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Abstract.In this paper we dealin using paraconsistent first order logic [P, = Unw LP,
with restricted modus ponens rule and infinite levels of a contradiction [1]-[4], where
[P, is an paraconsistent first order logic with n levels of a contradiction.
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1.Introduction

In this article we dealing using non-classical approach based on paraconsistent set
theory ZFC? [1-4].

2.The Graham Priest argument.

In this paper we dealin using paraconsistent first order logic [P, = Unw LP. with
restricted modus ponens rule and infinite levels of a contradiction [1]-[4], where CP, is an
paraconsistent first order logic with n levels of a contradiction. Let IZ = L* (TZ) be the

formal language corresponding to logic LP,, and let (9_’2 be the set of the all wff's of IZ.
Remark 2.1.In contrast with ordinary classical (unrestricted) modus ponens rule

AA - Buyup B (2.1)
the restricted modus ponens rule reads
AA - Bt+grup Bifandonly if A ¢ Ajand A - B ¢ Ay, (2.2)

where A1,A2 & ?Z.Thus it is not in general true by using paraconsistent first order
logic CP. that if A > B holds and A holds then B holds.

Remark 2.2. In adition in logic P, we distingvish a strong negation —sA and a

weak negation —,A. A strong negation that is ordinary classical negation, i.e. —sA

holds if and only if A+ B,B € ﬂ_fZ.A weak negation that is nonclassical negation, i.e.

A A —wA might holds.

Remark.2.3. In particular, ((AA =wA) - B) A (AA —=wA) might hold while B does not.

Remark.2.4.In particular is that this permit a solution to the following problem raised

by Graham Priest [5],[6]. Ordinarily one wants postulates such as the Cancellation
Law

VX|:ﬁ(x=O)—>Vsz(x><y:x><z—>y:z):| (2.3)

to hold when moving from the classical theory of the rings to nonclassical theory of the



inconsistent rings.But canonical inconsistent fields [i.e. inconsistent fields based on
canonical inconsistent logic with unique negation —] have both

—(Xinc = 0) and X;nc = 0 (2.4)
for some Xinc [for examle (Xinc = 1) A (Xinc = 0)] and therefore
VYVZ(Xine XY = Xine X Z = 0) (2.5)

holding.Yet one does not want to detach every y = z or the theory is trivial. Yet one
also

does not want to forbid detachment for those x which are classically not identical with

zero.

Remark 2.5.0bviously Priest paradox arises from the statement:

x classically not identical with zero. (2.6)

The statement (2.6) completely does not well defined by using canonical inconsistent
logic with unique negation —.Note that if the statement —(x = 0) treated classically i.e.
under definition of the strong negation —s (see Remark.2.1), this meant impossibilyty

x = 0,i.e. the statement x = 0 is not holds classically and assuming that both —(x = 0)
and x = 0 holding we conclude that the statement —(x = 0) is not holds classically

in contrary with Priest assumption (2.6).Cancellation Law (2.3) breaks down.

Remark 2.6.In order to avoid the difficultness mentioned above we

apply the logics [P, n > land postulate the Cancellation Law in the following form

VX|:ﬁs(x=0)—>Vsz(x><y=x><z—>y=z):|, (2.7)
and
VX|:ﬁW(x=O)—»Vy,Vz(x><y=x><z—>y:z):|. (2.8)

We set now instead (2.4) that
—w(X =0) and x = 0. (2.9)
From (2.7) one to detach y = z only for such x which are classically not identical with
zero as it should be. However if we set (Xinc = 1) A Xinc = 0) € A1 and
((Kine = 1) A Xinc = 0)) > 0= 1) € Aq then
(Xme=1)AXinc=0)) >0=1rrup 0=1 (2.10)
as it should be.

3.Inconsistent logic with restricted modus ponens rule

based on RM3-assignment.

The classical example of the inconsistent logic with restricted modus ponens rule

has been proposed by C.E. Mortensen, see ref.[5-7].

Let £ be an canonical language consisting of simple terms (names), one for each real
number; function symbols +, x,—,+; atomic predicates =,<,<; variables x,y,z,... and
operators —, A, V.

Remind that any RM3-assignment [5],[6] is a function | assigning to the wff’s of £, or
the appropriate sublanguage of £ under investigation at the time, values from the set



{T,N,F} in accordance with the following definition:

(i) for any atomic wif with terms ti,t2, we have I(t1 = t2),l(t1 < t2) and I(t1 € t2) all

belong to {T,N,F}, (read 'true, neuter, false’);

(ii) 1(=A) and I(A A B) are given by the RM3-matrices:
A T NF =
*T'T N F
*N NN F
F FFF

(3.1)

= 2 T

(i) I((X)A) = min{y : for some term t,I(A(t}x)) =y}, where min is relative to the
ordering: false < neuter < true. A sentence A holds in an assignment | iff I[(A) € {T,N}.

Let us consider now the classical standard model of the natural numbers, equipped
with names for the natural numbers. In view of the Extendability Lemma [8],[9], the set of
sentences holding therein can be extended by adding any collection of sentences of the
form —(n = n) and evaluating in an RM3-assignment. Note that the contradiction does
not spread to other sentences of the form —(m = m). Similarly, collections of sentences
of the form n = mfor distinct n,m, may be added with the same result.

This raises the following question [5]. If we add, for example, 0 = 2 to the standard
model of the natural numbers, then, in virtue of the substitutivity of identity and the fact
that —(0 = 2) also holds, have we not imported the further sentence —(0 = 0)? The
answer is no, and it illustrates the generality of the Extendability Lemma.

The rule of substitutivity of identity () in the form if t; = t; holds, then Ft; holds iff Ft»
holds (all terms t1,t,, with t> replacing t; in F1 at least one place) does not always hold in
RM3-assignments. What is the case, if the sentences holding in an RM3-assignment
include those holding in the standard model of the natural numbers, is that

(t1 = t2 A Ft1) - Ft2 holds, since it holds in the standard model.

Remark 3.1.But it is not in general true that if A - B holds and A holds then B holds.

In particular, ((A A =A) - B) A (AA —A) might hold while B does not, i.e.

(AA—A) - B truz B, (3.2)
where by rus We denote the rule of conclusion corresponding to RM3-assignments.
However, this leads to no loss of information from classical arithmetic, since we do

have

that if (A - B) A A holds, and if moreover (A - B) A A holds back in the standard
model

for arithmetic, then B holds (trivial).

Remark 3.2.(i) A special case of interest is this: if t1 = t2 A Ft1 holds and if moreover

—(t1 = t2) and —Ft; both do not hold, then Ft; holds. (Reason: for then t; = to A Ft1

holds back in the classical complete subtheory, wherein Ft, could be detached.)

(ii) Thus the rule S does not hold in all RM3-assignments.

4. The da Costa type paraconsistent logic C% with infinite
levels of a contradictions and restricted modus ponens rule
can to save Naive Set Theory from a trivality.



