of m-ary consistent (or strong) predicate
symbols �con � �
 � R
 1

m, R
 2
m, . . . , R
 n

m, . . . and m-ary consistent function symbols
f
1

m, f
2
m, . . . , f
n

m, . . . ,which depend only on classical consistent object (or consistent set)
variables;
(ii) for every m � �, denumerable families of m-ary inconsistent predicate symbols

R� 1
m, R� 2

m, . . . , R� n
m, . . . ,and m-ary inconsistent function symbols f�1

m, f�2
m, . . . , f�n

m, . . . ,
which depend only on non classical inconsistent object (or inconsistent set) variables;
(iii) for every m, l � �, denumerable families of m1 � m2-ary mixed predicate symbols
R
 1

m1�m2 , R
 2
m1�m2 , . . . , R
 n

m1�m2 , . . . ,and m1 � m2-ary mixed function symbols

f
1
m1�m2 , f
2

m1�m2 , . . . , f
n
m1�m2 , . . . ,which depend on classical consistent object variables and

on non classical inconsistent object (or inconsistent set) variables;
(iv) the universal � and existential � quantifiers.

We assume throughout that: the language �1
#

contains also
(i) the classical numerals 0, 1,� ;
(ii) countable set �
 of the classical consistent object (or consistent set) variables
�Con � �
 � �x
, y
, z
, . . . � � �xcon, ycon, zcon. . . �;

(iii) countable set �� of the non classical inconsistent object (or inconsistent set)
variables �Inc � �� � �x�, y�, z�, . . . � � �x inc, y inc, zinc. . . �;



(iv) countable set �
 of the classical non-logical constants �
 � �ā, b
 , c
. . . �;
(v) countable set �� of the non classical non-logical constants �� � ă, b� , c�. . . ;

(vi)The notions of formula, free and bound variables in a formula, sentence (formula
without free variables) etc. are standard. The notations and metalogical conventions
extend those made for the propositional calculi.
The postulates of LPn

# are those of LPn
# (suitably adapted), i.e.

I. Logical postulates:
�1� A � �B � A�,
�2� �A � B� � ��A � �B � C�� � �A � C��,
�3� A � �B � A � B�,
�4� A � B � A,
�5� A � B � B,
�6� A � �A 
 B�,
�7� B � �A 
 B�,
�8� �A � C� � ��B � C� � �A 
 B � C��,

�9��s�sA � A,
�10� �s�wA � A,
�11� �w�wA 	 A,
�12� A � ��sA � B�,
�13� A � ��wA � B� if B � �� 1

�n�,

�14� A � �wA if A � �� 2
�n�,

�15� The law of excluded �n � 8�-th:

��A 
 �sA 
 �wA�
��sA � �wA�
�A � �wA�
�w�A � �wA� 


A�2� 
. . .
A�k� 
. . .
A�n�� � �sA�n�1�,
�13. 2�

where A, B, C � �n
#
,plus the following:

(1a)
� � ��x
�

� � �x
��x
�
, (1b)

� � ��x��
� � �x���x��

, (1c)
� � ��x
, y��

� � �x
�y���x
, y��
,

(2a) �x
��x
� � ��y
�, (2b) �x���x�� � ��y��, (2c) �x
�y���x
, y�� � ��x
, y��,

(3a) ��x
� � �x
��x
�, (3b) ��x�� � �x���x��, (3c) ��x
, y�� � �x
�y���x
, y��,

(4a)
��x
� � �

�x
��x
� � �
, (4b)

��x�� � �
�x���x�� � �

, (4c)
��x
, y�� � �

�x
�y���x
, y�� � �
,

(5a) �x
����x
���n� � � ��x
��x
���n�, (5b) �x�����x����n� � � ��x���x����n�

(5c) �x
�y�����x
, y����n� � � ��x
�y���x
, y����n�,
(6a) ��x
����x
����n� � ��x
��x
�� � ��x
�w��x
��,
(6b) ��x�����x�����n� � ��x���x��� � ��x��w��x���,
(6c) ��x
�y�����x
, y�����n� � ��x
�y���x
, y��� � ��x
�y��w��x
, y���,
II.Rules of a conclusion:
Restricted Modus Ponens rule RMP:
(i) A, A � B �RMP B if A � B � �2

�n�.
(ii) A,�sA �RMPB ��0

#.
Modus Tollens rules: P � Q,�sQ � �sP.



III.Inconsistent equality
From the calculus LPn

#,we can construct the following predicate calculus with
inconsistent equality.This is done by adding to their languages the binary predicates
symbol of strong equality �� �s �� and weak equality�� �w �� with suitable
modifications in the concept of formula, and by adding the following postulates:
(1) �x
�x
 �s x
�,
(2) �x
 �x
 �s x
��1� � B ,

(3) �x
�y
�x
 �s y
 � ���x
� � ��y
���,
(4) �x
�y
�z
��x
 �s y
 � � �y
 �s z
� � x
 �s z
�,
(5) �k�k � n��x��x� �w x���k�,

(6) �y��k�k � n��x��y� �w x���k�,
(7) �x��y��k�k � n� �x� �w y� ��k� � ��������k��x�� � ��k��y��� ,

(8) �x��y��k�k � n� �x� �w y� ��k� � ��������k��x�� � ��k��y��� ,

(9) �x��y��z��k�k � n� �x� �w y� ��k� � �y� �w z��k� � �x� �w z��k� ,

(10) �x��y��z��k�k � n� �x� �w y� ��k� � �y� �w z��k� � �x� �w z��k� .

14. First order paraconsistent propositional logic with
countable levels of a contradictions LP�

# .
The postulates (or their axioms schemata) of propositional paraconsistent logic
LP�

# � LP�
# ��1

�,�2
� � are the following. Let ��

# � ��
# �LP�

# � be the formal language
corresponding to logic LP�

# and let ��
# be the set of the all wff’s of ��

# ,where

�1
�,�2

� � ��
# . �14. 1�

The language ��
# of paraconsistent logic LP�

# has as primitive symbols (i) countable
set

of a clalassical propositional variables, (ii) the connectives �w,�s,�,
,� and (iv) the
parentheses (,), (iii) the letters A, B, C, ... will be used as metalanguage variables

which
indicate formulas of LP�

# ��1
�,�2

� �.
Remark 14.1.We distinguish a weak negation �w and a strong negation �s.
The definition of formula is the usual. We denote the set of the all formulae of
LP�

# ��1
�,�2

� � by ��
# where �1

� and �2
� is a given by �1

� � �n�� �1
�n�,�2

� � �n�� �2
�n�.

I. Logical postulates:
�1� A � �B � A�,
�2� �A � B� � ��A � �B � C�� � �A � C��,
�3� A � �B � A � B�,
�4� A � B � A,
�5� A � B � B,
�6� A � �A 
 B�,
�7� B � �A 
 B�,
�8� �A � C� � ��B � C� � �A 
 B � C��,

�9��s�sA � A,
�10� �s�wA � A,
�11� �w�wA 	 A,



�12� A � ��sA � B�,
�13� A � ��wA � B� if B � �1

�,
�14� A � �wA if A � �2

�,
�15�The law of non exclusion the conrradictions

�A 
 �sA 
 �wA�
�A � �wA�
��sA � �wA� 
 A�2� 
. . .
A�k� 
. . .
A�n� 
. . . �14. 2�

or

�A 
 �sA 
 �wA�
��sA � �wA� 
 �
1�n��

A�n�. �14. 3�

II.Rules of a conclusion:
Restricted Modus Ponens rule RMP:
(i)A, A � B �RMP B iff A � V� .
(ii) A,�sA �RMPB ��0

#.
Modus Tollens rule: P � Q,�sQ � �sP.

15. First order paraconsistent quantificational logic with
countable levels of a contradiction LP�

# .
Corresponding to the propositional paraconsistent relevant logic LP�

# ��1
�,�2

� � we
construct the corresponding paraconsistent relevant first-order predicate calculus.

These new calculus will be denoted by LP�
# ��
 1

�,�
 2
� �.Let ��

#
� ��

# LP�
# be the formal

language corresponding to logic LP�
# and let ��

#
be the set of the all wff’s of ��

#
,where

�
 1
�,�
 2

� � ��
#
. �15. 1�

Remark 15.1.We distinguish a weak negation �w and a strong negation �s.
The definition of formula is the usual. We denote the set of the all formulae of

LP�
# ��
 1

�,�
 2
� � by ��

#
where �
 1

� and �
 2
� is a given by �
 1

� � �n�� �
 1
�n�,�
 2

� � �n�� �
 2
�n�.

The language ��
#

of paraconsistent logic LP�
# has as primitive symbols (i) countable

set
of a clalassical propositional variables, (ii) the connectives �w,�s,�,
,� and (iv) the
parentheses (,), (iii) the letters A, B, C, ... will be used as metalanguage variables

which
indicate formulas of LP�

# ��
 1
�,�
 2

� �.
Remark 15.2.Note that in contrast with a set �1

� and a set �2
� the set �1

�n� and the set
�2

�n�are recursively undecidable.

The language of the paraconsistent predicate calculus LPn
#, denoted by �n

#
, is an

extension of the language �n
# introduced above, by adding:

(i) for every m � �, denumerable families of m-ary consistent (or strong) predicate
symbols �con � �
 � R
 1

m, R
 2
m, . . . , R
 n

m, . . . and m-ary consistent function symbols
f
1

m, f
2
m, . . . , f
n

m, . . . ,which depend only on classical consistent object (or consistent set)
variables;
(ii) for every m � �, denumerable families of m-ary inconsistent predicate symbols

R� 1
m, R� 2

m, . . . , R� n
m, . . . ,and m-ary inconsistent function symbols f�1

m, f�2
m, . . . , f�n

m, . . . ,
which depend only on non classical inconsistent object (or inconsistent set) variables;
(iii) for every m, l � �, denumerable families of m1 � m2-ary mixed predicate symbols



R
 1
m1�m2 , R
 2

m1�m2 , . . . , R
 n
m1�m2 , . . . ,and m1 � m2-ary mixed function symbols

f
1
m1�m2 , f
2

m1�m2 , . . . , f
n
m1�m2 , . . . ,which depend on classical consistent object variables and

on non classical inconsistent object (or inconsistent set) variables;
(iv) the universal � and existential � quantifiers.

We assume throughout that: the language ��
#

contains also
(i) the classical numerals 0, 1,� ;
(ii) countable set �
 of the classical consistent object (or consistent set) variables
�Con � �
 � �x
, y
, z
, . . . � � �xcon, ycon, zcon. . . �;

(iii) countable set �� of the non classical inconsistent object (or inconsistent set)
variables �Inc � �� � �x�, y�, z�, . . . � � �x inc, y inc, zinc. . . �;
(iv) countable set �
 of the classical non-logical constants �
 � �ā, b
 , c
. . . �;
(v) countable set �� of the non classical non-logical constants �� � ă, b� , c�. . . ;

(vi)The notions of formula, free and bound variables in a formula, sentence (formula
without free variables) etc. are standard. The notations and metalogical conventions
extend those made for the propositional calculi.
The postulates of LPn

# are those of LPn
# (suitably adapted), i.e.

�1� A � �B � A�,

�2� �A � B� � ��A � �B � C�� � �A � C��,
�3� A � �B � A � B�,
�4� A � B � A,
�5� A � B � B,
�6� A � �A 
 B�,
�7� B � �A 
 B�,
�8� �A � C� � ��B � C� � �A 
 B � C��,

�9��s�sA � A,
�10� �s�wA � A,
�11� �w�wA 	 A,
�12� A � ��sA � B�,
�13� A � ��wA � B� if B � �� 1

�,
�14� A � �wA if A � �� 2

�,
�15�The law of non exclusion the contradictions

�A 
 �sA 
 �wA�
�A � �wA�
��sA � �wA� 
 A�2� 
. . .
A�k� 
. . .
A�n� 
. . . �15. 2�

or

�A 
 �sA 
 �wA�
��sA � �wA� 
 �
1�n��

A�n�. �15. 3�

where A, B, C � ��
#
,plus the following:

(1a)
� � ��x
�

� � �x
��x
�
, (1b)

� � ��x��
� � �x���x��

, (1c)
� � ��x
, y��

� � �x
�y���x
, y��
,

(2a) �x
��x
� � ��y
�, (2b) �x���x�� � ��y��, (2c) �x
�y���x
, y�� � ��x
, y��,

(3a) ��x
� � �x
��x
�, (3b) ��x�� � �x���x��, (3c) ��x
, y�� � �x
�y���x
, y��,



(4a)
��x
� � �

�x
��x
� � �
, (4b)

��x�� � �
�x���x�� � �

, (4c)
��x
, y�� � �

�x
�y���x
, y�� � �
,

(5a) �x
����x
���n� � � ��x
��x
���n�, (5b) �x�����x����n� � � ��x���x����n�

(5c) �x
�y�����x
, y����n� � � ��x
�y���x
, y����n�,
(6a) ��x
����x
����n� � ��x
��x
�� � ��x
�w��x
��,
(6b) ��x�����x�����n� � ��x���x��� � ��x��w��x���,
(6c) ��x
�y�����x
, y�����n� � ��x
�y���x
, y��� � ��x
�y��w��x
, y���,
II.Rules of a conclusion:
Restricted Modus Ponens rule RMP:
(i)A, A � B �RMP B if A � B � �2

�n�.
(ii)A,�sA �RMPB ��0

#.
Modus Tollens rules: P � Q,�sQ � �sP.

III.Inconsistent equality
From the calculus LPn

#,we can construct the following predicate calculus with
inconsistent equality.This is done by adding to their languages the binary predicates
symbol of strong equality �� �s �� and weak equality�� �w �� with suitable
modifications in the concept of formula, and by adding the following postulates:
(1) �x
�x
 �s x
�,
(2) �x
 �x
 �s x
��1� � B ,

(3) �x
�y
�x
 �s y
 � ���x
� � ��y
���,
(4) �x
�y
�z
��x
 �s y
 � � �y
 �s z
� � x
 �s z
�,
(5) �k�k � n��x��x� �w x���k�,

(6) �y��k�k � n��x��y� �w x���k�,
(7) �x��y��k�k � n� �x� �w y� ��k� � ��������k��x�� � ��k��y��� ,

(8) �x��y��k�k � n� �x� �w y� ��k� � ��������k��x�� � ��k��y��� ,

(9) �x��y��z��k�k � n� �x� �w y� ��k� � �y� �w z��k� � �x� �w z��k� ,

(10) �x��y��z��k�k � n� �x� �w y� ��k� � �y� �w z��k� � �x� �w z��k� .

16.Paraconsistent Set Theory ZFC�
# .

In this section we distingvish: (i) classical von Neumann universe or von Neumann
hierarchy of consistent sets, denoted VCon, is the class of hereditary consistent
well-founded sets. This consistent collection, which is formalized by Zermelo–Fraenkel
set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of
ZFC;

(ii) nonclassical universe or hierarchy of inconsistent sets,denoted VInc.This
inconsistent collection, which is formalized below by set theory ZFC�

# .

The Axioms and Basic Properties of Inconsistent Sets.
Remark 16.1.In this section we distingvish:
(i) a classical consistent sets which is a members of von Neumann universe VCon

(ii) a nonclassical inconsistent sets which is a members of non classical universe VInc.
(iii) a non classical mixed sets which is
Remark 16.2.In this section we distingvish:
(i) classical consistent set variables x
, y
, z
, . . . ;



(ii) non classical inconsistent set variables x�, y�, z�, . . .
(iii) a non classical mixed set variables x
,ŷ, z
, . . . .
Remark 16.3.In this section we distingvish:
(i) a strong membership predicate �� �
 �� such that for any x
, y
, z
 only the following
statements hold x
 �
 y
, x
 �
 z
,
(ii) a weak membership predicate �� �� �� such that for any x�, y�, z
 the following
statements hold x� �� y�, x� �� z
, . . . , �x� �� y� ��n�, . . .
Designation 16.1.We denote: (i) a strong membership predicate �� �
 �� by �s ,
(ii) a weak membership predicate �� �� �� by �w .
Definition 16.1. We shall say that:
(i) an well formed formula 
 of the set theory ZFC�

# is a classical formula if formula 


contains only consistent predicates x �s y, x �s y and contains only classical
connectives �s,�,
,�.We will be denoted such formula by 

 or by 
s;

(ii) an well formed formula 
 of the set theory ZFC�
# is a purely non classical formula if

formula 
 contains only predicates x �w y, x �w y and only the following connectives
�w,�,
,�.We will be denoted such formula by 
� or by 
w;
(iii) an well formed formula 
 of the set theory ZFC�

# is a mixed formula if formula 


contains predicates x �s y, x �w y, x �s y, x �w y and the connectives �w,�s �,
,�.
We will be denoted such formula by 

 or by 
s,w.
Abbreviation 15.1. Before introducing any set-theoretic axioms at all, we can
introduce some important abbreviations. Let x, y and z be any classical sets, then
(i) x �s y abbreviates �z�z �s x � z �s y�;
(ii) x �s y abbreviates x �s y � x �s y;
(iii) x �s

s y abbreviates �s�x �s y�;
(iv) x �s

s y abbreviates �s�x �s y�;
(v) u �s �s x � �s �x� � �z�z �s u � ��y �s x��z �s y��;
(vi) u �s �s x � �s �x� � �z�z �s u � ��y �s x��z �s y��;
(vii) ��x �s y�
 abbreviates �x�x �s y � 
�;
(viii) ��x �s y�
 abbreviates �x�x �s y � 
�;
(ix) ��s!x�
�x� abbreviates ��x�
�x� � �x�y�
�x� � 
�y� � x �s y�;
(x) ��w!x�
�x� abbreviates ��x�
�x� � �x�y�
�x� � 
�y� � x �w y�.
Abbreviation 15.2. (i) ��k�1� stands for ���k����1� � ��n� � �w��n�, 0 � k � n
where ��0� � � � �s�� � �w��,��1� � �� � �w��; (ii) ��n� stands for

��n� � ��0� 
 ��1� 
. . .
��n�.

Abbreviation 15.3. For any terms r, s, and t, we make the following abbreviations of
formulas.
(i) ��x �s t�
�x� for �x�x �s t � 
�x��; (ii) ��x �s t�
�x� for �x�x �s t � 
�x��;
(iii) ��x �w�n� t�
�x� for �x�x �w�n� t � 
�x��; (iv) ��x �w�n� t�
�x� for �x�x �w�n� t � 
�x��;

(v) ��x �w�n� t�
�x� for �x�x �w�n� t � 
�x��; (vi) ��x �w�n� t�
�x� for
�x�x �w�n� t � 
�x��;

Abbreviation 15.4.We abbreviate:

(i) x �w�n� X� (or x �w�n� X� ) instead �x �w X� �
�n�

;

(ii ) x �w�n� X� (or x �w�n� X� ) instead �x �w X� �
�n�

;



(iii) x �w��� X� (or x �w��� X� ) instead �
n��

�x �w X� �
�n�

;

(iv) x �w�n� X� (or x �w�n� X� ) instead �
n��

�x �w X� �
�n�

.

Designation 15.2. We sometimes abbreviate

x �w�n� X� instead x �w�n� X� . �15. 1�

Definition 15.2. (i) If x �w X� we call such x as w-element of the set X� .
(ii) If x �w�n� X� we call such x as w�n�-element of the set X� .

(iii) If x �w�n� X� we call such x as w�n�-element of the set X� .

(iv) If x �w�n� X
 we call such x as w�n�-element of the set X
 .

(v) If x �w�n� X� we call such x as w�n�-element of the set X
 .

(vi) If x �w�0� X� we call such x as w-element of the set X
 .

(vii) If x �w��� X� we call such x as w���-element of the set X� .

(viii) If x �w��� X� we call such x as w���-element of the set X� .

Designation 13.3.Let x�, y� and z� be any nonclassical set, then
(i) x� �w�n�

s y� abbreviates �s�x� �w�n� y�;

(ii) x� �w�n� y abbreviates �z�z �w�n� x� � z �w�n� y�;

(iii) x� �w�n� y abbreviates x� �w�n� y � x� �w�n�
s y;

(iv) x �w�n�
s y abbreviates �s�x �w�n� y�;

(v) u �w�n� �w�n� x �w�n� �w�n� �x� �w�n� �z�z �w�n� u � ��y �w�n� x��z �w�n� y��;

(vi) u �w�n� �w�n� x �w�n� �w�n� �x� �w�n� �z�z �w�n� u � ��y �w�n� x��z �w�n� y��;

(vii) ��x �w�n� y�
 abbreviates �x�x �w�n� y � 
�;

(viii) ��x �w�n� y�
 abbreviates �x�x �w�n� y � 
�;

(ix) ��w�n�!x�
�x� abbreviates ��x�
�x� � �x�y�
�x� � 
�y� � x �w�n� y�;

(x) ��w!x�
�x� abbreviates ��x�
�x� � �x�y�
�x� � 
�y� � x �w y�.
Designation 13.4.Let x�, y� and z� be any nonclassical set, then
(i) x� �w�n�

s y� abbreviates �s�x� �w�n� y�;

(ii) x� �w�n� y abbreviates �z�z �w�n� x� � z �w�n� y�;

(iii) x� �w�n� y abbreviates x� �w�n� y � x� �w�n�
s y;

(iv) x �w�n�
s y abbreviates �s�x �w�n� y�;

(v) u �w�n� �w�n� x �w�n� �w�n� �x� �w�n� �z�z �w�n� u � ��y �w�n� x��z �w�n� y��;

(vi) u �w�n� �w�n� x �w�n� �w�n� �x� �w�n� �z�z �w�n� u � ��y �w�n� x��z �w�n� y��;

(vii) ��x �w�n� y�
 abbreviates �x�x �w�n� y � 
�;

(viii) ��x �w�n� y�
 abbreviates �x�x �w�n� y � 
�;

(ix) ��w�n�!x�
�x� abbreviates ��x�
�x� � �x�y�
�x� � 
�y� � x �w�n� y�

Definition 13.3. (i) The set X� is called w�n�-set of the order inconsistency n,where
n � 0, 1, . . . if any w-element of the set X� is a w�n�-element of the set X� , i.e.
�x�x �w X� � x �w�n� X� � and there is no any w�n�1�-element of the set X� .

(ii) The set X� is called w�n�-set of the order inconsistency n,where n � 1, 2, . . .
if there exists at least one w�n�-element of the set X� and there is no any
w�n�1�-element of the set X� .
(iii)The set X
 is called mixed w�n�-set of the order inconsistency n, where n � 0, 1, . . .



if any w-element of the set X
 is a w�n�-element of the set X
 and there is no any
w�n�1�-element of the set X
 .
(iv)The set X
 is called mixed w�n�-set of the order inconsistency n, where n � 0, 1, . . .
if there exists at least one w�n�-element of the set X
 and there is no any
w�n�1�-element of the set X
 .
(vi) The set X� is called w���-set of the order inconsistency � if for any n � �
there exists at least one w�n�-element of the set X� .
(vii) The set X� is called w���-set of the order inconsistency � if for any n � �
there exists at least one w�n�-element of the set X� .
(viii) The set X
 is called mixed w���-set of the order inconsistency � if for any n � �
there exists at least one w�n�-element of the set X
 .
(ix)The set X
 is called mixed w���-set of the order inconsistency � if for any n � �
there exists at least one w�n�-element of the set X


Designation 13.5. (i) Let X� is a w�n�-set of the order inconsistency n we denote such
w�n�-set X� by X� w�n�or Xw�n�or by X� w�n�.

(ii) Let X� is a w�n�-set of the order inconsistency n we denote such
w�n�-set X� by X� w�n�or Xw�n�or by X� w�n�.

(iii) Let X
 is a mixed w�n�-set of the order inconsistency n we denote such
mixed w�n�-set X
 by X
 w�n�or Xw�n�or by X
 w�n�.

(iv) Let X
 is a mixed w�n�-set of the order inconsistency n we denote such
mixed w�n�-set X� by X� w�n�or Xw�n�or by X� w�n�.

(vi) Let X� is a w���-set of the order inconsistency � we denote such
w���-set X� by X� w���or Xw���or by X� w���.

(vii) Let X� is a w���-set of the order inconsistency � we denote such
w���-set X� by X� w���or Xw���or by X� w���.

(viii) Let X
 is a mixed w���-set of the order inconsistency � we denote such
mixed w���-set X
 by X
 w���or Xw���or by X
 w���.

(ix) Let X
 is a mixed w���-set of the order inconsistency � we denote such
mixed w���-set X� by X� w���or Xw���or by X� w���.

Definition 13.4. (i) The w�0�-set X� of the order inconsistency zero is called w�0�-set
for short and we often denote such w�0�-set X� by X� w�0� or simply by Xw�0� .

Remark.13.1. Note that for any w�0�-set X� the following statement holds by the non
classical law of the excluded fourth (see sect.7,8)

�x �x �w X� � 
 �s�x �w X� � 
 �w�x �w X� � . �13. 2�

It follows from (13.2) that the notion of the w�0�-set is not equivalent the notion of the
classical consistent sets, since for any classical set X
 the following statement holds by

the
classical law of the excluded third

�x �x �s X
 � 
 �s�x �s X
 � . �13. 3�

Definition 13.4. (i) The w�0�-set X� w�0� is called almost classical w�0�-set if only the

following statement holds

�x �x �w X� w�0� � 
 �s�x �w X� w�0� � �13. 4�



but not the full statement (3.1.2).
Remark 13.2. Note that the almost classical w�0�-sets very similar to classical

consistent
sets, since the statement (3.1.4) says that the classical law of the excluded third holds.
Designation 13.6.(i) Let X� w�0� is almost classical w�0�-set then we denote such set by

the
symbol X� w

cl or simply Xw
cl. (ii) We shall often write

x �w
cl X� w

cl �13. 5�

instead x �w X� w
cl or simply x �w Xw

cl instead x �w X� w
cl.

Remark 13.3.Note that the almost classical w-sets look very similar to classical
consistent sets, see Remark 13.2, however there exist fundamental differences in
comparizon some properties of the almost classical w-sets with a properties of the
classical consistent sets.These principal differences arises from the postulate of the
Strong Separation 4.1.(i).
Designation 13.7.Let x, y and z be any almost classical w-set, then
(i) x �w

cl y abbreviates �s�x �w
cl y�;

(ii) x �w
cl y abbreviates �z�z �w

cl x � z �w
cl y�;

(iii) x �w
cl y abbreviates x �w

cl y � x �w
cl y;

(iv) x �w
cl y abbreviates �s�x �w

cl y�;
(v) u �w

cl �w
cl x �w

cl �w
cl �x� �w

cl �z�z �w
cl u � ��y �w

cl x��z �w
cl y��;

(vi) u �w
cl �w

cl x �w
cl �w

cl �x� �w
cl �z�z �w

cl u � ��y �w
cl x��z �w

cl y��;
(vii) ��x �w

cl y�
 abbreviates �x�x �w
cl y � 
�;

(viii) ��x �w
cl y�
 abbreviates �x�x �w

cl y � 
�;
(ix) ��w

cl!x�
�x� abbreviates ��x�
�x� � �x�y�
�x� � 
�y� � x �w
cl y�;

1.Axiom of Existence of the Universal set.
�VInc�x
�x��n�x
�m��x
 �s VInc� � �x� �w�n� VInc� � �x
 �w�m� VInc��. �15. 6�

2.Axioms of Existence of the empty set.
(i) There exists almost classical w�0�- set �w�0�

cl which has no s-elements and which has

no w-elements in a strong consistent sense

��w�0�
cl �x �s x �s �w�0�

cl � �s x �w �w�0�
cl . �13. 7�

(ii) There exists a w�0�-set �w�0� which has no s-elements in a strong consistent sense
and

which has no w-elements in a weak sense

��w�0��x��s�x �s �w�0� � � �w�x �w �w�0� ��. �13. 8�

3. Axioms of a Strong Extensionality.
3.1.(i) Let X� w

cl and Y� w
cl be any almost classical w-sets.

�X� w
cl�Y� w

cl�X� w
cl �w Y� w

cl � �x��x� �w X� w
cl � x� �w Y� w

cl��. �13. 9�

(ii) Let X
 w
cl and Ŷw

cl be any mixed almost classical w-sets.



�X
 w
cl�Ŷw

cl X
 w
cl �w Ŷw

cl � �x
 x
 �s X
 w
cl � x
 �s Ŷw

cl ��

� �x� x� �w X
 w
cl � x� �w Ŷw

cl .
�13. 10�

3.2.(i) Let X� w and Y� w be any w-sets of the order inconsistency zero.

�X� w�Y� w�X� w �w Y� w � �x��x� �w X� w � x� �w Y� w��. �13. 11�

(ii) Let X
 w and Ŷw be any mixed w-sets of the order inconsistency zero.

�X
 w�Ŷw X
 w �w Ŷw � �x
 x
 �s X
 w � x
 �s Ŷw ��

� �x� x� �w X
 w � x� �w Ŷw .
�13. 12�

3.3.(i) Let X� w�n� and Y� w�n� be a w�n�-sets of the order inconsistency n.

�X� w�n��Y� w�n��X� w�n� �w�n� Y� w�n� � �

�x��m�m � n��x� �w�m� X� w�n� � x� �w�m� Y� w�n���.
�13. 13�

(ii) Let X� w�n� and Y� w�n� be a w�n�-sets of the order inconsistency n.

�X� w�n��Y� w�n��X� w�n� �w�n� Y� w�n� �

�x��m�m � n��x� �w�m� X� w�n� � x� �w�m� Y� w�n���.
�13. 14�

3.4.(i) Let X
 w�n� and Ŷw�n� be a mixed w�n�-sets of the order inconsistency n.