It well known that canonical da Costa’s paraconsistent logics is invalid in order to
obtain non trivial paraconsistent set theory,see [8]. In order to resolve this tension we
consider the da Costa type paraconsistent logics C% with infinite levels of a
contradictions and restricted modus ponens rule mentioned above.

We remind that da Costa paraconsistent set theory is a paraconsistent set theory
whose underlying logic is one of da Costa’s paraconsistent logics C;,1 < n < .

Definition 4.1.The postulates of C, are those of the positive intuitionistic first-order

logic with equality, plus:

1) —A=A

2 AvV-A

(3) unrestricted modus ponens rule : A/4A = B +ump B.

Definition 4.2.The postulates of C;,1 < n < w, are those of Cj, plus:

1) B™MAA=B)AA= —B) = —A,

2) AMAB™ = (4 =BM™ARAABM™A(AVB®,

(3)  (PAX)®™ = (VHAX)® A (FAX) ™,

where AM™ defined as follows: Al = A? = (A A —A),A™ = (AN AM = AL AL AA",

(4) unrestricted modus ponens rule :

A,A =B Fump B.

Ineach, C;,1 < n< o, ~*Ais defined as —-A A A, and it is proved that satisfies alll
the properties of the classical negation. Then classical logic can be obtained inside
these systems; consequently, they are finitely trivializable. For, from any formula of the
form AA —-A A A™ one can deduce any formula whatsoever. Nonetheless, C; is not
finitely trivializable. Moreover, each system terns in the hierarchy C7,C5,...,C;,...,C, is
strictly stronger than the following ones. Thus, we may construct a hierarchy of da
Costa’s paraconsistent set theories in which, at least intuitively, it seems that each
system may admit more nonclassical sets than the preceding ones.

Definition 4.3.Let £, = £,(C;) be the formal language corresponding to logic C, and

let W, = W,,(£,,) be the set of the all wff's of £, The postulates of C? are those of the

postulates of C;, but with restricted modus ponens rule : A, 4 = B +rup, B if and only
if  (A,B) € A, x A, [instead unrestricted modus ponens rule (3)], where A, & W,,.

Definition 4.4.Let £, = £,(Cy) be the formal language corresponding to logic C; and

let W, = Wih(£n) be the set of the all wff's of £, The postulates of C,1 < n < o, are
those

of C,1 < n < w,but with restricted modus ponens rule : A,4 = B +rup, B if and only if

(A,B) € An x Aninstead unrestricted modus ponens rule (4), where An & Wh(C})

w
Definition 4.5.The postulates of C%, are [ J Cf; with restricted modus ponens rule :
n=1

A,4 = B rFrwp, Bif and only if (A,B) € | An x An.
n=1

We remind that da Costa paraconsistent set theories NF§ are constructed very
similarly
to NF. The main postulates of NF§ are the following [8]:

I.Extensionality



VaVpVXX € a <= xe€ B = a = p]. (4.1)
[l.LAbstraction
JaVX[X € a <= F(X)], (4.2)

where o does not occur free in F(x) and F(x) is stratified or it does not contain any
formula of the form A = B.

5. The paraconsistent set theory NF#based on logic C#

with infinite levels of a contradiction.

Definition 5.1.The main postulates of NF# are those of the postulates of NFS but

with logic of type C¥ instead logic C;.

Definition 5.2.The main postulates of NF4,1 < n < w, are those of the postulates of

NF§ but with logic of type C§,1 < n < o, instead logic C;,.

Definition 5.3.The main postulates of NF#,are those of the postulates of NFS but

with logic of type C¥%.

Da Costa’s paraconsistent set theories of type NFS and NF§, 1 < n < . has been
studying A.l. Arruda [8].A.l. Arruda has been proved that da Costa’s formulation of the
axiom schema of abstraction (1.2.2) for the systems NF,, 1 < n < o, leads to the
trivialization of the systems (see [8]).

Remark 5.1.Note that in NFS, the restrictions regarding the use of non-stratified
formulas obstruct a direct proof of the paradox of Curry. Russell’'s set R, defined as
X—=(X € X), exists as well as many other non-classical sets. The paradox of Russell in the
form R € R A (R € R) is derivable but apparently, it causes no ham to the system.

Due to its weakness, the primitive negation of NFS,—, is almost useless for
set-theoretical purposes. Thus, let us define

~Afor A = VXVy[Xx e yAX =Y]. (5.1)

The universal set V is defined as X(x = x), the empty set # as X ~(x = x),and the
complement of a set a, @, as X~(x € a).

Theorem 5.1.[8]. In NF§,~ is a minimal intuitionistic negation.

Corollary 1.+ A= (A= ~B), + (A= B) = (-B = ~A).

Corollary 2. All the theorems of NF whose proofs depend only on the laws of the

minimal intuitionistic first-order logic with equality and on the postulates of
extensionality

and abstraction of NF are valid in NF¢.

Theorem 5.2.[8].(Cantor’'s Theorem) NF§ ~ ~(a < P(a)).

Corollary.[8].(Cantor’'s Paradox) NFS  (V < P(V)) A~(V < P(V)).

Remark 5.2.Note that Cantor’s paradox does not trivialize NFS, since from A and —A

we cannot obtain any formula B whatsoever. For instance, apparently, we cannot
obtain

any formula of the form —B, where B is a nonatomic formula.

Theorem 5.3.[8].(i) NFS + VaVB[(a = B) A~(a = B)],(ii) NF§ + [(a € B) A~(a € B)],

(i) NFS - [(a € a) A ~(a € a)].

Proof. By the corollaries of theorems 5.1 and 5.2, we obtain



X=X=9,
0 = Vavp[(a € B)A(a=p)]

Thus, as x = X, then YaV(a = ). By the same corollaries we also obtain

VaVp[~(a = B)]. The proof of part (ii) is similar to that of part (i). Part (iii) is an

immediate consequence of part (ii).

Remark 5.3. We introduce now the logic of type C# with A, = AS such that

(X = Xx,8) ¢ AS.Thus in NF# with A, = A3 Theorem 1.2.3 no longer holds.

Remark 5.4. Note that: (i) By Theorem 1.2.3, it could seem that NF§ is trivial.

Nonetheless, apparently this is not the case.

(i) However, though it is nontrivial, NF$ is without interest, for not only are every two

sets identical, but also every set belongs and does not belong to itself.

Remark 5.5.In order to avoid the results mentioned in Theorem 5.3, one could

think of introducing more restrictions in da Costa’s formulation of the axiom schema of

abstraction when F(x) is non-stratified. Nonetheless, we be live that this is a worthless

effort. For:

() The only non-stratified formula used in the proof of Cantor’s Theorem

(which is fundamental in the proof of Theorem 5.3) is a non-stratified formula of the

form a € B. Then, the new restrictions must avoid those nonstratified atomic formulas

of the form a € B which determine a set.