�X
 w�n��Ŷw�n� X
 w�n� �w�n� Ŷw�n� �

�x
 x
 �s X
 w�n� � x
 �s Ŷw�n� ��

�x��m�m � n� x� �w�m� X
 w�n� � x� �w�m� Ŷw�n� .

�13. 15�

.(ii) Let X
 w�n� and Ŷw�n� be a mixed w�n�-sets of the order inconsistency n.

�X
 w�n��Ŷw�n� X
 w�n� �w�n� Ŷw�n� �

�x
 x
 �s X
 w�n� � x
 �s Ŷw�n� ��

�x��m�m � n� x� �w�n� X
 w�n� � x� �w�n� Ŷw�n� .

�13. 16�

3.5.(i) Let X� w��� and Y� w��� be a w���-sets of the order inconsistency �.

�X� w�n��Y� w�n��X� w��� �w��� Y� w��� � �

�x��m�m � ���x� �w��� X� w��� � x� �w��� Y� w�����.
�3. 16�

(ii) Let X� w��� and Y� w��� be a w���-sets of the order inconsistency �.

�X� w����Y� w����X� w�n� �w��� Y� w��� �

�x��m�m � ���x� �w�m� X� w��� � x� �w�m� Y� w�����.
�13. 17�

4. Axioms of a Weak Extensionality.
4.1.(i) Let X� w�n� be any w�n�-set of the order inconsistency 0 � n � � and Y� w�m� be any
inconsistent w�m�-set of the order inconsistency 0 � m � �.



�X� w�n��Y� w�n��X� w�n� �w�k� Y� w�m� �

�x��l�l � n��r�r � m��x� �w�l� X� w�n� � x� �w�r� Y� w�m���.
�13. 18�

where k � min�n, m�
(ii) Let X� w�n� be a w�n�-set of the order inconsistency 0 � n � � and and Y� w�m� be a
w�m�-set of the order inconsistency 0 � m � �.

�X� w�n��Y� w�m��X� w�n� �w�k� Y� w�m� � �

�x��l�l � n��r�r � m��x� �w�l� X� w�n� � x� �w�r� Y� w�m���.
�13. 19�

where k � min�n, m�.

4.2.(i) Let X
 w�n� be a mixed w�n�-set of the order inconsistency 0 � n � � and


Y� w�m�

be a mixed w�m�-set of the order inconsistency 0 � m � �.

�X
 w�n��Ŷw�n� X
 w�n� �w�n� Ŷw�n� �

�x
 x
 �s X
 w�n� � x
 �s Ŷw�n� ��

�x��l�l � n��r�r � m� x� �w�m� X
 w�n� � x� �w�m� Ŷw�n� .

�13. 20�

where k � min�n, m�.

(ii) Let X
 w�n� be a mixed w�n�-set of the order inconsistency 0 � n � � and


Y� w�m�

be a mixed w�m�-set of the order inconsistency 0 � m � �.

�X
 w�n��Ŷw�n� X
 w�n� �w�n� Ŷw�n� �

�x
 x
 �s X
 w�n� � x
 �s Ŷw�n� ��

�x��l�l � n��r�r � m� x� �w�m� X
 w�n� � x� �w�m� Ŷw�n� .

�13. 21�

where k � min�n, m�.

5.Axioms of separation.
4.1 Strong Separation Schemes.
(i) Let ϕ�u, p1, . . . , pk� be a formula free from symbols �w

cl �w
s ,�w

s ,�w
w .

For any almost classical w-set X� w
cl and almost classical w-sets P1,w

cl , . . . , Pk,w
cl , there

exists almost classical w-set Y� w
cl :

Y� w
cl �w �u �w X� w

cl|ϕ�u, P1,w
cl , . . . , Pk,w

cl ��
w

cl
, �13. 22�

i.e.

�X� w
cl�P1,w

cl . . .�Pk,w
cl �Y� w�u�u �w Y� w

cl � �u �w X� w
cl� � ϕ�u, P1,w

cl , . . . , Pk,w
cl �� �13. 23�

(ii) Let ϕ�u, p1, . . . , pk� be a formula free from symbols �w
cl �w

s ,�w�n�
s ,�w

w .

For any w-set X� w of the order inconsistency zero and w-sets P1,w, . . . , Pk,w of the order
inconsistency zero there exists a w-set of the order inconsistency zero Y� w :

Y� w �w �u �w X� w|ϕ�u, P1,w, . . . , Pk,w��w
, �13. 24�

i.e.

�X� w�P1,w. . .�Pk,w�Y� w�u�u �w Y� w � �u �w X� w� � ϕ�u, P1,w, . . . , Pk,w�� �13. 25�



(iii) Let ϕ�u, p1, . . . , pk� be a formula free from symbols �w�n�
s ,�w�n�

s ,�w�n�
w ,�w�n�

w

For any w�n�-set X� w�n� of the order inconsistency n and w�n�-sets P1,w�n� , . . . , Pk,w�n� of
the order inconsistency n there exists a w�n�-set of the order inconsistency n, Y� w�n� :

Y� w�n� �w�n� �u �w�n� X� w�n� |ϕ�u, P1,w�n� , . . . , Pk,w�n���w�n�
�13. 26�

i.e.

�X� w�n��P1,w�n� . . .�Pk,w�n� �

�Y� w�n��u�u �w�n� Y � �u �w�n� X� � ϕ�u, P1,w�n� , . . . , Pk,w�n���
�13. 27�

(iv) Let ϕ�u, p1, . . . , pk� be a formula free from symbols �w�n�
s ,�w�n�

s ,�w�n�
w ,�w�n�

w

For any X and p1, . . . , pk, there exists a set Y �w�n� �u �w�n� X|ϕ�u, p1, . . . , pk��w�n�
, i.e.

�X�p�Y�u�u �w�n� Y � �u �w�n� X� � ϕ�u, p1, . . . , pk�� �13. 28�

(2) Weak Separation Schemes.
(i) Let ϕ�u, p1, . . . , pk� be a stratified formula. For any X and p1, . . . , pk, there exists a set
Y �w �u �w X|ϕ�u, p1, . . . , pk��w, i.e.

�X�p�Y�u�u �w Y � �u �w X� � ϕ�u, p1, . . . , pk�� �13. 29�

(ii) Let ϕ�u, p1, . . . , pk� be a stratified formula. For any X and p1, . . . , pk, there exists a set
Y �w�n� �u �w�n� X|ϕ�u, p1, . . . , pk��w�n�

, i.e.

�X�p�Y�u�u �w�n� Y � �u �w�n� X� � ϕ�u, p1, . . . , pk�� �13. 30�

(iii) Let ϕ�u, p1, . . . , pk� be a stratified stratified formula. For any X and p1, . . . , pk, there
exists a set Y �w�n� �u �w�n� X|ϕ�u, p1, . . . , pk��w�n�

, i.e.

�X�p�Y�u�u �w�n� Y � �u �w�n� X� � ϕ�u, p1, . . . , pk�� �13. 31�

5.Axioms of Inconsistent Pairing.
5.1.Axiom of almost classical Pairing.
(i) For any almost classical w-sets Ăw

cl and B� w
cl, there exists w-set C� w

cl such
that x� �w

cl C� w
cl if and only if x� �w Ăw

cl or x� �w B� w
cl.

5.2.Axiom of mixed Pairing.
(i) For any Ā and B� , there exists mixed w-set Ĉs,w such that
x �s Ĉs,w if and only if x �s Ā and x �w Ĉs,w if and only if x �w B� .
(ii) For any Ā and B� , there exists mixed w�n�-set Ĉs,w�n� such that x �s Ĉs,w�n�

if and only if x �s Ā and x �w�n� Ĉs,w�n� if and only if x �w�n� B� .

(iii) For any Ā and B� , there exists mixed w�n�-set Ĉs,w�n� such that x �s Ĉs,w�n�

if and only if x �s Ā and x �w�n� Ĉs,w�n� if and only if x �w�n� B� .

5.3.Axiom of inconsistent Pairing.
(i) For any w-sets Ăw and B� w, there exists w-set C� w such that x� �w C� w if and only if
x� �w Ăw or x� �w B� w.

(ii) For any w�n�-sets Ăw�n� and B� w�n� , there exists w�n�-set Ĉw�n� such that x �w�n� Ĉw�n�

if and only if x �w�n� Ăw�n� and x �w�n� Ĉw�n� if and only if x� �w�n� Ăw�n� x �w�n� B� w�n�.

(iii) For any w�n�-sets Ăw�n� and B� w�n� , there exists w�n�-set Ĉw�n� such that x �w�n� Ĉw�n�

if and only if x �w�n� Ăw�n� and x �w�n� Ĉw�n� if and only if x� �w�n� Ăw�n� x �w�n� B� w�n�.



Definition 13.5.(i) We define the mixed unordered pair Ĉs,w of Ā and B� w as the sw-set
having exactly Ā and B� w as its s-element and w-element correspondingly use �Ā, B� w�s,w

to denote it.
Definition 13.6.(i) We define the unordered w-pair of Ăw and B� w as the w-set having
exactly Ăw and B� w as its w-elements and use �Ăw, B� w�w to denote it.
(ii) We define the unordered w�n�-pair of Ăw�n� and B� w�n� as the w�n�-set having
exactly Ăw�n� and B� w�n� as its w�n�-elements and use �Ăw�n� , B� w�n��w�n� to denote it.
(iii) We define the unordered w�n�-pair of Ăw�n� and B� w�n� as the w�n�-set having
exactly Ăw�n� and B� w�n� as its w�n�-elements and use �Ăw�n� , B� w�n��w�n� to denote it.

6.Axioms of union.
6.1. Axiom of w-union of w-set ��

For any w-set �� , there exists w-set Ă such that x �w Ă if and only if x �w Y�

for some Y� �w �� :

��� �Ă�Y��x x �w Y� � Y� �w �� � x �w Ă �13. 32�

Definition 13.7. We call the w-set Ă the w-union of w-set �� and denote it by w-���

or
by �w ��

Definition 13.8 We call w-set Ă a w-subset of B� if every w-element of Ă is also an
w-element of B� : �z�z �w Ă � z �w B� �.We denote this by Ă �w B� .

6.2.Axiom of w�n�-union of w�n�-set xw�n� .

For any w�n�-set xw�n� there exists w�n�-set yw�n� such that the following holds

�xw�n��yw�n��t�t �w�n� yw�n� � �u�u �w�n� x � t �w�n� u��. �13. 33�

The set yw�n� is denoted �w�n� x or w�n�-�xw�n� .

6.3.Axiom of w�n�-union of w�n�-set xw�n� .

�x�n��y�n��t�t �w�n� y�n� � �u�u �w�n� x � t �w�n� u��. �13. 34�

The set y�n� is denoted �w�n� x or w�n�-�x.

7.Axioms of Power Set.
(i) Axiom of w-power set.

�Xw�Yw�t�t �w Yw � �z�z �w t � z �w Xw�� �13. 35�

For any w-set Xw,a w-set Yw is denoted Pw�Xw�.
(ii) Axiom of w�n�-power set.

�Xw�n��Yw�n��t�t �w�n� Yw�n� � �z�z �w�n� t � z �w�n� Xw�n� �� �13. 36�

For any w�n�-set Xw�n� ,a w�n�-set Yw�n� is denoted Pw�n��Xw�n� �.

(iv) Axiom of w�n�-power set.

�Xw�n��Yw�n��t�t �w�n� Yw�n� � �z�z �w�n� t � z �w�n� Xw�n� �� �13. 37�

For any w�n�-set X,a w�n�-set Yw�n� is denoted Pw�n��Xw�n� �.

Definition 13.9. (i) We call Pw�Xw� the w-power set of Xw.
(ii) We call Pw�n��Xw�n� � the w�n�-power set of Xw�n� .



(iii) We call Pw�n��Xw�n� � the w�n�-power set of Xw�n� .

(iii) We call Pw�n��Xw�n� � the w�n�-power set of Xw�n� .

10.Axiom of Foundation (or Regularity)
10.1.Axiom of Foundation (or Regularity) to classical sets.

�x
�x
 �s �s,w � ��y
 � x
 ��x
 �s y
 �s �s,w��. �13. 38�

Let’s investigate what this axiom says: suppose there were a non-empty x
 such that
� y(y �s x) (x �s y �s �s,w). For any z1 � x we would be able to get z2 � z1 �sx.
Since z2 � x we would be able to get z3 � z2 �s x. The process continues
forever:

11.Axiom of Foundation (or Regularity) for a mixed nonclassical sets.

�x
�x
 �s �s,w � ��y
 � x
 ��x
 �s y
 �s �s,w��. �13. 39�

12.Axiom of regularity.
Definition 3.1.10. Almost classical w-set x�w

cl is regular (or well founded) if the following
the regularity condition holds

�x�w
cl�x�w

cl �w
w �w � ��y�w

cl � x�w
cl��x�w

cl �w
cl y�w

cl �w �w��. �13. 40�

The regularity condition for almost classical w-set x�w
cl is abbreviated as

reg�x�w
cl�. �13. 41�

11.Axioms of w�n�-infinity.
11.1.1.Strong Axiom of almost classical regular w-infinity.
Let Sw

cl�y�w
cl� is abbreviated as y�w

cl �w
cl �y�w

cl�w
cl.There exists at least one almost classical

w-family X� w
cl of the almost classical w-regular w-sets such that the following condition

holds.

�X� w
cl �� w �w X� w

cl � �y�w�y�w �w X� w
cl � Sw

cl�y�w� �w X� w
cl� ��

��y�w�y�w �w X� w
cl � reg�x�w

cl���.
�3. 1. 31�

Theorem 3.1.1.(Finite or weak almost classical regular w-induction)
There exists w-unique almost classical w-family of the almost classical w-sets �w

cl

such that
(i) �� w �w �w

cl

(ii) xw
cl �w �w

cl � Sw
cl�xw

cl� �w �w
cl

(iii) if K� w
cl satisfies (i) and (ii), then �w

cl �w K� w
cl.

8.1.1.Weak Axiom of almost classical w-Infinity.



Let Sw
cl�yw

cl� is abbreviated as yw
cl �w

cl �yw
cl�w

cl.There exists at least one almost classical

w-family X� w
cl of the almost classical w-sets such that the following condition holds.

�X� w
cl �� w �w X� w

cl � �x�w
cl��x�w

cl � X� w
cl� � �reg�x�w

cl�� ��

�y�w�y�w �w X� w
cl � Sw

cl�y�w� �w X� w
cl� ��

��y�w�z�w��y�w �w X� w
cl� � �z�w �w X� w

cl� � �y�w �w z�w� 
 �z�w �w y�w���.

�3. 1. 31�

Theorem 3.1.1.(Finite or weak almost classical nonregular w-induction)
There exists
w-unique almost classical w-family of the almost classical w-sets 1�w

cl such that
(i) �� w �w �w

cl

(ii) xw
cl �w �w

cl � Sw
cl�xw

cl� �w �w
cl

(iii) if K� w
cl satisfies (i) and (ii), then �w

cl �w K� w
cl.

Proof. It follows from the weak axiom of almost classical w-infinity 8.1.1 that there
exists at least one almost classical w-family X� w

cl satisfying conditions (i) and (ii).
Let �w

cl be the almost classical w-family of all those w-subsets of X� w
cl which satisfy

(i) and (ii):

�w
cl � S� w

cl �w X� w
cl|�� w �w S� w

cl � �y�w y�w �w S� w
cl � Sw

cl�y�w� �w S� w
cl ��

��y�w�z�w y�w �w S� w
cl � z�w �w S� w

cl � �y�w �w z�w� 
 �z�w �w y�w� .
�3. 1. 32�

It is easy to show that w-
�w
cl (see Definition 3.2.3 (i)) is the required almost

classical w-family.
8.1.2.Strong Axiom of almost classical w-Infinity.
Let Sw

cl�y� abbreviate y �w
cl �y�w

cl. Let �y�w � be almost classical w-set such that
�x�w�x�w �w �y�w � � x�w �w y�w �.There exists at least one almost classical w-family X� w

cl

of the almost classical w-sets such that the following condition holds.

�X� w
cl �� s,w �w X� w

cl � �y�w��y�w � �w
cl X� w

cl � y�w �w X� w
cl � ��

��y�w�z�w��y�w �w X� w
cl� � �z�w �w X� w

cl� � �y�w �w z�w� 
 �z�w �w y�w���.
�3. 1. 33�

Theorem 3.1.2.(Complete or strong almost classical w-induction).There
exists w-unique almost classical w-family of the almost classical w-sets �w

cl

such that:
(i) �� s,w �w �w

cl

(ii) �x�w
cl � �w

cl �w
cl � x�w

cl �w �w
cl

(iii) if K� w
cl satisfies (i) and (ii), then �w

cl �w K� w
cl.

Proof. It follows from the weak axiom of almost classical w-infinity that there exists at
least one almost classical w-family X� w

cl satisfying conditions (i) and (ii). Let �w
cl be the

almost classical w-family of all those w-subsets of X� w
cl which satisfy (i) and (ii):

�w
cl � S� w

cl �w X� w
cl|�� s,w �w S� w

cl � �y�w �y�w � �w
cl S� w

cl � y�w �w S� w
cl ��

��y�w�z�w y�w �w S� w
cl � z�w �w S� w

cl � �y�w �w z�w� 
 �z�w �w y�w� .
�3. 1. 34�

It is easy to show that w-
�w
cl (see Definition 3.2.3 (i)) is the required almost

classical w-family.
8.2.1.Weak Axiom of w-Infinity of the order inconsistency zero.



(1) Let Sw�y� abbreviate y �w �y�w.There exists at least one w-family X� w of the order
inconsistency zero such that the following conditions hold.

�X� w �� s,w �w X� w � �� w �w X� w � �y�w�y�w �w X� w � Sw�y�w� �w X� � � �

��y�w�z�w��y�w �w X� w� � �z�w �w X� w� � �

�y�w �w z�w� 
 �z�w �w y�w� 
 �w�y�w �w z�w� 
 �w�z�w �w y�w���.

�3. 1. 35�

(2) Let �w
� be any w-family of all those w-subsets S� w of X� w such that

�w
� �w

S� w �w X� w| �� s,w �w S� w � �� w �w S� w � �y�w y�w �w S� w � Sw�y�w� �w S� w

��y�w�z�w y�w �w S� w � z�w �w S� w � �

�y�w �w z�w� 
 �z�w �w y�w� 
 �w�y�w �w z�w� 
 �w�z�w �w y�w���.

�3. 1. 33�

Then

X� w
cl �w

s w-
�w
� , �3. 1. 34�

see Definition 3.2.3 (ii).
Theorem 3.1.3.(Finite or weak induction)There exists w-unique w-family of the order
inconsistency zero �w of w-sets of the order inconsistency zero such that the following
conditions hold.
(i) �� s,w �w �w,�� w �w �w

(ii) xw �w �w � Sw�xw� �w �w

(iii) �w
cl �w

s �w

(iv) if K� w satisfies (i) and (ii), then �w �w K� w.
Proof. It follows from the strong axiom of w-infinity that there exists at least one
w-family of the order inconsistency zero X� w satisfying conditions (i),(ii) and (iii).

Let �w be the w-family of all those w-subsets of X� w which satisfy (i),(ii) and (iii):

�w �w

S� w �w X� w| �� s,w �w S� w � �� w �w S� w � �y�w y�w �w S� w � Sw�y�w� �w S� w

��y�w�z�w y�w �w S� w � z�w �w S� w � �

�y�w �w z�w� 
 �z�w �w y�w� 
 �w�y�w �w z�w� 
 �w�z�w �w y�w���.

�3. 1. 35�

It is easy to show that w-
�w (see Definition 3.2.3 (ii)) is the required w-family.

Remark.3.1.3. Note that by 8.2.3 it follows �w
cl �w

s �w.
The next theorem scheme justifies strong mathematical induction. For brevity we shall
write w for w1, . . . , wn.
Theorem 3.1.3.(Strong induction) For all w, if

�n�n �w �w� �m �w �w 
 m, w � 
 n, w �13�

then

�n�n �w �w� 
 n, w . �13�



8.3.Axiom of w�1�-Infinity.
Let Sw�1��y� � abbreviate y�w�1� �w�1� �y�w�1��w�1�

.

�X� w�n� �� s,w �w�n� X� w�n� � �� w �w�n� X� w�n� � �

��y�w�n��y�w�n� �w�n� X� w�n� � Sw�n��y�w�n� � �w�n� X� w�n� ��.
�3. 1. 36�

8.4.Axiom of w�n�-Infinity.
Let Sw�n��y� � abbreviate y�w�n� �w�n� �y�w�n��w�n�

.

�X� w�n� �� s,w �w�n� X� w�n� � �� w �w�n� X� w�n� � �

��y�w�n��y�w�n� �w�n� X� w�n� � Sw�n��y�w�n� � �w�n� X� w�n� ��.
�3. 1. 34�

Theorem 3.1.3.There exists exactly one w�n�-family of w�n�-sets �w�n� such that

(i) �� s,w �w�n� �w�n� ,�� w �w�n� �w�n�

(ii) xw�n� �w�n� �w�n� � Sw�n��xw�n� � �w�n� �w�n�

(iii) if K� w�n� satisfies (i) and (ii), then �w�n� �w�n� K� w�n� .

Proof. It follows from the strong axiom of w�n�-infinity that there exists at least one
w�n�-family X� w�n� satisfying conditions (i) and (ii). Let �w�n� be the w�n�-family of all
those w�n�-subsets of X� w�n� which satisfy (i) and (ii):

�w�n� �w�n� S� w�n� �w X� w�n� | �� s,w �w S� w�n� � �� w �w�n� S� w�n� � �

��y�w�n� y�w�n� �w�n� S� w�n� � Sw�n��y�w�n� � �w�n� S� w�n� .

It is easy to show that w-
�w�n� (see Definition 3.2.3 (iii)) is the required w�n�-family.

8.4.Axiom of w�n�-Infinity.
Let Sw�n��y� � abbreviate y�w�n� �w�n� �y�w�n� �w�n�

.

�X� w�n� �� s,w �w�n� X� w�n� � �� w �w�n� X� w�n� � �

��y�w�n��y�w�n� �w�n� X� w�n� � Sw�n��y�w�n� � �w�n� X� w�n� ��.
�3. 1. 35�

Theorem 3.1.4.There exists exactly one w�n�-family of w�n�-sets �w�n� such that

(i) �� s,w �w�n� �w,�� w �w�n� �w�n�

(ii) xw �w�n� �w�n� � Sw�n��xw�n� � �w�n� �w�n�

(iii) if K� w�n� satisfies (i) and (ii), then �w�n� �w�n� K� w�n� .

Proof. It follows from the strong axiom of w�n�-infinity that there exists at least one
w�n�-family X� w�n� satisfying conditions (i) and (ii). Let �w�n� be the w�n�-family of all

those w�n�-subsets of X� w�n�which satisfy (i) and (ii):



�w�n� �w�n� S� w�n� �w�n� X� w�n� | �� s,w �w�n� S� w�n� � �� w �w�n� S� w�n� � �

��y�w�n� y�w�n� �w�n� S� w�n� � Sw�n��y�w�n� � �w�n� S� w�n� .

It is easy to show that w�n�-
�w�n� (see Definition 3.2.3 (iv)) is the required

w�n�-family.

12.Axioms of Replacement.
(1) Strong Replacement Scheme.
(i) Let ��x, y, u� be a formula free from symbols �w

s ,�w
w , then

�x�y�y ����x, y, u� � ��x, y �, u� � y �w y � � �

� �s�z�y�y �w z � �x�x �w s���x, y, u��.
�3. 1. 34�

The set z is denoted �y|�x��x, y, u� � �x �w s��w.
(ii) Let ��x, y, u� be a formula free from symbols �w�n�

s ,�w�n�
s , then for any

u � �p1, . . . , pk�, n � 1, 2, . . . .

�x�y�y ����x, y, u� � ��x, y �, u� � y �w�n� y � � �

� �s�z�y�y �w�n� z � �x�x �w�n� s���x, y, u��.
�3. 1. 35�

The set z is denoted �y|�x��x, y, u� � �x �w�n� s��
w�n�

.

(iii) Let ��x, y, u� be a formula free from symbols �w�n�
s ,�w�n�

s , then for any

u � �p1, . . . , pk�, n � 1, 2, . . . .

�x�y�y ����x, y, u� � ��x, y �, u� � y �w�n� y � � �

� �s�z�y�y �w�n� z � �x�x �w�n� s���x, y, u��.
�3. 1. 36�

The set z is denoted �y|�x��x, y, u� � �x �w�n� s��
w�n�

.

(2) Weak Replacement Scheme.
(i) Let ��x, y, u� be a stratified formula, then for any u � �p1, . . . , pk�, n � 1, 2, . . .

�x�y�y ����x, y, u� � ��x, y �, u� �w y �w y � � �w

�w �s�z�y�y �w z 	w �x�x �w s���x, y, u��.
�3. 1. 37�

The set z is denoted �y|�x��x, y, u� � �x �w s��w.
(ii) Let ��x, y, u� be a stratified formula, then for any u � �p1, . . . , pk�, n � 1, 2, . . .

�x�y�y ����x, y, u� � ��x, y �, u� � y �w�n� y � � �

� �s�z�y�y �w�n� z � �x�x �w�n� s���x, y, u��.
�3. 1. 38�



The set z is denoted �y|�x��x, y, u� � �x �w�n� s��
w�n�

.

(iii) Let ��x, y, u� be a stratified formula,then for any u � �p1, . . . , pk�, n � 1, 2, . . .

�x�y�y ����x, y, u� � ��x, y �, u� � y �w�n� y � � �

� �s�z�y�y �w�n� z � �x�x �w�n� s���x, y, u��.
�3. 1. 39�

The set z is denoted �y|�x��x, y, u� � �x �w�n� s��
w�n�

.

.

11.Axioms of inconsistent choice
11.1.Weak Axiom of w-Choice

�X� w
cl���x �w X� w

cl�y �w X� w
cl�x �w

cl y � x �w
cl y �w

cl �s,w�� ��

� �zw
cl��x�x �w Xw

cl��w
cl!yw

cl�y �w x �w
cl zw

cl���.
�3. 1. 39�

Remark.3.1.3. Note that in non formal language, the Weak Axiom of Choice says that
if you have almost classical w-set X� w

cl of pairwise w-disjoint non-empty almost classical
w-sets, then you get almost classical w-set zw

cl which contains one w-element from each
set in the collection. Although the axiom gives the existence of some almost classical
“choice w-set” zw

cl, there is no mention of w-uniqueness-there are quite likely many
possible sets zw

cl which satisfy the axiom and we are given no formula which would single
out any one particular zw

cl.
Theorem 5. almost classical w-set X� w

cl there is a w-choice almost classical w-function
on

any almost classical w-set of non-empty almost classical w-sets; i.e.,

�Xw
cl��s,w �w

w Xw
cl � ��f�w

cl��f�w
cl : Xw

cl � �Xw
cl � ��x �w Xw

cl��fw
cl�x� �w x���. �3. 1. 39�

Proof. Given such an X, by Replacement there is a set Y � {{x} � x : x � X}
which satisfies the hypothesis of the Weak Axiom of w-Choice. So, �z �y � Y �!p p �

y � z. Let f � z � (S Y ). Then f : X � S X and each f(x) � x.

12.The w�n�-union and w�n�-intersection.
Definition 3.2.1. (i) The w-union of Ăw

cl and B� w
cl is the almost classical w-set X� w

cl

such that

�x�x �w X� w
cl � �x �w Ăw

cl� 
 �x �w B� w
cl��. �3. 2. 1�

We denote it by Ăw
cl �w B� w

cl.
(ii) The w-union of Ăw and B� w is the w-set X� w such that

�x�x �w X� w � �x �w Ăw� 
 �x �w B� w��. �3. 2. 2�

We denote it by Ăw �w B� w.



(iii) The w�n�-union of Ăw and B� w�n� is the w�n�-set X� w�n� such that

�x�x �w�n� X� w�n� � �x �w�n� Ăw�n� � 
 �x �w�n� B� w�n� ��. �3. 2. 3�

We denote it by Ăw�n� �w�n� B� w�n� .

(iv) The w�n�-union of Ăw�n� and B� w�n� is the w�n�-set X� w�n� such that

�x�x �w�n� X� w�n� � �x �w�n� Ăw�n� � 
 �x �w�n� B� w�n� ��. �3. 2. 4�

We denote it by Ăw�n� �w�n� B� w�n� .

Definition 3.2.2. (i) The w-intersection of Ăw
cl and B� w

cl is the almost classical
w-set X� w

cl such that

�x�x �w X� w
cl � �x �w Ăw

cl� � �x �w B� w
cl��. �3. 2. 5�

We denote it by Ăw
cl �w B� w

cl.
(ii)The w-intersection of Ăw and B� w is the w-set X� w such that

�x�x �w X� w � �x �w Ăw� � �x �w B� w��. �3. 2. 6�

We denote it by Ăw �w B� w.
(iii) The w�n�-intersection of Ăw and B� w�n� is the w�n�-set X� w�n� such that

�x�x �w�n� X� w�n� � �x �w�n� Ăw�n� � � �x �w�n� B� w�n� ��. �3. 2. 7�

We denote it by Ăw�n� �w�n� B� w�n� .

(iv) The w�n�-intersection of Ăw�n� and B� w�n� is the w�n�-set X� w�n� such that

�x�x �w�n� X� w�n� � �x �w�n� Ăw�n� � � �x �w�n� B� w�n� ��. �3. 2. 8�

We denote it by Ăw�n� �w�n� B� w�n� .

Definition 3.2.3.(i) For any almost classical w-set �� w
cl, there exists almost

classical w-set Ăw
cl such that x �w Ăw

cl if and only if x �w Y� w
cl for any Y� w

cl �w �� w
cl.