(i) A new proof of Theorem 5.3 may be obtained in the following way: in NF the

formula y = {X} cannot determine a relaticm because (x,y) = (X,y) A (y = {X}) is non-

stratified. But, such a formula does not contain any subformula of the form A = B;

then, in NFS it determines a relation Ssuch that Se 1 - 1, see [7],pp.12. With such a

relation we prove that a < P(a). In NFS we also prove that ~(a¢ < P(a)). Then, these
new

restrictions must also avoid that those non-stratified formulas whose atomic sub
formulas

are of the form o = § determine a set.

(iii) From the above remarks (i) and (ii) we conclude that, in order to avoid the

counterintuive results mentioned in Theorem 5.3, the axiom schema of abstraction in

NFS should be formulated as in NF.

Remark 5.6.Due to the paradoxes obtained in NFS, we conclude that in these

system the axiom schema of abstraction should be formulated as in NF. Thus, if we
want

these theories to be paraconsistent set theories, we need to postulate directly the

existence of contradictory sets. .Apparently, we may postulate the existence of
Russell's

set without any problem. Nonetheless, due to the two above considerations about the

non-stratified formulas that lead to the proof of the paradox of identity, we believe that,

besides Russell's set, very few other non-classical sets may exist in NF,, 1 < n < .

Definition 5.4.[8].Let us denote by DC, any da Costa set theory based on the

respective C,,, where Russell's class is a set. Thus, in DC,,1 < n < o, the defined

negation —*A < —A A A is a classical negation; and in DC,, the defined negation

~A = A = VXVYy[X € y A X = y] is a minimal intuitionistic negation.

Theorem 5.4.[8].Let R be Russell's set. In DC,,1 < n < o,U UR is the universal set.

(5.24)



Definition 5.5.[8].Let DCY, be a DC,, with universal set V defined as X(x = X).
Let us define x = V for 3y[~(y € x)].We introduce now the postulate:
PLVX(Xx=V)V X+ V)]

Theorem 1.2.5.[8]. In DCY, + P1is derivable UUR = V.

6. The paraconsistent set theory ZF# based on logic C%

with infinite levels of a contradiction.

In this section da Costa’s set theories of type ZF we denoted by ZF,,1 < n < o.

A.l. Arruda has been proved that da Costa’s set theories of type ZF incompatible with
the existence of Russell's set R [8].

Le us consider the set theories ZF,,1 < n < w, in which the axioms of pairing and inion
are postulated in general, and in which we also postulate the existence of the espty set
aml of RusselltsS set. Moreover, let us suppose that there is no universal set, i.e.,

Sh. VXAy[—=*(y € X)], in ZF,,1 < n < o;

Se. VX3Ay [~(y € X)], in ZF,,.

Theorem 6.1.[8].The set theories ZF,,1 < n < w plus S, are trivial.

Proof. By S, there exists y such that —*(y € U UR). By part Il of Lemma 4.3 [7], and

part | of Lemma 4.4 [8], we obtain ¥x(x € U UR). Consequently,

y e UURA=*(Y € UUR), (6.1)
and this formula trivializes the system.

Theorem 6.2.[8]. The paradox of identity is derivable in ZF, plus S,.

Proof. By S, there exists y such that ~(y € UUR). Using part Il of Lemma 4.3 [8],
we obtain y € U UR. Consequently, by the definition of ~ it follows VXVy(x € yA X = Y)
and therefore, the paradox of identity, VxVy(x = y),follows.

Theorem 6.3.[8].. The systems ZF, ,1 < n < o with Russell's set and the axiom

schema of separation postulate for all sets are trivial.

Proof.If the axiom schema of separation is postulated for all sets then there exists a
subset a of R such that (1) VX[ x € & < (x € R) A (x € x)™ ].From (1) we obtain
(2)a € a = —(a € a) A (a € a)™.Consequently, we have (a € a) A—*(a € a),and
this formula trivializes the system.

Definition 6.1.We introduce now paraconsistent logic of type C%,= | J Ci with
n=1

restricted modus ponens rule : A, 4 = B rrwp, Bif and only if (A,B) € A, = [JAn,
n=1
and we choose a set A, such that
(a € a) N=*(a € @) Frmp, D, (6.2)

i.e.,from (¢ € a) A =*(a € a) we cannot obtain any formula whatsoever.

Definition 6.2.())The main postulates of ZF# are those of the postulates of ZF} but

with logic of type Cf instead logic Cx. (i) The main postulates of ZF% are | J ZF} with
n=1

logic of type C# mentioned above in Definition 6.1.

7. Nonclassical bivalent propositional language with a
strong negation —s and a weak negation —,.



Remind that any syntactic system comprises a vocabulary and a grammar.The
vocabulary of a syntactic system is a nonempty set of elements called words. An
expression is any finite sequence of words. If A is the expression (e, ...,e,) we shall
simply write it as e;...e,. In addition, we define the operation of concatenation: the
concatenation AB of two expressions A and B is defined by (e1,...,em) (ém1,...,€n) =
(e1,...,em,em1,-..,En).With any syntactic system there is associated a wellordering of the
expressions, called the alphabetical order. The grammar of the system consists in the
division of the set of expressions into the class of nouns, the class of sentences, classes
of functors of various kinds (and possibly a remainder of expressions that have no
significant role at all). When a noun or sentence belongs to the vocabulary itself, it is
generally called atomic; expressions that are not words are called molecular. When the
system is defined, the grammatical division of the vocabulary may be given at once, and
used to define the molecular nouns and sentences. As an example, we take the
language of the propositional calculus.

Definition 7.1. A propositional classical syntactic system (PCLS) is a triple (A,L,S),

where:

(a) A is a set, at most denumerable (the atomic sentences);

(b) L is a set of four distinct elements {A,—s,), (} (logical signs), disjoint from A ;

(c) S (the set of sentences) is the smallest set including A & Sand such that if A,B are

in S, so are (i) —=sA and (ii) AA B.

Definition 7.2. A propositional nonclassical syntactic system (PNCLS) is a triple

(A*,L* S*), where:

(a) A% is a set, at most denumerable (the atomic sentences);

(b) L* is a set of four distinct elements {A,—s,—w, ), (} (logical signs), disjoint from A%

(c) $* (the set of sentences) is the smallest set including A#* < S* and such that if A, B

are in S, so are (i) —sA, (i) =wA and (iii) AA B.

Remind that a valuation of a syntactic system is a function that assigns T (true) to
some of its sentences, and/or F (false) to some of its sentences. We do not rule out that
not all sentences are assigned T or F, nor that no sentence is assigned T (respectively,
F), nor that some sentences are assigned something else. Precisely, a valuation maps
a nonempty subset of the set of sentences into the set {T,F}.

Definition 7.3. We call a valuation bivalent iff it maps all the sentences into {T,F}.

In general, some of the symbols have an intended meaning, and this leads to a

distinction between admissible and inadmissible valuations. A language £ comprises

exactly a syntactic system (its syntax) and nonempty class of valuations of that
syntactic

system (its admissible valuations). The expressions of the syntax of £ are

also called expressions of £. As an example we consider again the propositional

calculus.