We call the w-set Ăw
cl the w-intersection of �� w

cl and denote it by

w-
�� w
cl or 
w

�� w
cl. �3. 2. 9�

(ii) For any w-set �� w, there exists Ăw such that x �w Ăw if and only if x �w Y� w for
any Y� �w �� w. We call the w-set Ăw the w-intersection of �� w and denote it by

w-
�� w or 
w
�� w. �3. 2. 10�

(iii) For any w�n�-set �� w�n� , there exists Ăw�n� such that x �w�n� Ăw�n� if and only if

x �w�n� Y� w�n� for any Y� �w�n� �� w�n� . We call the w�n�-set Ăw the w-intersection of �� w�n�

and
denote it by

w�n�-
�� w�n� or 
w�n�
�� w�n� . �3. 2. 11�

17.The w�n�-difference
Definition 3.3.1.(i) The w-difference of Ăw

cl and B� w
cl is the w-set X� w

cl of all x �w Ăw
cl

such that �w�x �w Bw
cl� :

�x�x �w X� w
cl � �x �w Ăw

cl� � �w�x �w Bw
cl�� �3. 3. 1�



and we denote it by

Ăw
cl\wB� w

cl or Ăw
cl 
w B� w

cl. �3. 3. 2�

(ii) The w-difference of Ăw and B� w is the w-set X� w of all x �w Ă s
uch that �w�x �w Bw� :

�x�x �w X� w � �x �w Ăw� � �w�x �w Bw�� �3. 3. 3�

and we denote it by

Ăw\wB� w or Ăw 
w B� w. �3. 3. 4�

Definition 3.3.2. The s-w-difference (strong w-difference) of Ăw and B� w is the w-set X� w

of all x �w Ăw such that �s�x �w B� w� : �x�x �w X� w � �x �w Ăw� � �s�x �w B� w��.

We denote it by Ăw 
s,w B� w or by Aw\s,wBw. If B� w �w Ăw we say that Ă\s,wB� is a
s-w-complement B� w in Ăw or Ăw\s,wB� w is a strong w-complement B� w in Ăw.

16.Inconsistent w-relations and w-functions of the order
inconsistency zero.

Definition 16.1. (i) Almost classical w-ordered pair �a, b�w
cl is defined to be

�a, b�w
cl �w ��a�w

cl,�a, b�w
cl�w

cl. �16. 1�

We further define almost classical w-ordered triples

�a, b, c�w
cl �w ��a, b�w

cl, c�w
cl �w ���a�w

cl,�a, b�w
cl�w,���a�w

cl,�a, b�w
cl�, c�w

cl�w
cl, �16. 2�

almost classical w-ordered quadruples . . .almost classical w-ordered n-tuples etc.
(ii) An w-ordered pair �a, b�w is defined to be ��a�w,�a, b�w�w.

�a, b�w �w ��a�w,�a, b�w�w. �16. 3�

We further define w-ordered triples

�a, b, c�w �w ��a, b�w, c�w �w ���a�w,�a, b�w�w,���a�w,�a, b�w�, c�w�w, �16. 4�

w-ordered quadruples . . .almost classical w-ordered n-tuples etc.
Definition 16.2. (i) Almost classical w-set R� w

cl is an almost classical binary
w-relation if all w-elements of R� w

cl are almost classical w-ordered pairs, i.e. for z �w R� w
cl

there exists x and y such that z �w �x, y�w
cl.We can also denote �x, y�w �w R� w

cl as xR� w
cly,

and say that x is in relation R� w
cl with y if xR� w

cly holds.
(ii) A w-set R� w is a binary w-relation if all w-elements of R� w are
w-ordered pairs, i.e. for z �w R� w there exists x and y such that z �w �x, y�w.We can
also denote �x, y�w �w R� w as xR� wy, and say that x is in w-relation R� w with y if xR� wy

holds.
Definition 16.3. (i) The almost classical w-membership w-relation on Ăw

cl is defined by

�w,Ăw
cl

cl �w ��a, b�w
cl|�a �w

cl Ăw
cl� � �b �w

cl Ăw
cl� � �a �w

cl b��. �16. 5�

The almost classical w-identity w-relation on Ăw
cl is defined by

Idw,Ăw
cl

cl �w ��a, b�w
cl|�a �w

cl Ăw
cl� � �b �w

cl Ăw
cl� � �a �w b��. �16. 6�

(ii) The w-membership w-relation on Ăw is defined by

�w,Ăw
�w ��a, b�w|�a �w Ăw� � �b �w Ăw� � �a �w b��. �16. 7�

The w-identity w-relation on Ăw is defined by

Idw,Ăw
� ��a, b�w|�a �w Ăw� � �b �w Ăw� � �a �w b��. �16. 8�



Definition 16.4.(i) Let Ăw be w-set and B
 be a classical set. The cartesian
ws-product of Ă and B
 is

Ăw �w B
 �ws ��a, b�ws|�a �w Ăw� � �b �s B
 ��. �16. 9�

(ii) Let Ā be a classical set and B� be a w-set. The cartesian
sw-product of Ā and B� is

Ā �w B� �ws ��a, b�sw|�a �s Ā� � �b �w B� ��. �16. 10�

(iii) Let Ă, B� be w-sets. The cartesian w-product of Ă and B� is
defined by

Ă �w B� � ��a, b�w|�a �w Ă� � �b �w B� ��. �16. 11�

Definition 16.5.(i) A binary w-relation F� w is called a w-function if aF� wb1 and aF� wb2

imply
b1 �w b2 for any a, b1, and b2. This w-unique b is the value of F� w at a and is denoted

F� w�a�
or F� wa. If dom�F� w� �w Ăw and ran F� w �w B� w, we can denote F� w by F� w : Ăw � B� w,

�F� w�a�|a �w Aw �w
, �F� w,a|a �w Ă�w

, or �F� w,a �a�w Ăw
.

Definition 16.6.(i) Let f�w : Ăw �w B� w be a w-function.
1) f�w is w-injective if for a1 �w Ăw and a2 �w Ăw, f�w�a1� �w f�w�a2� if and only if
a1 �w a2.We call f�w a w-injection.
2) f�w is w-surjective if for every b �w B� w, there exists some a �w Ăw such that
f�w�a� �w b.We call f�w a w-surjection.
3) f�w is w-bijective if it is both w-injective and w-surjective. We call f�w a w-bijection.
(ii) Let fs,w : Ā �sw B� w be a sw-function.
1) fs,w is sw-injective if for a1 �s Ā and a2 �s A, fs,w�a1� �w fs,w�a2� if and only if
a1 �s a2.We call fs,w a sw-injection.
2) fs,w is sw-surjective if for every b �w B� w, there exists some a �s Ā such that
fs,w�a� �w b.We call fs,w a sw-surjection.
3) fs,w is sw-bijective if it is both sw-injective and sw-surjective. We call fs,w a

sw-bijection.
(iii) Let fw,s : Ăw �w,s B
 be a ws-function.
1) fw,s is ws-injective if for a1 �w Ăw and a2 �w Ăw, fw,s�a1� �s fw,s�a2� if and only if
a1 �w a2.We call fw,s an ws-injection.
2) fw,s is ws-surjective if for every b �s B
 , there exists some a �w Ăw such that
fw,s�a� �s b.We call fw,s a ws-surjection.
3) fw,s is ws-bijective if it is both ws-injective and ws-surjective. We call fws a

ws-bijection.
Definition 16.7.(i) (a) w-functions fw and gw are called w-compatible if f�x� �w g�x�
for all x �w dom�fw� �w dom�gw�.
(b) A w-set of w-functions Fw is called a w-compatible system of w-functions if any two
w-functions fw and gw from Fw are w-compatible.
Theorem 16.1. If Fw is a w-compatible system of w-functions, then w-� Fw is a

w-function with dom w-� Fw �w w-��dom�fw�|fw �w Fw�w. The w-function

w-� Fw

extends all fw �w Fw.



Proof. We need to show that:
(1) w-� Fw is a function and

(2) dom w-� Fw � w-��dom�fw�|fw �w Fw�w.

(1) Suppose there exists �a, b1�w �w w-� Fw and �a, b2�w �w w-� Fw.

Then there exists functions fw,1, fw,2 �w Fw such that fw,1�a� �w b1 and fw,2�a� �w b2.
But since fw,1 and fw,2 are compatible and a �w dom�fw,1� �w dom�fw,2�, therefore
b1 �w fw,1�a� �w fw,2�a� �w b2.
This shows that w-� Fw is a w-function.

(2) Suppose x �w dom w-� Fw . Then x �w dom�f� for some fw �w Fw.

Suppose y �w dom�fw� for some fw �w Fw. Then x �w dom w-� Fw .

Therefore dom w-� Fw �w w-� �dom�fw�|fw �w Fw�w.

Definition 16.8.(i) Let Ă and B� be w-sets. The set of all w-functions on Ă into B� is
denoted w-B� Ă.
(ii) Let Ā be a classical set and let B� w be w-set. The w-set of all sw-functions on Ā
into B� is denoted w-B� Ā.
(iii) Let Ăw be w-set and let B
 a classical set. The w-set of all ws-functions on Ă
into B
 is denoted w-B
 Ă.

17. Inconsistent w�n�-Relations and w�n�-Functions of the
order inconsistency n � 1.

Definition 17.1. (i) An w�n�-ordered pair �a, b�w�n� is defined to be
��a�w�n�,�a, b�w�n��w�n� :

�a, b�w�n� � ��a�w�n�,�a, b�w�n��w�n�. �17. 1�

We further define w�n�-ordered triples

�a, b, c�w�n� � ��a, b�w�n�, c�w�n� �w�n� �

���a�w�n�,�a, b�w�n��w�n�,���a�w�n�,�a, b�w�n��, c�w�n��w�n�,
�17. 2�

w�n�-ordered quadruples . . . w�n�-ordered n-tuples etc.
(iv) An w�n�-ordered pair �a, b�w�n� is defined to be ��a�w�n�,�a, b�w�n��w�n�.

�a, b�w�n� � ��a�w�n�,�a, b�w�n��w�n�. �17. 3�

We further define w�n�-ordered triples

�a, b, c�w�n� � ��a, b�w�n�, c�w�n� �w�n�

���a�w�n�,�a, b�w�n��w�n�,���a�w�n�,�a, b�w�n��, c�w�n��w�n�,
�17. 4�

w�n�-ordered quadruples . . . w�n�-ordered n-tuples etc.
Definition 17.2.(i) A w�n�-set R� w�n� is a binary w�n�-relation if all w�n�-elements of R� w�n�are
w�n�-ordered pairs, i.e. for z �w�n� R� w�n� there exists x and y such that z �w�n� �x, y�w�n� .We

can
also denote �x, y�w�n� �w�n� R� w�n� as xR� w�n�y, and say that x is in w�n�-relation R� w�n� with y if
xR� w�n�y holds.

Definition 17.3.(i) The w�n�-membership w�n�-relation on Ăw�n� is defined by



�w�n�,Ăw�n�
�w�n� ��a, b�w�n� |�a �w�n� Ăw�n� � � �b �w�n� Ăw�n� � � �a �w�n� b��. �17. 5�

The w�n�-identity w�n�-relation on Ăw�n� is defined by

Id
w�n� ,Ăw�n�

� ��a, b�w�n� |�a �w�n� Ăw�n� � � �b �w�n� Ăw�n� � � �a �w�n� b��. �17. 6�

Definition 17.4.(i) Let Ăw�n� be w�n�-set and B
 be a classical set. The cartesian
w�n�s-product of Ăw�n� and B
 is

Ăw�n� �w�n� B
 �w�n�,s ��a, b�w�n�s|�a �w�n� Ăw�n� � � �b �s B
 ��. �17. 7�

(ii) Let Ā be a classical set and B� w�n� be a w�n�-set. The cartesian
sw�n�-product of Ā and B� w�n� is

Ā �w�n� B� w�n� �s,w�n� ��a, b�sw�n� |�a �s Ā� � �b �w�n� B� ��. �17. 8�

(iii) Let Ăw�n� , B� w�n� be w�n�-sets. The cartesian w�n�-product of Ăw�n� and B� w�n� is

Ăw�n� �w�n� B� w�n� �w�n� ��a, b�w�n� |�a �w�n� Ăw�n� � � �b �w�n� B� w�n� ��. �17. 9�

Definition 17.5.(i) A binary w�n�-relation F� w�n� is called a w�n�-function if aF� w�n�b1 and
aF� w�n�b2 imply b1 �w�n� b2 for any a, b1, and b2. This w�n�-unique b is the value of F� w�n�

at a and is denoted F� w�n��a�

or F� w�n�a. If dom�F� w�n� � �w�n� Ăw�n� and ran�F� w� �w B� w, we can denote F� w by
F� w�n� : Ăw�n� � B� w�n� , �F� w�n��a�|a �w�n� Aw�n� �w�n�

, �F� w�n�,a|a �w�n� Ăw�n� �w�n�
, or �F� w�n�,a �a�w�n� Ăw�n�

.

Definition 15.6.(i) Let f�w�n� : Ăw�n� �w�n� B� w�n� be a w�n�-function.

1) f�w�n� is w�n�-injective if for a1 �w�n� Ăw�n� and a2 �w�n� Ăw�n� , f�w�n��a1� �w�n� f�w�a2� if and
only

if a1 �w�n� a2.We call f�w�n� a w�n�-injection.

2) f�w�n� is w�n�-surjective if for every b �w�n� B� w�n� , there exists some a �w�n� Ăw�n� such
that

f�w�n��a� �w�n� b.We call f�w�n� a w�n�-surjection.

3) f�w�n� is w�n�-bijective if it is both w�n�-injective and w�n�-surjective. We call f�w�n� a
w�n�-bijection.

(ii) Let fs,w�n� : Ā �sw�n� B� w�n� be a sw�n�-function.
1) fs,w�n� is sw�n�-injective if for a1 �s Ā and a2 �s A, fs,w�n��a1� �w�n� fs,w�n��a2� if and only if
a1 �s a2.We call fs,w�n� a sw�n�-injection.
2) fs,w�n� is sw�n�-surjective if for every b �w B� w, there exists some a �s Ā such that
fs,w�n��a� �w�n� b.We call fs,w�n� a sw�n�-surjection.
3) fs,w�n� is sw�n�-bijective if it is both sw�n�-injective and sw�n�-surjective. We call fs,w�n� a
sw�n�-bijection.
(iii) Let fw�n�,s : Ăw�n� �w�n�,s B
 be a w�n�s-function.
1) fw�n�,s is w�n�-injective if for a1 �w�n� Ăw�n� and a2 �w�n� Ăw�n� , fw�n�,s�a1� �s fw�n�,s�a2�

if and only if a1 �w�n� a2.We call fw�n�,s an w�n�s-injection.
2) fw,s is w�n�s-surjective if for every b �s B
 , there exists some a �w Ăw such that
fw�n�,s�a� �s b.We call fw�n�,s a w�n�s-surjection.
3) fw�n�,s is w�n�s-bijective if it is both w�n�s-injective and w�n�s-surjective. We call fw�n�s a
w�n�s-bijection.



Definition 17.7.(i) (a) w�n�-functions fw�n� and gw�n� are called w�n�-compatible if
fw�n��x� �w�n� gw�n��x� for all x �w�n� dom�fw�n� � �w�n� dom�gw�n� �.
(b) A w�n�-set of w�n�-functions Fw�n� is called a w�n�-compatible system of w�n�-functions

if
any two w�n�-functions fw�n� and gw�n� from Fw�n� are w�n�-compatible.

Theorem 17.8. If Fw�n� is a w�n�-compatible system of w-functions, then

w�n�-� Fw�n� is a w�n�-function with

dom w�n�-� Fw�n� �w�n� w�n�-��dom�fw�n� �|fw�n� �w�n� Fw�n��w�n�
.

The w�n�-function w�n�-� Fw�n� extends all fw�n� �w�n� Fw�n� .

Proof. We need to show that:
(1) w�n�-� Fw�n� is a function and

(2) dom w�n�-� Fw�n� �w�n� w�n�-��dom�fw�n� �|fw�n� �w�n� Fw�n��w�n�
.

(1) Suppose there exists �a, b1�w �w w-� Fw and �a, b2�w �w w-� Fw.

Then there exists functions fw,1, fw,2 �w Fw such that fw,1�a� �w b1 and fw,2�a� �w b2.
But since fw,1 and fw,2 are compatible and a �w dom�fw,1� �w dom�fw,2�, therefore
b1 �w fw,1�a� �w fw,2�a� �w b2.
This shows that w-� Fw is a w-function.

(2) Suppose x �w dom w-� Fw . Then x �w dom�f� for some fw �w Fw.

Suppose y �w dom�fw� for some fw �w Fw. Then x �w dom w-� Fw .

Therefore dom w-� Fw �w w-� �dom�fw�|fw �w Fw�w�n�
.

Definition 17.9.(i) Let Ă and B� be w-sets. The set of all w-functions on Ă into B� is
denoted w-B� Ă.
(ii) Let Ā be a classical set and let B� w be w-set. The w-set of all sw-functions on Ā
into B� is denoted w-B� Ā.
(iii) Let Ăw�n� be w-set and let B
 a classical set. The w�n�-set of all w�n�s-functions on Ăw�n�

into B
 is denoted w�n�-B

Ăw�n� .

Inconsistent Equivalences and Orderings.

18.Inconsistent w-Equivalences and w-Orderings of the
order inconsistency zero.

In these subsections, we will finish defining a few important types of inconsistent
relations that will help in defining inconsistent natural and inconsistent real numbers in
set theory ZFC�

# .
Definition 18.1. (i) Let R� w

cl be almost classical binary w-relation in w-set Ăw
cl.

(a) R� w
cl is w-reflexive in Ăw

cl if for all a �w Ăw
cl, aR� w

cla.
(b) R� w

cl is w-symmetric in Ăw
cl if for all a, b �w Ăw

cl, aR� w
clb implies bR� w

cla.
(c) R� w

cl is w-antisymmetric in Ăw
cl if for all a, b �w Ăw

cl, aR� w
clb and bR� w

cla imply a �w b.
(d) R� w

cl is w-asymmetric in Ăw
cl if for all a, b �w Ăw

cl, aR� w
clb implies that �s�bR� w

cla�.
i.e. aR� w

clb and bR� w
cla cannot both be true.

(e) R� w
cl is w-transitive in Ăw

cl if for all a, b, c �w Ăw
cl, aR� w

clb and bR� w
clc imply aR� w

clc.
(ii) Let R� w be a binary w-relation in w-set Ăw.
(a) R� w is w-reflexive in Ăw if for all a �w Ăw, aR� wa.



(b) R� w is w-symmetric in Ăw if for all a, b �w Ăw, aR� wb implies bR� wa.
(c) R� w is w-antisymmetric in Ăw if for all a, b �w Ăw, aR� wb and bR� wa imply a �w b.
(d) R� w is w-asymmetric in Ăw if for all a, b �w Ăw, aR� wb implies that �s�bR� wa�.
i.e. aR� wb and bR� wa cannot both be true.
(e) R� w is w-transitive in Ăw if for all a, b, c �w Ăw, aR� wb and bR� wc imply aR� wc.
Remark.18.1. Note that if R� w ia binary w-relation in w-set Ăw then by the non
classical law of the excluded fourth (see sect. 2.1)

aR� wb 
 �s�aR� wb� 
 �w�aR� wb� �18. 1�

Definition 18.2.Let R� w be a binary w-relation in Ăw.
(a) R� w is an w-equivalence on Ăw if it is w-reflexive, w-symmetric, and w-transitive in

Ăw.
(b) R� w is a w-ordering of Ăw if it is w-reflexive, w-antisymmetric, and w-transitive in Ăw.
The pair �Ăw, R� w� is called an w-ordered w-set.
(c) R� w is a strict w-ordering of Ăw if it is w-asymmetric and w-transitive in Ăw.
Remark 18.2. Now that we have established the definition of w-orderings and strict
w-orderings, we can use �w and to denote w-orderings and �w and �w to denote strict
w-orderings.Thus �Ăw,�w � is an pair consisting of a set Ăw and an w-ordering �w ,
and �B� w,�w � is a pair consisting of a set B� w and a strict w-ordering �w .
There is a close relationship between w-orderings and strict w-orderings as we will
see in the next theorem.
Theorem 18.1.(a) Let R� w be an w-ordering of Ăw. Then the w-relation S� w in Ăw

defined by aS� wb if and only if aR� wb and �s�a �w b� is a strict w-ordering of Ăw.
(b) Let S� w be a strict w-ordering of Ăw. Then the w-relation R� w in Ăw defined by
aR� wb if and only if aS� wb or a �w b is an w-ordering of Ăw.
Proof. (a) We need to show that S� w is w-asymmetric. Suppose aS� wb and bS� wa both

hold
for some a, b �w Ăw. Then aR� wb and bR� wa both also hold. It follows that a �w b

because
R� wis w-antisymmetric. This is a contradiction since �s�a �w b�. Therefore S� w is
w-asymmetric.
(b) We need to show that R� w is w-antisymmetric. Suppose aR� wb and bR� wa both hold

for
some a, b �w Ăw.Suppose that �s�a �w b�. Then aS� wb and bS� wa both hold. This is a
contradiction since S� w is w-asymmetric.Therefore a �w b, showing that R� w is
w-antisymmetric.
Definition 18.3.An w-ordering � of Ăw is called strong w-linear w-ordering

if any two w-elements of Ăw are comparable in the w-ordering �w in classical
sense i.e. in accordance with classical law of the excluded third (see sect. 2.1)
i.e. for any a, b �w Ăw, either

a �w b, b �w a,or a �w b. �18. 2�

The pair �Ăw,�w � is called a strongly w-linearly w-ordered w-set.

Definition 18.4.An w-ordering �w of Ăw is called weak w-linear if any two

w-elements of Ăw are comparable in the w-ordering �w i.e. for any a, b �w Ăw, either

a �w b, b �w a,�w�a �w b�,�w�b �w a�, or a �w b. �18. 3�



The pair (Ăw, �w ) is called weakly w-linearly w-ordered w-set.

Definition 18.5. Let �w be a w-linear w-ordering �w of a w-set Ăw.
(i) The condition that a w-set X� w �w Ăw has a strong �w -least w-element x reads

�x�x �w X� ���y �w X� �x �w y��. �18. 4�

(ii) We assume now that a set X� �w Ăw has no a strong �w -least element

The condition that a set X� �w Ă has a weak �w -least element x reads

�x�x �w X� ���y �w X� ��x �w y� 
 �w�y �w x��� �18. 5�

Remark.18.3.Note that the conditions (i) and (ii) are not equivalent since (3.5.4) and
(3.5.5) are not equivalent by the non classical law of the excluded fourth (see sect.

2.1)
Definition 18.6.A w-linear w-ordering �w of a w-set Ăw is a weak well w-ordering if

every
nonempty w-subset X� of Ăw has at least a weak �w -least w-element. The structure
�Ăw,�w � is called a weakly well w-ordered w-set.

19. Inconsistent w�n�-Equivalences and w�n�-Orderings of
the order inconsistency n � 1.

Definition 19.1.Let R� w�n� be a binary w�n�-relation in w�n�-set Ăw�n� .

(a) R� w�n� is w�n�-reflexive in Ăw�n� if for all a �w�n� Ăw�n� , aR� w�n�a.

(b) R� w�n� is w�n�-symmetric in Ăw�n� if for all a, b �w�n� Ăw�n� , aR� w�n�b implies bR� w�n�a.
(c) R� w�n� is w�n�-antisymmetric in Ăw�n� if for all a, b �w�n� Ăw�n� , aR� w�n�b and bR� w�n�a

imply a �w�n� b.

(d) R� w�n� is w�n�-asymmetric in Ăw if for all a, b �w�n� Ăw�n� , aR� w�n�b implies that
�s�bR� w�n�a�.i.e. aR� w�n�b and bR� w�n�a cannot both be true.
(e) R� w�n� is w�n�-transitive in Ăw�n� if for all a, b, c �w�n� Ăw�n� , aR� w�n�b and bR� w�n�c

imply aR� w�n�c.

Definition 19.2.Let R� w�n� be a binary w�n�-relation in Ăw�n� .

(a) R� w�n� is an w�n�-equivalence on Ăw if it is w�n�-reflexive, w�n�-symmetric, and
w�n�-transitive in Ăw�n� .
(b) R� w�n� is a w�n�-ordering of Ăw�n� if it is w�n�-reflexive, w�n�-antisymmetric, and
w�n�-transitive in Ăw�n� . The pair �Ăw�n� , R� w�n�� is called an w�n�-ordered w�n�-set.
(c) R� w�n� is a strict w-ordering of Ăw�n� if it is w-asymmetric and w�n�-transitive in Ăw�n� .

Remark 19.1. Now that we have established the definition of w�n�-orderings and strict
w�n�-orderings, we can use �w�n� and to denote w�n�-orderings and �w�n� and �w�n� to
denote strict w�n�-orderings.Thus �Ăw�n� ,�w�n� � is an pair consisting of a set Ăw�n� and
an w�n�-ordering �w�n� ,and �B� w�n� ,�w�n� � is a pair consisting of a set B� w�n� and a strict
w�n�-ordering �w�n� .

There is a close relationship between w�n�-orderings and strict w�n�-orderings as we will
see in the next theorem.
Theorem 19.1.(a) Let R� w�n� be an w�n�-ordering of Ăw�n� . Then the w�n�-relation S� w�n� in

Ăw�n�

defined by aS� w�n�b if and only if aR� w�n�b and �s�a �w�n� b� is a strict w�n�-ordering of Ăw�n� .



(b) Let S� w�n� be a strict w�n�-ordering of Ăw�n� . Then the w-relation R� w�n� in Ăw�n� defined by
aR� w�n�b if and only if aS� w�n�b or a �w�n� b is an w�n�-ordering of Ăw�n� .

Proof. (a) We need to show that S� w�n� is w�n�-asymmetric. Suppose aS� w�n�b and bS� w�n�a

both hold for some a, b �w�n� Ăw�n� . Then aR� w�n�b and bR� w�n�a both also hold. It follows
that a �w�n� b because R� w�n� is w�n�-antisymmetric. This is a contradiction since
�s�a �w�n� b�. Therefore S� w�n� is w�n�-asymmetric.
(b) We need to show that R� w�n� is w�n�-antisymmetric. Suppose aR� w�n�b and bR� w�n�a both
hold for some a, b �w�n� Ăw�n� .Suppose that �s�a �w�n� b�. Then aS� w�n�b and bS� w�n�a both
hold. This is a contradiction since S� w�n� is w�n�-asymmetric.Therefore a �w�n� b, showing
that R� w�n� is w�n�-antisymmetric.

Definition 19.3.An w�n�-ordering � of Ăw�n� is called strong w�n�-linear w�n�-ordering or

strong total w�n�-ordering if any two elements of Ăw�n� are comparable in the
w�n�-ordering
�w�n� i.e. for any a, b �w�n� Ăw�n� , either

a �w�n� b, b �w�n� a,or a �w�n� b. �19. 1�

The pair �Ăw�n� ,�w�n� � is called a strongly w�n�-linearly w�n�-ordered w�n�-set.

Definition 19.4.An w�n�-ordering �w�n� of Ăw�n� is called weak w�n�-linear if any two

w�n�-elements of Ăw�n� are comparable in the w�n�-ordering �w�n� i.e. for any
a, b �w�n� Ăw�n� ,

either

a �w�n� b, b �w�n� a,�w�a �w�n� b�,�w�b �w�n� a�, or a �w�n� b. �19. 2�

The pair �Ăw�n� ,�w�n� � is called weakly w-linearly w�n�-ordered w�n�-set.

Definition 19.5. Let �w�n� be a w�n�-linear w�n�-ordering �w�n� of a w�n�-set Ăw�n� .

(i) The condition that a w�n�-set X� w�n� �w�n� Ăw�n� has a strong �w�n� -least w�n�-element x

reads

�x�x �w�n� X� w�n� ���y �w�n� X� w�n��x �w�n� y��. �19. 3�

(ii) We assume now that a set X� w�n� �w�n� Ăw�n� has no a strong �w�n� -least w�n�-element

The condition that a w�n�-set X� w�n� �w�n� Ăw�n� has a weak �w�n� -least w�n�-element x

reads

�x�x �w�n� X� w�n� ���y �w�n� X� w�n���x �w�n� y� 
 �w�y �w�n� x��� �19. 4�

Remark.19.2.Note that the conditions (i) and (ii) are not equivalent since (3.5.4) and
(3.5.5) are not equivalent by the non classical law of the excluded �n � 1�-th (see sect.
2.2)
Definition 19.6.A w�n�-linear w�n�-ordering �w�n� of a w�n�-set Ăw�n� is a weak well

w�n�-ordering if every nonempty w�n�-subset X� w�n� of Ăw�n� has at least a weak �w�n� -least
w�n�-element. The structure �Ăw�n� ,�w�n� � is called a weakly well w�n�-ordered w�n�-set.

Inconsistent natural numbers �w�n� .

20. Almost classical w-natural numbers �w
cl.

In defining the almost classical w-natural numbers (or a.cl. w-natural) we begin by



examining the most fundamental set, the empty almost classical set �� s,w.We can very
easily create a pattern that is a prime candidate for the definition of the almost classical
w-natural numbers:

0w
cl � �� s,w,

1w
cl �w �0w

cl�w
�w 0w

cl �w �0w
cl�w

�w ��� s,w
cl �w,

2w
cl � �0w

cl, 1w
cl�w

�w 1w
cl �w �1w

cl�w
�w ��� s,w,��� s,w�w�w

3w
cl �w �0w

cl, 1w
cl, 2w

cl�w
�w 2w

cl �w �2w
cl�w

�w ��� s,w,��� s,w�w,��� s,w,��� s,w�w�w�w,etc.