In that subject, one is generally concerned with a kind of language that we shall

call a bivalent propositional language.

Definition 7.4. £, is a classical bivalent propositional language with a strong negation

—sA iff its syntax is a PCLS and its admissible valuations are the functions
v:S- {T,F}

such that for all sentences A,B of £ :

(i) v(A) € {T,F};



(i) v(—=sA) = T iff v(A) = F;

(i) V(AAB) =T iffv(A) =v(B) =T.

Example 7.1.Classical bivalent propositional language with a strong negation —s and

with just two atomic sentences,p and g. This language has just four admissible
valuations,

which are partially depicted by the following truth table:

* P g =P = PA—sd PA—sP

vi T T

v T F (7.1)
V3 F T

V4 F F

Definition 7.5. £ is a nonclassical bivalent propositional language with a strong

negation —sA and a weak negation —, corresponding to praconsistent logic with zero

levels of a contradictions LP§ (see sect.8) iff its syntax is a PNCLS and its admissible

valuations are the functions v# : S% - {T,F},where S = S{US}, SiNSs = @ such that

for all sentences A, B of £} :

(i) v¥(A) € {T,F};

(i) V¥ (A A B) =T iff v¥(A) = V¥(B) = T.

(ii) for any A € S} : v¥(—sA) = T iff v¥(A) = F;

(iii) for any A € S} : V¥ (—wA) = T iff V¥(A) = F;

(iv) for any A € S : v (—wA) = T iff v¥(=sA) = F and

VH(—wA) = Fiff vVF(—A) = T;

Remark 7.1.Note that for A € S} any admissible valuation has the same truth tables

for both strong negation —sA and a weak negation —,A. However for A € S any

admissible valuation has the truth tables

Example 7.2.Nonclassical bivalent propositional language with a strong negation —s
and

with just two atomic sentences,p and qg. This language has just four admissible
valuations,

which are partially depicted by the following truth table:

*x peS{ qe S —sp —wpP —sd —wq

vi T T F F T F

vo T T (7.2)
V3 F F

Va F F

Definition 7.6. £# is a nonclassical bivalent propositional language with a strong

negation —sA and a weak negation —, corresponding to praconsistent logic with one

level of a contradictions iff its syntax is a PNCLS and its admissible valuations are the

functions V¥ : S* > {T,F},where S$* = S;USSUSE, SiNSs = @ such that for all
sentences

A, B of L% :

(i) v¥(A) € {T,F};



(ii) for any A € S* : v#(—sA) = T iff v¥(A) = F;

(i) V(A A B) = T iff V¥(A) = v¥(B) = T.

(iv) for any A € S} : v (—wA) = T iff VF(A) = F;

(v) forany A € S : v¥(—wA) = T iff —wA € S§ and V#(A) = T;

(vi) forany A € S§ : VH(—wAAA) = T iff -yA € S§ and V¥(A) = T;

(vii) forany A € S5 : VF([(=wA A A) A —w(=wA A A)]) = F and v¥(A) € {T,F};

Note that the property (vii) means that —w(—wA A A) ¢ Sh.

Definition 7.7.Abbreviation ¢ ¢+ stands for (a ") = g™ A —a{¥,1 < k < n,

where % 2 g,a't = (a A —wa).

Definition 7.8. £# is a nonclassical bivalent propositional language with a strong

negation —sA and a weak negation —, corresponding to praconsistent logic with n

levels of a contradictions iff its syntax is a PNCLS and its admissible valuations are
the

functions V¥ : S* - {T,F},where S* = S;US}, S{NS; = @ such that for all sentences

A, B of £# :

(i) V¥(A) € {T,F};

(ii) for any A € S* : v#(—sA) = T iff v¥(A) = F;

(i) V(A A B) = T iff V¥(A) = v¥(B) = T.

(iv) for any A e S} : v (—wA) = T iff VF(A) = F;

(v) forany A € S : v¥(—wA) = T iff —wA € S§ and V#(A) = T;

(vi) forany A € S§ : VH(—wAAA) = T iff -yA € S§ and V¥(A) = T;

(vi) A e S : VH(AT) = T iff - (A) e Sh for any k < nand v¥(A) = T;

(vii) forany A € S5 : V¥(AI™) = Fand v#(A) € {T,F};

Note that the property (vii) means that —,(A"") ¢ Sj.

Remark 7.1.

The most important concept as in classical case is that of satisfaction.

Definition 7.9. A set X of sentences of £# is satisfied by an admissible valuation v# of

LEiff vi(A) =T for every A e X.We shall also say “v* satisfies A” when v# satisfies

{A},and “X (respectively, A) is satisfiable (in £%)” when some admissible valuation of
L4

satisfies X (respectively, A).

Definition 7.9. Ais a valid sentence (in symbols, i A) in £ iff every admissible

valuation of £# satisfies A.

Definition 7.10. X is an unassailable set of sentences of £# iff X is (a set of

sentences of £#) such that every admissible valuation of £* satisfies some member

of X. Thus Ais valid iff {A} is unassailable; unassailability is a generalization of validity.

Note that “X is unassailable” is not the same as “no admissible valuation assigns

F to every member of X" unless all the admissible valuations are bivalent. (This is why

we could not use “not falsifiable” instead of the contrived term “unassailable.”)

Definition 7.11. X semantically entails A (X -, A) in £# iff every admissible valuation

of £* that satisfies X also satisfies A.

We write “A I, B” for “{A} I-n B”; is called the (double) turnstile. It is fairly easy to see

that A in £% if and only if @ -, Ain £, because all admissible valuations of £# satisfy

all sentences in the empty set, vacuously.

Syntactic transformations may preserve certain semantic properties. We call a



mapping

f of sets of sentences to sentences truth-preserving in language £# when if v satisfies
X,

then v satisfies f(X) holds for all arguments X of f and all admissible valuations v of £%.

Similarly, we say that f preserves validity in £# when the following property:

if A for all sentences A in X, then f(X), and if B, then f(B)

holds for all arguments X, B of f and all admissible valuations v of £%. The first part of

the following theorem says that a truth-preserving transformation also preserves
validity.

Theorem 7.1. (a) If X -y f(X) for every argument X of f, then f preserves validity.

() If A e X then X iy A

(i) IfFXcY,and X i, A, thenY -, A.

(i) If X rn Aforevery Ae Y, and Y Iy B, then X -, B.

Let £% be a language and VL% the set of its admissible valuations. We shall think of
the members of VL% as the points in an abstract space, the “valuation space” of
L#.Regions in that space are just sets of these points, that is, subsets of VL%, An
important kind of region is that usually designated as “elementary class.”

Definition 7.12. If Ais a sentence of £# and V£# the set of admissible valuations of
L#,

H&(A) = {v e VL : v¥(A) = T};and a set of X < VL% is an elementary class iff there is

a sentence A such that X = Hf(A).H%(A) may be called the truth set of A; if we were to

discuss several languages at once, we would obviously use expressions such as
"HA(A)

in L&."