Definition 20.1. Let Sw
cl�y� abbreviate y �w

cl �y�w
cl.Almost classical w-set X� w

cl is called
w-inductive if

�X� w
cl �� s,w �w X� w

cl � �y�y �w X� w
cl � Sw

cl�y� �w X� w
cl� . �20. 1�

Definition 20.2. (i) The set of all almost classical w-natural numbers is defined by
�w

cl � y|y �w X� w
cl for any almost classical w-inductive w-set X� w

cl
w

.

(ii) If n �w �w
cl, then n �w

cl 1w
cl �w �w

cl, where n �w
cl 1w

cl denotes the w-successor to n.
Theorem 20.1.Almost classical w-induction.

�X� w
cl�X� w

cl �w �w
cl� �� s,w �w X� w

cl � �x�x �w X� w
cl � Sw

cl�x� �w X� w
cl � � X� w

cl �w �w
cl . �20. 2�

Proof.Immediately from theorem 3.4.1.
Definition 20.3. An almost classical w-ordering �w

cl of �w
cl is called

almost classical w-linear w-ordering if any two w-elements of �w
cl are

comparable in the w-ordering �w
cl , i.e. for any a, b �w �w

cl,either
a �w

cl b, b �w
cl a or a �w

cl b.
Definition 20.4.We define now the almost classical w-relations:
(i) �w

cl on �w
cl by: for all m, n �w �w

cl, m �w
cl n if and only if m �w n,

(ii) �w
cl on �w by: for all m, n �w �w, m �w

cl n if and only if m �w n or m �w n,
Theorem 20.2. ��w

cl,�w
cl � is a linearly ordered almost classical w-set.

Proof. We need to show (I) The relation �w
cl is an almost classical

w-ordering of �w
cl and (II) Any two elements in �w

cl are
comparable. We will do this by induction.
(I) We need to show (A) �w

cl is w-transitive on �w
cl and

(B) �w
cl is w-asymmetric on �w

cl.
(I.A.) Consider the property Pw

cl�n� : for all k, m �w �w
cl, if k �w

cl m
and m �w

cl n, then k �w
cl n.

We need to show this holds for all n �w �w
cl.

(i) Base case: Consider Pw
cl�0�.

Since there does not exist an m � �w
cl such that m � 0, Pw

cl(0) is trivially true.
(ii) Induction hypothesis: Suppose Pw

cl(n) holds. Consider Pw
cl(n � 1).

Suppose k � m and m � n � 1 both hold. This implies m � n or m � n.
Case 1) m � n. Then k � n by induction hypothesis.
Case 2) m � n. Then since k � m, k � n is trivial.
Thus P(n) holds for all n � �w

cl.
Therefore � is transitive on �w

cl.
(I.B.) Suppose have n �w

cl m and m �w
cl n. Then by w-transitivity n �w

cl n.
Consider the property Qw

cl�n� : n �w
cl n,where n �w

cl n abbreviate �s�n �w
cl n�.

We need to show this holds for all n �w �w
cl.

(i) Base case: Consider Qw
cl�0w

cl�.



Suppose Qw
cl�0w

cl� does not hold. Then we have 0w
cl �w

cl 0w
cl, which by

definition is �� s,w �w �� s,w, which is a contradiction to the defnition of �� s,w .
(ii) Induction hypothesis: Suppose Qw

cl(n) holds. Consider Qw
cl(n � w

cl1w
cl).

Suppose Qw
cl(n �w

cl 1w
cl) does not hold. Then n � 1 � n � 1, by definition,

is n � 1 � n � 1.
We know n � 1 � n � {n}, which implies that n � 1 � n or n � 1 � n.
Case 1) n � 1 � n. Thus n � 1 � n. But since n � n � 1, by
transitivity we have n � n, which
contradicts the induction hypothesis.
Case 2) n � 1 � n. This is obviously a contradiction.
Thus Q(n) holds for all n � �w

cl.
Therefore � is asymmetric on �w

cl.
(II) We need to show any two elements in �w

cl are comparable in �.
Consider the property R(n) : �m �

N, either m � n, n � m, or m � n. We need to show this holds for all n � �w
cl.

(i) Base case: Consider R(0).
0 � m for all m � �w

cl, so 0 � m or m � m. Thus R(0) holds.
(ii) Induction hypothesis: Suppose R(n) holds. Consider R(n � 1).
Consider an arbitrary m � �w

cl. Since R(n) holds, n � m, m � n, or m � n.
Case 1) m � n. Then since n � n � 1, by transitivity m � n � 1.
Case 2) m � n. Then since n � n � 1, m � n � 1 is trivial.
Case 3) n � m. We need to show m � n � 1 or n � 1 � m.
Apply induction on m. Consider the property S�m� : for all n � �w

cl if n �w
cl m,

then n � 1 �w
cl m. Need to show this holds for all m �w �w

cl.
a) Base case: Consider S�0�.
S�0� holds since there is no n �w

cl 0.
b) Induction hypothesis: Suppose S(m) holds. Consider S(m � 1).
Assume n �w

cl m � 1 � n �w
cl m or m � n.

Case i) n � m. Thus n � 1 � m by induction hypothesis.
m � m � 1 implies n � 1 � m � 1. Thus n � 1 � m � 1.
Case ii) n � m. Thus n � 1 � m � 1 implies n � 1 � m � 1.
� S(m) holds for all m � N.
Thus R(n) holds for all n � N.
Therefore any two elements in N are comparable in �.
Therefore (N, �) is a linearly ordered set.

21.Inconsistent w�0�-natural numbers of the order
inconsistency zero �w�0� .

Definition 21.1. Let Sw�y� abbreviate y �w �y�w.A w-set X� is called w-inductive if

�X� �� w �w X� � �y�y �w X� � Sw�y� �w X� � . �21. 1�

Definition 21.2. The set of all w-natural numbers is defined by
�w � y|y �w X� for any w-inductive w-set X�

We denote this w-set by �w.



Theorem 21.1. w-Induction principle.

�X� �X� �w �w� �� w �w X� � �x�x �w X� � Sw�x� �w X� � � X� �w �w . �21. 2�

Proof.Immediately from theorem 3.4.2.
Definition 21.3. An w�0�-ordering �w�0� of �w�0� is called w�0�-linear if any two
w�0�-elements of �w�0� are comparable in the w�0�-ordering �w�0� , i.e. for any
a, b �w�0� �w�0� , either a �w�0� b, a �� w�0�

w b, b �w a, b �� w�0�
w a, or a �w b.

Definition 21.4. (i) The w�0�-relation �w�0�
� on �w�0� is defined by: for all m, n �w�0� �w�0�

such that m �w�0�
w n : m �w�0� n if and only if m �w�0� n or n �w�0�

w m

(ii) The relation �w
� on �w is defined by: for all m, n �w �w, m �w n if and only if m �w n

or n �w�0�
w m or m �w n.

Definition 21.5.We define now the w�0�-relations:
(i) �w�0� on �w�0� by: for all m, n �w�0� �w�0� , m �w�0� n if and only if m �w�0� n,

(ii) �w�0� on �w�0� by: for all m, n �w�0� �w�0� , m �w�0� n if and only if n �w�0�
w m,

(iii) �w�0� on �w�0� by: for all m, n �w�0� �w�0� , m �w�0� n if and only if m �w�0� n

or m �w�0� n,

(iv) �w�0� on �w by: for all m, n �w�0� �w�0� , m �w�0� n if and only if n �w�0�
w m

or m �w�0� n.

Theorem 21.2. ��w�0� ,�w�0� � is a w�0�-linearly w�0�-ordered w�0�-set.

Proof. We need to show:
(I) The relation �w�0� is an w�0�-ordering of �w�0� and

(II) Any two w�0�-elements in �w�0� are comparable in the w�0�-ordering �w�0� .

We will do this by induction.
(I) We need to show:
(A) �w�0� is w�0�-transitive on �w�0� and

(B) �w�0� is w�0�-asymmetric on �w�0� .

(I.A.) Consider the property P�n� : for all k, m �w�0� �w�0� , if k �w�0� m and m �w�0� n,

then k �w�0� n.

We need to show this holds for all n �w�0� �w�0� .
(i) Base case: Consider P�0w�0��.

Since there does not exist an m �w �w such that m �w �� , P���� is trivially true.
(ii) Induction hypothesis: Suppose P�n� holds. Consider P�n �w 1�.
Suppose k �w m and m �w n �w 1w both hold. This implies m �w n or m �w n.
Case 1) m �w n. Then k �w n by induction hypothesis.
Case 2) m �w n. Then since k �w m, k �w n is trivial.
Thus P�n� holds for all n �w �w.
Therefore �w is transitive on �w.
(I.B.) Suppose have n �w m and m �w n. Then by transitivity n �w n.
Consider the property Q�n� :
�s�n �w

1 n�. We need to show this holds for all n �w �w.
(i) Base case: Consider Q�0w�.
Suppose Q�0w� does not hold. Then we have 0w �w

1 0w, which by definition is �� �w �� ,
which is a contradiction to the defnition of �� w .
(ii) Induction hypothesis: Suppose Q�n� holds. Consider Q�n �w 1w�.



Suppose Q�n �w 1w� does not hold. Then n �w 1w �w
1 n �w 1w, by definition, is

n �w 1w �w n �w 1w.
We know n � 1w �w n �w �n�w, which implies that n � 1 �w n or n �w 1 �w n.
Case 1) n �w 1w �w n. Thus n �w 1w �w n. But since n �w n �w 1w, by transitivity
we have n �w n, which contradicts the induction hypothesis.
Case 2) n �w 1w �w n. This is obviously a contradiction.
Thus Q�n� holds for all n �w �w.
Therefore � is asymmetric on �w.
(II) We need to show any two elements in �w are comparable in �� �w ��
Consider the property
R�n� : �m �w �w,either m �w n, n �w m, or m �w n. We need to show this holds
for all n �w �w.
(i) Base case: Consider R�0w�.
0w �w m for all m �w �w, so 0w �w m or m �w m. Thus R�0w� holds.
(ii) Induction hypothesis: Suppose R�n� holds. Consider R�n �w 1w�.
Consider an arbitrary m �w �w. Since R�n� holds, n �w m, m �w n, or m �w n.
Case 1) m �w n. Then since n �w n �w 1w, by transitivity m �w n �w 1w.
Case 2) m �w n. Then since n �w n �w 1w, m �w n �w 1w is trivial.
Case 3) n �w m. We need to show m �w n �w 1w or n �w 1w �w m.
Apply induction on m. Consider the property
S�m� :for all n �w �w if n �w m, then n �w 1w �w m.
Need to show this holds for all m �w �w.
a) Base case: Consider S�0w�. S�0w� holds since there is no n �w 0w.
b) Induction hypothesis: Suppose S�m� holds. Consider S�m �w 1w�.
Assume n �w m �w 1w � n �w m or m �w n.
Case i) n �w m. Thus n �w 1w �w m by induction hypothesis.
m �w m �w 1w implies n �w 1w �w m �w 1w. Thus n �w 1w �w m �w 1w.
Case ii) n �w m. Thus n �w 1w �w m �w 1w implies n �w 1w �w m �w 1w.
� S�m� holds for all m �w �w.
Thus R�n� holds for all n �w �w.
Therefore any two elements in �w are comparable in �w .
Therefore ��w,�w � is a w-linearly w-ordered set.
Definition 21.6. Let �w be a w-linear w-ordering �w of a set �w.
(i) The condition that a set X� �w �w has a strong �w -least element x reads

�x�x �w X� ���y �w X� �x �w y��. �21. 3�

(ii) We assume now that a set X� �w �w has no strong �w -least element

The condition that a set X� �w Ă has a weak �w -least element x reads

�x�x �w X� ���y �w X� ��x �w y� 
 �w�y �w x��� �21. 4�

or in the following equivalent form

�x�x �w X� ���y �w X� �x �w
2 y��. �21. 5�

Remark.21.2.Note that the conditions (i) and (ii) are not equivalent since (3.6.1) and
(3.6.3) are not equivalent by Theorem 3.6.2.
Definition 21.7.A w-linear w-ordering �w of a w-set �w is a weak well w-ordering if

every



nonempty w-subset X� of �w has at least a weak �w -least w-element. The structure
��w,�w � is called a weakly well w-ordered w-set.

Theorem 21.3. ��w,�w � is a weakly well w-ordered w-set.

Proof. We will prove by using induction.
(I) Let X be a nonempty w-subset of �w and there exists strong complement �w\s,wX.
Suppose that:
(i) X does not have a strong �w -least w-element and
(ii) X does not have a weak �w -least w-element.
Then consider the set �w\s,wX.
Case 1) �w\s,wX �w �� w. Then X �w �w and so 0w is a strong �w -least element. But
this is a contradiction.
Case 2) �s �w\s,wX �w �� w . There exists an n �w �w\s,wX such that for all k

such that �k �w
1 n� � �k �w

1 n� the following hold k �w �w\s,wX (n necessarily exists
because 0w �w �w\s,wX, else 0w �w X and would be a strong �w -least element of X. )
Since we have supposed that:(i) X does not have a strong �w -least least element
and (ii) X does not have a weak �w -least element, thus �s�n �w X� and therefore
n �w �w\s,wX. Thus we see that if for all k such that �k �w

1 n� � �k �w
1 n�, k �w �w\s,wX

the following hold n �w �w\s,wX.
Using now strong induction we can conclude that n �w �w\s,wX for all n �w �w. Thus
n �w �w\s,wX �w �w implies X �w �� w.This is a contradiction to X being a nonempty

subset
of �w in consistent sense.

22.Recursion and the addition operation in �w�0� .
Definition 22.1. A w-sequence is a w-function whose domain is a w-natural number
or �w. A w-sequence whose domain is some w-natural number nw �w �w is called a
w-finite w-sequence of length nw and is denoted �ai|i �w n�w.
Definition 22.1. A w-function t�w : �m �w 1w� � Ăw is called an m-step w-computation
based on a and ğw if t�w,0w �w a, and for all k such that
0w �w k �w m, t�w,k�w 1w �w ğw�t�w,k, k�.
Theorem 22.1. The w-Recursion Theorem.
For any w-set Ăw, any a �w Ăw, and any function ğw : Ăw �w �w � Ăw,
there exists a w-unique w-sequence f�w : �w � Ăw such that
(a) f�w,0w �w a and (b) f�w,nw�w 1w �w ğw�fw,n, nw��nw �w �w.
Proof. (The existence of f�w)
Let a �w Ăw and ğw : �w �w Ăw � Ăw.
Let F� w �w �t�w �w Pw��w �w Ăw� | t�w is an m-step w-computation on a and ğw

for some m �w �w�.
Let f�w �w �w F� w.
Claim 1: f�w is a w-function.
By Theorem 3.4.1, it is enough to show that Fw is a system of w-compatible
w-functions.
Let t�w,ŭw � F� w, dom�t�w� �w n �w �w, dom�u� �w m �w �w.
We can assume without loss of generality that n �w m. We will use w-induction
principle (Theorem 3.6)



to prove �k �w n �tk �w uk� .
(a) Base case: k �w 0w.
We know t�w and ŭw are w-computations based on a and ğw.
Thus t�w,0w �w a �w ŭw,0w is trivial.
(b) w-Induction hypothesis: Let k be such that k �w 1w �w n.
Suppose t�w,k �w ŭw,k.Then t�w,k�1 �w ğw�t�k, k� �w ğw�ŭw,k, k� �w ŭw,k�w 1w .
Therefore Fw is a system of w-compatible w-functions.
Therefore f�w is a w-function.
Claim 2: dom f�w �w �w and ran f�w �w Ăw.