Definition 7.13. The valuation space of £} is H* =
(VL* {H(A) : Aasentence of £} ).

Definition 7.14. We call the members of V% the points in H#, and write x € H# when
X

is such a point, or X* = H* when X* is a class of such points (region). So the valuation

space consists of a set of points, plus a family of regions that are singled out for
special

consideration. These regions, which we call the elementary classes, are also called

“arithmetical classes” or “axiomatic model classes.” Sometimes infinite intersections

HA(X#) = ﬂAex H#(A) = the set of all admissible valuations that satisfy Xare also

called
elementary classes. We shall accept this shorthand notation, but we shall not extend
the
term “elementary class” in this way.Note that H%(@) = Hf by the above definition, and
restricting the range of our variables to H.
The basic semantic concepts are easily expressed in terms of the valuation space:
(i) Ais a valid sentence iff HE(A) = HE.
(i) X is unassailable iff | ], HA(A) = Hf.
(iii) X is satisfiable iff nAex HA(A) + @.
(iv) B semantically entails A iff HE(B) < HE(A).
(v) X semantically entails A iff H:(X) < HE(A).



Let us take as an examples of the classical and nonclassical bivalent propositional
languages with a strong negation —s and with a weak negation —,, and with just two
atomic sentences,p and @.

Example 7.1.Classical bivalent propositional language with a strong negation —s and

with just two atomic sentences,p and q.

This language has just four admissible valuations, which are partially depicted by the

following truth table:

* —sP s PA—=sQ PA—sP
Vi

q

T
V2 F (7.1)
T

m 4 4 ©

V3
V4F F

Here H(p) = {v1,V2};H(=sp) = {v3,Va};H(Q) = {v1,Va};H(=sQ) = {v2,va}

H(PpA Q) = {vi};H(P A —sp) = &.

We also say that H = {v1,V2,Vs,Vs} - although this is clearly an inaccurate way of
speaking-hence H and Jfunction as the universal and null set here. Note that just

as J is the elementary class defined by a contradiction, so H is the elementary class
defined by a tautology.

8.First order paraconsistent propositional logic with zero

levels of a contradictions L Pg.

The postulates of propositional paraconsistent logic LP§ 2 LP§[A1,A>] are the
following. Let £% = £5(LP%) be the formal language corresponding to logic LP§ and let
F & be the set of the all wff's of £¥, where

A1, A2 & FE. (8.1)
The language £} of paraconsistent logic LP§ 2 LP%[A1,A»] has as primitive symbols:

(i) countable set of propositional variables (formulas that are not analyzed at the
propositional level);(ii) the connectives

—w, s, AV, = (82)

and (iii) the parentheses (,).
Formulas are defined as follows: (i) any propositional variable is a formula;
(i) if & and g are formulas, then

o - BaApB,aV P,—so,—wo (8.3)
are formulas;
(iii) the only formulas are those obtained from the preceding conditions (i) and (ii).
Definition 8.1. a « =2 (o > f) A (f ~ a).
Remark 8.1.Note that in logic L P} we distinguish a weak negation —,, and a strong
negation —s :
(i) a strong negation —s is a classical negation, i.e. —sA meant A + B if —sA holds;
(i) a weak negation —, is a nonclassical negation, i.e. —,A meant A + B if and only if
B ¢ A1 despite the fact that —wA A A holds and therefore —wA A A #rup B.



Remark 8.2.Note that in contrast with a classical negation —sA which always meant
the

absolute impossibility of the statement A the nonclassical negation —,A does not
always

meant the absolute impossibility of the statement A. Thus there exists a set A

such that for any A € A the statement A A —,A does not trivialize the system LP§ but

however the statement A A —wA is excluded by the law of excluded 4-th, see (8.4).

I. Logical postulates:

(1) A-(B-A),

2 A-B)->(A-(B-C) - (A-0),

3 A->(B-AAB),

(4 AAB-A,

5 AAB-B,

6) A-(AVB),

(7) B- (AvB),

® A-C->((B-C->(AVB-C),

(9 —sA - A,

(10) —sA » —wA,

(11) —=s—A » A,

(12) —w—wA » A,

(13) A - (=A - B),

(14) A > (—-,A > B)ifB ¢ Ay,
where A,B,C e F&.

(15) The law of excluded 5-th

[AV=A V= AV(=sA A=yA) ] A =s(A A =nA). (8.4)

Remark 8.3.Note that (7.4) obviously means that A A —,A is not holds in L P} since
by the Restricted Modus Ponens rule: A A =yA,—s(A A —wA)FrvpT.

II.Rules of a conclusion:

Restricted Modus Ponens rule RMP:

() A,A > Brryp BifA > B ¢ Ay

(ii) A,—sA FrupB €FE.

Modus Tollens rule for a strong negation:

P-Q,—sQFr —sP.

9.First order paraconsistent quantificational logic with zero

levels of a contradiction CPy,

Corresponding to the propositional paraconsistent relevant logic LP§[A1,A>] we
construct the corresponding paraconsistent relevant first-order predicate calculus
LPo = CPo[A1,Az). Let £ = £4(TP; ) be the formal language corresponding to logic

LP% and let F 4 be the set of the all wif's of £y, where

KLZ2 & 3_:?; (9 1)

Remark 9.1.Note that in contrast with a set A; and a set A, the set A; and the set A,
are recursively undecidable.



The language of the paraconsistent predicate calculus LP;, denoted above by Iﬁ, is
an

extension of the language £} introduced above, by adding:

(i) for every m € N, denumerable families of m-ary consistent (or strong) predicate

symbols 2 = £ = RP,RY,...,RT,... and m-ary consistent function symbols

o, f2,....fm ..., which depend only on classical consistent object (or consistent set)

variables;

(ii) for every m € N, denumerable families of m-ary inconsistent predicate symbols

R RY,...,RM,...,and mary inconsistent function symbols f,".f,",....fr", ...,

which depend only on non classical inconsistent object (or inconsistent set) variables;

(iii) for every m,I € N, denumerable families of m; + my-ary mixed predicate symbols

RpwHme RiwMz - RMHM2 - and my + mp-ary mixed function symbols

freme fmeme Mz which depend on classical consistent object variables and

on non classical inconsistent object (or inconsistent set) variables;

(iv) the universal vV and existential 3 quantifiers.

We assume throughout that: the language z§ contains also

(i) the classical numerals 0,1, ... ;

(i) countable set I" of the classical consistent object (or consistent set) variables

Tcon =T = 4{X,9,2,...} = {Xcon,Yoon, Zeon- - - };

(iii) countable set I of the non classical inconsistent object (or inconsistent set)

variables Tine = I = {X,¥,Z...} = {Xinc, Yinc, Zinc. - . »;

(iv) countable set ® of the classical non-logical constants ® = {@,b,C...};

(v) countable set © of the non classical non-logical constants © = {4,b,&... };

(vi)The notions of formula, free and bound variables in a formula, sentence (formula

without free variables) etc. are standard. The notations and metalogical conventions

extend those made for the propositional calculi.

The postulates of LP, are those of L P} (suitably adapted), i.e.

(1) A-(B-A),

2 A-B)->(A-(B-C) - (A-0),

3 A->(B->AAB),

(4 AANB-A,

(5 AAB-B,

(6) A-> (AvVB),

(7) B->(AvB),

® A-C-(B-C)~(AVvB-C),

(9) —s—sA - A,

(10) —sA » —WA,

(11) —s—wA » A,

(12) —w—wA » A,

(13 A - (=A - B),
a4A--=,A-B)ifB ¢A1,
where A,B,C e F.

(15) The law of excluded 5-th:



Remark 9.2.Note that (8.2) obviously means that A A —,,A is not holds in CPsince
by the Restricted Modus Ponens rule: A A =yA,—s(A A —wA)FruPT.
Plus the following:
a - B(X) a ~ (X a > P(X.Y)
1) =V M w19 e s vavEry
(2a) Vxa(X) — a(¥), (2b) VXa(X) - a(¥),(2c) VXVYa(X,Y) - a(X.y),

(33) a(x) - Ixa(X),(3b) a(X) - Ixa(X),(3c) a(x,y) - IXAYa(X,Y),
a(x) - ﬁ aX) ~ B axy) - B

“2) 30 = 5 Fm = 5% Tayary) - B

(5a) VX[(a(X))] - (3xa(%), (5b) VX[(a(X))] > (VXa (%),

(5¢) VRYY[(a(%,9)) V] - (VRVYa (%, 1)),

where we have used the following definition.

Definition 9.2.a%% 2 a A —s(a A —wa).

Where the variables x,X,y,y and the formulas e« and g satisfy the usual definition.

From the calculi CPg,one can construct the following predicate calculus with equality.
This is done by adding to their languages the binary predicates symbol of a strong
(consistent) equality (- =s ) and a weak equality(- = -) with suitable modifications in
the concept of formula, and by adding the following postulates:

(1) VX(X=sX),

(2) VXVY[X =¥~ (a(X) < a(y)],

(3) VRVIVZ(X =s V) A (¥ =5 2) - X =5 Z],

(4) VX[(X =w %) ],

(5) VXYY (X =w 1) = ((@(0)” = (@) ],

(6) VXVIVZ(X =w V) A (Y =w 2) > X =w Z],

(7) VI =w X,

(8) VYIX(Y =w ¥,

(9) VXVY[[(X =w )7) \% _‘S(X =w y) \% _'W(X =w )7)] A (X =w )7) {0}],

(10) VXYWWZ(X =w V) A (Y =w 2) = X =w Z]

(12) VRVIVZ (k =w ) A =w 2™ > (k=w )™ ].

II.Rules of a conclusion:

Restricted Modus Ponens rule RMP :

(i) A,A > B Fgryp Bif A > B ¢A;.

(i) A,—sA FrupB €FE.

Modus Tollens rule for a strong negation:

P-Q,—sQFr —sP.

10.First order paraconsistent propositional logic with one

level of a contradiction L P%.

The postulates of propositional paraconsistent logic LP% 2 LP%[A1,A,] are the
following. Let £% = £#(LP%) be the formal language corresponding to logic LP% and let
F*% be the set of the all wff's of £%,where

A1,A2 & 3:;% (10 1)
The language £% of paraconsistent logic LP% 2 LP%[A1,A»] has as primitive symbols:




(i) countable set of propositional variables (formulas that are not analyzed at the
propositional level);(ii) the connectives

—w, 715, AV, = (102)
and (iii) the parentheses (,).

Formulas are defined as follows: (i) any propositional variable is a formula;
(i) if & and g are formulas, then
a —’,B,OC/\ﬁ,O( \/,E,—|SOC,—|WOC (103)

are formulas;

(iii) the only formulas are those obtained from the preceding conditions (i) and (ii).

Definition 10.1. o < f =2 (a - f) A (B - a).

Remark 10.1.Note that in logic L P% we distinguish a weak negation —,, and a strong

negation —s :

(i) a strong negation —s is a classical negation, i.e. AA —sA + B

(i) a weak negation — is a nonclassical negation, i.e. -A meant A rup Bif B ¢ Aj.

Remark 10.2.Note that in contrast with a classical negation —sA which always meant
the

absolute impossibility of the statement A the nonclassical negation —,A does not
always

meant the absolute impossibility of the statement A. Thus there exists a set A

such that for any A € A the statement A A —,A does not trivialize the system LP%.

I. Logical postulates:

(1) A-(B-A),

2 A-B)->(A->(B-C) - (A-0),

3 A->(B-AAB),

(4 AAB-A,

5 AAB-B,

6) A-(AVB),

(7) B- (AvB),

® A-C-((B-C~>(AVB-0),

(9)_|s—lsA - A,

(10) —s—wA > A,

(1) —w—wA » A,

(12) A - (=A - B),

13) A-(-,A->B)ifB g A
(14) AA—-WAIFA € Ay,

(15) The law of excluded 8-th

AV=A V= AV(=sA A=wA) VA A=nA)V—w(A A—wA) V
—w[(A A—wA)A—w(A A—wA)] A (10.4)
A=s[(A A=wA)A=w(A A=wA) T},
where A,B,C e F4.
II.Rules of a conclusion:

Restricted Modus Ponens rule RMP:
(l)A,A - B |_RMP B |fA - B & AZ.



(“) A,—|SA }_RMPB 63_'?5#
Modus Tollens rules: P -» Q,—sQ + —sP.

11.First order paraconsistent quantificational logic with one

level of a contradiction LP;.

Corresponding to the propositional paraconsistent relevant logic LP5[A1,A,] we
construct the corresponding paraconsistent relevant first-order predicate calculus
LP; = CPi[A1,A;].Let £% = £%(TPY) be the formal language corresponding to logic

LP* and let F; be the set of the all wf's of £, where
AR S Fh. (11.1)

Remark 10.1.Note that in contrast with a set A; and a set A, the set A; and the set A;

are recursively undecidable.

The language of the paraconsistent predicate calculus LP;, denoted above by ff, is
an

extension of the language £% introduced above, by adding:

(i) for every m € N, denumerable families of m-ary consistent (or strong) predicate

symbols Xen = £ = RP,RY,...,RT,... and m-ary consistent function symbols

fn,f7,....f™ ..., which depend only on classical consistent object (or consistent set)

variables;

(if) for every m € N, denumerable families of m-ary inconsistent predicate symbols

RMRY,...,RM ...,and mary inconsistent function symbols f,;".f,",...,f",...,

which depend only on non classical inconsistent object (or inconsistent set) variables;

(iii) for every m,| € N, denumerable families of m; + my-ary mixed predicate symbols

RpwHme RiwMz - RMHM2 - and my + mp-ary mixed function symbols

fueme w2 which depend on classical consistent object variables and

on non classical inconsistent object (or inconsistent set) variables;

(iv) the universal Vv and existential 3 quantifiers.