(It is obvious that dom f�w �w �w and that ran f�w �w Ăw.

We then need to show that �w �w dom f�w to

prove dom f�w �w �w. We will prove with w-induction.)

(a) Base case: Clearly t�w �w ��0w, a�� is a 0w-step w-computation.
Thus 0w �w dom f�w .

(b) Induction hypothesis: Suppose t is an n-step computation, where
n �w dom f�w .

Define t�w
� on �n �w 1w� �w 1w by t�w,k

� �w tw,k if k �w n, tw,n�w 1w
� �w ğw�t�w,n, n�.

We can see that t�w
� is an n�w1w step w-computation.

Thus �n �w 1w� �w dom f�w .Therefore dom f�w �w �w.

Claim 3: f�w satisfies conditions (a) and (b)
(a) Clearly f�w,0 �w a since t�w,0 �w a for all t�w �w F� w. Thus satisfying (a).
(b) Let t be an (n�1) step computation. Then f�w,k �w t�w,k for all k �w dom�t�w�.
This implies f�w,n�1 �w t�w,n�1 �w ğw�t�w,n, n� �w ğw�f�w,n, n�. Thus satisfying (b).
Therefore the existence of a function f�w satisfying the properties required by the
Recursion Theorem follows from Claims 1,2,3.
(The uniqueness of f�w)
Let h� w : �w � Ăw satisfy (a) and (b). We will show f�w,n �w h� w,n for all n �w �w

by w-induction.
(a) Base case: f�w,0 �w a �w h� w,0 is trivial.
(b) Induction hypothesis: Suppose f�w,n �w h� w,n.
Then f�w,n�1 �w ğw�f�w,n, n� �w ğw�hw,n, n� �w h� w,n�1.
Therefore h� w �w f�w.
Theorem 20.2. The Parametric w-Recursion Theorem
Let ăw : P� w � Ăw and ğw : P� w �w Ăw �w �w � Ăw be w-functions. There exists a
unique w-function f�w : P� w �w �w � Ăw such that
(a) f�w�p, 0w� �w ăw�p� for all p �w P� w

(b) f�w�p, n �w 1w� �w ğw�p, f�w�p, n�, n� for all n �w �w and p �w P� w.
Proof. Define a parametric m-step computation to be a w-function
t�w : P� w �w �m �w 1w� � Ăw such
that, for all p �w P� w, t�w�p, 0w� �w ăw�p� and t�w�p, k �w 1w� �w ğw�p, t�w�p, k�, k�
for all k such that 0w �w k �w m. The rest of the proof is similar to the proof of the
recursive theorem with the additional task of carrying p along and so will be omitted.
Notice that the parametric version takes into account an additional variable of p. This
allows us to define addition of w-natural numbers because addition is binary
w-operation.



Theorem 20.3. Addition Operation of w-Natural Numbers.
There is a unique binary w-operation �� �w �� : �w � �w � �w such that
(a) m �w 0w �w m for all m �w �w,
(b) m �w �n �w 1w� �w �m �w n� � 1w for all m, n �w �w.
Proof. This is the exact same proof as the parametric version of the
w-recursion theorem.
Let Ăw �w P� w �w �w,ăw�p� �w p for all p �w P� w, and
ğw�p, x, n� �w x �w 1w for all p, x, n �w �w.
This definition satisfies all properties of addition such as
(i) a �w 0w �w a, (ii) a �w b �w b �w a, (iii) a �w �b �w c� � �a �w b� �w c.

Inconsistent w�n�-Integers �w�n�, w�n�-Rationals �w�n�, and
w�n�-Reals �w�n�.

21.Inconsistent w-Integers �w, w-Rationals �w and
w-Reals �w of the order inconsistency zero �w.

Now that we have the inconsistent natural numbers, defining inconsistent integers and
inconsistent rational numbers is well within reach.

Definition 21.1. (i) Let �w
cl� �w �w

cl �w �w
cl.We can define an w-equivalence relation

�w on Zw
cl� by �a, b�w �w �c, d�w if and only if a �w d �w b �w c. Then we denote the

w-set
of all almost classical w-integers by �w

cl �w �w
cl�/ �w (The set of all w-equivalence

classes
of �w

cl� modulo �w ).
(ii) Let �w

� �w �w �w �w.We can define an w-equivalence relation
�w on Zw

� by �a, b�w �w �c, d�w if and only if a �w d �w b �w c. Then we denote the w-set
of all w-integers by �w �w �w

� / �w (The set of all w-equivalence classes of
�w
� modulo �w ).

Definition 21.2. (i) Let �w
cl� �w �w

cl �w ��w
cl\w�0w

cl�w� �w ��a, b�w �w �w
cl �w �w

cl|b �s 0w
cl�w.

We can define an w-equivalence relation �w on �w
cl� by �a, b�w �w �c, d�w if and only if

a �w d �w b �w c. Then we denote the w-set of all almost classical rational w-numbers
by
�w

cl �w �w
cl�/ �w i.e.the almost classical w-set of all equivalence classes of �w

cl� modulo
�w .
(ii) Let �w

� �w �w �w ��w\w�0w�w� �w ��a, b�w �w �w �w �w|b �s 0w�w.
We can define an w-equivalence relation �w on �w

� by �a, b�w �w �c, d�w if and only if
a �w d �w b �w c. Then we denote the w-set of all inconsistent rational w-numbers by
�w �w �w

� / �w i.e.the w-set of all equivalence classes of �w
� modulo �w .

Definition 21.3. A w-linearly w-ordered w-set �P� w,�w � is called w-dense if for any
a, b �w P� such that a �w b, there exists z �w P� w such that a �w z �w b.
Lemma 21.1. ��w,�w � is w-dense.
Proof. Let x � �a, b�, y � �c, d� � �w be such that x �w y.
Consider z � �a �w d �w b �w c, 2w �w b �w d� � �w. It is easily shown that x �w z �w y.
Before we can define the real numbers, we will need a few more concepts.
Definition 21.4. Let �P� ,�w � be a linearly w-ordered set.



A pair of w-sets �Ă, B� � is called a w-cut if
(a) Ă and B� are nonempty w-disjoint subsets of P� and Ă �w B� �w P� .
(b) If a �w Ă and b �w B� , then a �w b.
Definition 21.5. �Ăw, B� w� is called a strong Dedekind w-cut if additionally

(a) Ă does not have a strong �w -greatest w-element.
�Ă, B� � is called a strong w-gap if additionally
(b) B� does not have a strong �w -least w-element.
Definition 21.6. �Ă, B� � is called a weak Dedekind w-cut if additionally

(a) Ă does not have even a weak �w -greatest w-element.

�Ă, B� � is called a weak w-gap if additionally

(b) B� does not have even a weak �w -least w-element.

Remark 21.1. We have two kinds of a strong Dedekind w-cuts
1) Ones where B �w �x �w P|xw �p for some p �w P�,
2) strong w-gaps.

Remark 21.2. We have two kinds of a strong Dedekind w-cuts

This distinction will be needed later in the proof of completion.
We see even though rational numbers are dense, they clearly have gaps. Take for
example the two sets
1) Ă �w �x �w�n� �w|xw �0w and x �w xw �2�

2) B� �w �x �w �w|�w�x �w A��
Clearly �Ă, B� � is a gap in �w.
Intuitively, we know that the w-real numbers cannot have w-gaps,and so
our next step is to explore how to close gaps. We notice that the existence
of w-gaps is closely related to the existence of w-suprema of w-bounded w-sets.
Definition 21.5. Let �P� w,�w � be a w-dense linearly w-ordered w-set.
(i) P� w is a strongly w-complete if every nonempty S� �w P� bounded above has a
strong w-supremum.
(i.e. �Pw,�w � does not have any w-gaps.)
(ii)
There is a close relationship between dense linearly ordered w-sets and complete
linearly w-ordered w-sets as we will show. This close relationship is what will allow
us to define the w-real numbers.
Theorem 21.1. Let �P� w,�w � be a dense linearly w-ordered w-set without endpoints.
Then there exists a w-complete linearly w-ordered w-set �C� w,�w � such that
(a) P� w �w C� w.
(b) If p, q �w Pw, then p �w q if and only if p �w q.
(c) Pw is w-dense in Cw.
(d) Cw does not have w-endpoints.
Furthermore, �Cw,�w � is unique up to an isomorphism over Pw. The w-linearly

w-ordered
w-set �Cw,�w � is called the w-completion of �Pw,�w �.
Proof. Part 1: (The existence of w-completion)
We reference the two kinds of Dedekind cuts from remark 7.6.



We will denote those of the first kind by
�p�w � �Aw, Bw� where Bw �w �x �w Pw|xw �p for some p �w Pw�w.
We can then define the w-set
Pw �w ��p�w|p �w Pw�w

Cw �w ��Aw, Bw�|�Aw, Bw� is a Dedekind w-cut in �Pw,�w ��.
Furthermore, we can order Cw and Pw

by �Aw, Bw� � �Aw
� , Bw

� � if and only if Aw � Aw
� .

Claim 1: �Pw,�w � is isomorphic to �Pw,�w �.
Let p, q �w

� Pw
� and the corresponding �p�w �w �Aw, Bw�, �q�w �w �Aw

� , Bw
� � �w Pw

�

where Aw �w �x �w Pw|x �w p�w and Aw
� � �x � P|x �w q�w.

Suppose p �w q. Then it follows that Aw �w Aw
� .

So [p]w �w [q]w, which proves the claim.
Claim 2: �Cw,�w � is a w-linearly w-ordered w-set.
a) Let �r�w �w �Aw, Bw�, �s�w � �Aw

� , Bw
� �, and �t�w �w �Aw

�� , Bw
�� � �w Cw

where Aw �w �x �w Pw|x �w r�w,
Aw

� �w �x �w Pw|x �w s�w,and Aw
�� �w �x �w Pw|x �w t�w.

Suppose �r�w �w �s�w and �s�w �w �t�w. Then A �w Aw
�

and Aw
� � Aw

�� � A � Aw
�� � �r� �w �t�. Therefore �Cw,�w � is w-transitive.

b) Suppose �r�w �w �s�w and �s�w �w �r�w. Then A �w Aw
� and Aw

� �w Aw which is a
contradiction. Therefore �Cw,�w � is w-asymmetric.
c) Take �s�w and �t�w. Since these sets are defined based on s and t �w Pw,
one and only one of three cases
can occur: s �w t, t �w s, or s �w t. It follows that A � Aw

� , Aw
� � A, or A � Aw

� .
Thus �s�w �w �t�w, �t�w �w �s�w,or �t�w �w �s�w. Therefore �Cw,�w � is w-comparable.
Therefore �Cw,�w � is a w-linearly w-ordered w-set.
Claim 3: �Cw,�w � satisfies (a)-(d) from the theorem.
(a) By definition, Pw

� is a w-set of Dedekind w-cuts of Pw. Therefore Pw
� �w Cw

is trivial.
(b) Let �p�w �w �Aw, Bw�, �q�w �w �Aw

� , Bw
� � �w Pw

�

where Aw �w �x �w Pw|x �w p�w and
Aw

� �w �x �w Pw|x �w q�w. Suppose �p�w �w �q�w

(where �w denotes the relation in Pw).
It follows that A �w Aw

� .
We know also that �p�w, �q�w �w Cw.� �p�w �w �q�w

(where �w denotes the relation in Cw). The
converse is similarly trivial. This shows that �w in Pw coincides with �w in Cw.
(c) Let �p�w �w �Aw, Bw�, �q� �w �Aw

� , Bw
� � �w Pw

�

where A �w {x �w Pw | x �w p}w and
Aw

� � {x �w Pw | x �w q}w. Suppose [p]w �w [q]w. Thus p �w q and A �w A. Consider
z � A \A. Then
p � z � q and [p] � [z] � [q]. Since [z] � P, we can conlude that P is dense in (C, �).
(d) Let [p] � (A, B) where A � {x � P | x � p}. Since (P, �) does not have endpoints,

there
exists z � p. It follows that there exists [z] such that [p] � [z]. Therefore C does not

have
w-endpoints.



Claim 4: (Cw, �w) is w-complete.
Let S be a nonempty w-subset of C that is w-bounded above.
Let As � S {A | (A, B) � S} and Bs � P - As � T {B | (A, B) � S}.
We can see that (As , Bs ) is a dedekind w-cut and is an upper bound of S.
(We need to show that (As , Bs ) is the supremum of S.)
Suppose (A 0 , B0 ) is an upper bound of S. Then A � A 0 �(A, B) � S. It follows that
A s � A 0 . This shows that (As , Bs) (A0 , B0). Therefore �As, Bs� is the
supremum of S and (Cw, �w) is w-complete.
We can see that �As, Bs� is a dedekind cut and is an w-upper bound of S.

(We need to show that (As , Bs ) is the w-supremum of S.)
Suppose (A0 , B0 ) is an w-upper bound of S. Then A � A0 �(A, B) � S.
It follows that As � A0 . This
shows that (As, Bs) (A0 , B0). Therefore (As, Bs ) is the w-supremum of S
and (C, �) is w-complete. Therefore (C, �) is the w-completion of (P, �).
Part 2: (Uniquness of w-completion up to an isomorphism)
Let (C, �) and (C� ��) be two w-complete w-linearly w-ordered w-sets
satisfying (a)-(d).
We need to show there exists an isomorphism between the two.
If c �w C, then let Sc �w �p � Pw|p �w c�w.
If c� �w C, then let Sc

� �w �p �w Pw|p �w
� c��w.

We define the w-mapping hw : Cw � Cw
� as follows: hw�c� �w w-sup� Sc.

We now need to prove that h is onto, preserves w-orderings, and hw�x� �w x�x �w Pw.
(1) Let c� �w C�. Then c� �w w-sup��Sc�, so we can choose c �w ww-sup Sc� .
We see that
Sc �w Sc� and hw�c� �w c�, therefore showing that h is onto.
(2) Let c �w d. Then there exists p �w Pw such that c �w p �w d because Pw is dense.
We see that w-sup� Sc �w

� p �w
� w-sup� Sd, showing that h�c� �w

� h�d�.
(3) Let x �w Pw. Then w-sup�Sx� �w w-sup��Sx� �w x, so h�x� �w x.
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