We assume throughout that: the language ;Tif contains also

(i) the classical numerals 0,1, ...;

(ii) countable set T of the classical consistent object (or consistent set) variables
I'con = [ = {X,¥,2,...} = {Xcon, Ycon, Zcon- - - };

(iii) countable set I of the non classical inconsistent object (or inconsistent set)
variables Tinc = T' = {X,¥,2,...} = {Xinc,Yinc, Zinc. - - ;

(iv) countable set ® of the classical non-logical constants ® = {a,b,¢...};

(v) countable set ® of the non classical non-logical constants © = {a,b,&... };

(vi)The notions of formula, free and bound variables in a formula, sentence (formula
without free variables) etc. are standard. The notations and metalogical conventions
extend those made for the propositional calculi.

The postulates of LP; are those of LP% (suitably adapted), i.e.

(1) A-(B-A),

2 A-B)->(A->(B-C) - (A-0),

3 A->(B-AAB),

(4 AAB-A,



b)) AAB-B,

6 A-(AVB),

(7) B~ (AVB),

® A-C-((B-C~-((AVB-0),

(9)—|s—|5A g A,

(10) —s—wA - A,

(11) —w—wA » A,

(12) A » (-/A - B),

(13) A > (—,A - B)if B ¢A;
(14) AA—-WwAIfA €Ay,

(15) The law of excluded 8-th:

AV—=A VAV (—sA A—wA) VA A—wA)V—uw(A A—wA) V
—w[(A A=wA)A=w(A A—wA)] A (11.2)
/\{ﬁs[(A /\—|WA)/\_‘W(A /\_‘W'A‘)]}’
where A,B,C e F..
Plus the following:
a - BX) a - BX) a -~ BRY)
18 o =vxsm P aovx 19 7o vy !
(2a) Vxa(X) - a(y), (2b) Vxa(X) - a(y),(2¢) VXVya(X,y) - a(X,y),

(3a) a(x) » Ixa(x),(3b) a(x) - Ixa(X),(3c) a(x,y) - IXIVa(X,y),
a(x) - a(X) - a(X,y) -

(4a) 37«2(2-0 —>ﬁﬁ /(4b) ax(i&) —>ﬁ/3 .(4c) axaéa(ysz,y) f B’

(5a) VX[(a(x)™M] » @Exa(x)H, (5b) VX[(a(X)H] - (VXa(X)™,

(5¢) VRYY[(a(%y))H] » (VRYYa (%, y)H,

(6a) [VX((@())]Y - (YRa(®) A Gwa(X)),

(6b) [VX((a()]™ — (VXa(X) A (Fr—wa (X)),

(60) [VXYY((@(x YN ~ (VXVYa(%,¥) A FX3Y-wa(%.9)),

where we have used the following definition.

Definition 11.2.a% 2 g A —s(a A —wat), ot 2 a A =y and et 2 g0 v g {1,

Where the variables x,%,y,y and the formulas ¢ and g satisfy the usual definition.

From the calculi CP},0ne can construct the following predicate calculus with equality.
This is done by adding to their languages the binary predicates symbol of a strong
(consistent) equality (- =s ) and a weak equality(- =, -) with suitable modifications in
the concept of formula, and by adding the following postulates:

(1) V)_(()_( =s )_(),

(2) VXVY[X =¥~ (a(X) < a(®)],

(3) VXVYVZ (X =s y) A(Y =s2) - X=s12],

(4) VX[(X =w %)M],

(8) VXvY[ (% =u N > (2™ < (@@)™) ],

(6) VXVYVZ(X =w V) A (Y =w 2) = X =w Z],

(7) VYIXY =w X),




(8) VyIX(y =w )V,

(9) V)V(Vy[(x =w y) \ _‘S(X =w Y’) V _‘W(X =w y) \% (X =w y) [l]]’

(10) VXVYVZ (X =w Y) A (Y =w 2) > X =w Z]

(11) vrvyvz (X =w NP A = DM > (x =0 M ].

Il.Rules of a conclusion:

Restricted Modus Ponens rule RMP :

(i) A,A > B Fryp Bif A > B ¢A,.

(i) A, —sA FrypB eFE.

Remark 11.2.For example if we set [(1 =w Y) A(Y =w 0) » 0=y 1] € A,

L= YAY=020),QL=nyY)AY=w0)—> 0=y Itrmp 0 =y 1.

Modus Tollens rules: P - Q,—sQ + —sP.

Remark 11.3.Note that in contrast with classical rules of a conclusion the restricted

modus Ponens rule RMP is not recursive rule of a conclusion, since the set A; and
the

set A, are recursively undecidable.

12. First order paraconsistent propositional logic with n
levels of a contradiction L P%.

The postulates of propositional paraconsistent logic L P% = LP?,‘[A{”},AE”}] are the

following.Let £# = £#(LP¥) be the formal language corresponding to logic L P and
let F% be the set of the all wff's of £#% where
A" A < T (12.1)
The language £# of paraconsistent propositional logic L P% has as primitive symbols
(i) countable set of a propositional variables, (ii) the connectives —,—s, A, V,— and
(iii) the parentheses (,).
A,B,C, ... will be used as metalanguage variables which indicate formulas of
LPA[ AT, A" ].
Definition 12.1. a®® 2 g A =sa A —wa, Y = (e A —wa).
a1 stands for (a &)W = g A —pa®,1 <k <n,
Definition 12.2. ™ stands for a™ = ¢{® v o v...va{™ 1 < n.
I. Logical postulates:
L A->B-A),
2 A-B)->(A-(B->C) - (A-C0C),
3 A->(B->AAB),
(4 AANB - A,
5) AAB - B,
(6 A-(AVB),
(7) B->(AvB),
@ A-C)->((B->C)~>(AVB-C)),

(9)_|s—lsA - A,

(10) —s—wA - A,
(11) —w—wA » A,
(12) A - (=A ~ B),



(13) A > (-, A - B)ifB ¢ AJ",
(14) AA—wAifA € ASY,
(15) The law of excluded (n+ 8)-th:

{AV =AYV ANV (A A wAVA A =wA))V=w(A A —wA) V

ARy VAR VAT A AL (12.2)

where A,B,C e Fi.

II.Rules of a conclusion:

Restricted Modus Ponens rule RMP:
()A,A > B Fpyp Bif A > B & AV,

(i) A,—sA FrupB €FE.

Modus Tollens rules: P - Q,—sQ + —sP.

13. First order paraconsistent quantificational logic with n

levels of a contradiction CP~.

Corresponding to the propositional paraconsistent relevant logic LPﬁ[A{”} A“‘}]
construct the corresponding paraconsistent relevant first-order predicate calculus
CPy = LPA[ ALY AS" ].Let £ = £4(TPy ) be the formal language corresponding to
logic LP# and let F ., be the set of the all wff's of ., where
A A < Fh (13.1)
Remark 13.1.Note that in contrast with a set A" and a set A}” the set A{" and the

set Zé”}are recursively undecidable.

The language of the paraconsistent predicate calculus ﬁﬁ, denoted by Iﬁ, is an
extension of the language £} introduced above, by adding:
(i) for every m € N, denumerable families of mrary consistent (or strong) predicate

symbols Ton = 2 = RP,RY,...,RT, ... and m-ary consistent function symbols
fn.f2,...,fm ..., which depend only on classical consistent object (or consistent set)
variables;

(ii) for every m € N, denumerable families of m-ary inconsistent predicate symbols
R RY,...,RM,...,and mary inconsistent function symbols f,".f,",....fT", ...,

which depend only on non classical inconsistent object (or inconsistent set) variables;
(iii) for every m,I € N, denumerable families of m; + my-ary mixed predicate symbols
RpwHme RiwMz R and my + mp-ary mixed function symbols

freme fmeme M2 which depend on classical consistent object variables and
on non classical inconsistent object (or inconsistent set) variables;

(iv) the universal vV and existential 3 quantifiers.

We assume throughout that: the language ff contains also

(i) the classical numerals 0,1, ... ;

(i) countable set I" of the classical consistent object (or consistent set) variables

Tcon =T = {X,9,2,...} = {Xcon, Yoon: Zeon- - - };

(iii) countable set I of the non classical inconsistent object (or inconsistent set)
variables Tine = I' = {%,¥,Z...} = {Xinc, Yinc, Zinc. - . »;



(iv) countable set ® of the classical non-logical constants ® = {@,b,C...};

(v) countable set © of the non classical non-logical constants © = {4,b,&... };

(vi)The notions of formula, free and bound variables in a formula, sentence (formula
without free variables) etc. are standard. The notations and metalogical conventions

extend those made for the propositional calculi.
The postulates of LP, are those of LP# (suitably adapted), i.e.
I. Logical postulates:

1 A-(B-A),

2 A-B)~>((A-(B-C) - (A-0),
3 A-(B->AAB),

(4 AAB - A,

5) AAB-B,

(6) A-(AVB),

(7) B->(AVB),
®A-C->({(B-C~->(AVB->C),

(9)—'3—'sA - A,

(10) —s—wA - A,

(1) —w—wA » A,

(12) A - (=A - B),

(13) A > (-, A - B)ifB ¢ A}",
(14) AA—wAifA e A,

(15) The law of excluded (n + 8)-th:

{(AV =AYV AV (=sA A —wAWVA A —WA)NV—w(AA—-WA)V
A[z] V.. _\/A[k] V.. .VA[H]} A —|5A{n+l},

where A,B,C € F.,plus the following:

a ~» B(X) a ~ B(X) a ~ BRY)
) =V M w19 e vavEry
(2a) VXa(X) - a(9), (2b) VXa(X) - a(y),(2c) VXVYa(X,Y) - a(Xy),

(33) a(x) - Ixa(X),(3b) a(X) - Ixa(X),(3c) a(x,y) - IXAYa(X,y),
a(X a(X) —» a(x,y) -

(43) 35, (zo L @) axé(fo —>ﬂﬁ (4c) EI)‘(EI)S/a(y)'(),)'/) f B’

(5a) VX[(a(x))" ] - (@xa (%)M, (5b) VX[(a(})M] - (VXa (%)M

(5¢) VXVY[(a(X,y)M] - (VXVYa(x,y) M

(6a) [VX((a(®)]™ - (VXa(%) A @%—wa (X)),

(6b) [VX((a(3))]™ > (VXa(X)) A (Fx-wa (X)),

(6¢) [VRYY((@(®% Y] — (YRYYa(%,)) A (3XFY-wa(X,Y)),

Il.Rules of a conclusion:

Restricted Modus Ponens rule RMP:

(i) A,A > B ryp BifA > B ¢ AJ".

(i) A, —sA FrypB eF L.

Modus Tollens rules: P -» Q,—sQ + —sP.

(13.2)



lll.Inconsistent equality

From the calculus LP,,we can construct the following predicate calculus with
inconsistent equality. This is done by adding to their languages the binary predicates
symbol of strong equality (- =s -) and weak equality(- = -) with suitable
modifications in the concept of formula, and by adding the following postulates:

(1) VX(X =s %),

(2) vx[ (x = - B],

(3) VXVY[X =s ¥ » (a(X) « a(¥)],

(4) VRVIVZ(X =s V) A (¥ =5 2) > X =5 Z],

(5) Vk(k < n)Ix(x =y X){,

(6) Vyvk(k < n)IxY =w N,

(7) vxvyvkk < M (X =w )Y > Va(e) (@M (®) < M) ],

8) XVYVYKK < m[ X =u )Y > Va()(@® (x) < a® @) ],
9) vxvyvzvkk < m[ (X =w N A § = Y > (x=v M ],
(10) vxvyvzvkk < m[ X =w Y AT =0 20 - k=0 2% ].

14. First order paraconsistent propositional logic with

countable levels of a contradictions L PZ.

The postulates (or their axioms schemata) of propositional paraconsistent logic
LP? = LP#[A?,A%] are the following. Let £# = £#(LP%) be the formal language
corresponding to logic LP# and let F# be the set of the all wif's of £# where

P43 < FL. (14.1)

The language £# of paraconsistent logic LP% has as primitive symbols (i) countable
set

of a clalassical propositional variables, (ii) the connectives —,—s, A, V,— and (iv) the

parentheses (,), (iii) the letters A,B, C, ... will be used as metalanguage variables
which

indicate formulas of LP#[A,A%].

Remark 14.1.We distinguish a weak negation —, and a strong negation —s.

The definition of formula is the usual. We denote the set of the all formulae of

LPZ[A9,A9] by F% where A? and AY is a given by A = Unen ALY, AS = Unen AS™

I. Logical postulates:

1) A-(B-A),

2 A-B)->((A-B-C) - (A-0),

3 A-(B->AAB),

(4 AANB - A,

5) AAB - B,

6) A-(AVB),

(7) B- (AvVB),

® A-C->((B-C)~->(AVB-C)),

(9)—|s—|5A d A,
(10) —s—wA - A,
(11) —w—wA » A,



(12) A - (A ~ B),
(13) A-> (—-,A - B)IifB g Af,

(14 AAN-WAITA €A,

(15)The law of non exclusion the conrradictions

(AV =AYV A VA A AV (=A A —A) VAR Y VAR VAT (14.2)
or
(AV =AYV AV (=A A=A VALY (14.3)

1<n<w
II.Rules of a conclusion:
Restricted Modus Ponens rule RMP:
()A,A > B Fryp Biff A ¢ V.
(i) A,—sA FrupB €F 8.
Modus Tollens rule: P - Q,—sQ + —gP.

15. First order paraconsistent quantificational logic with

countable levels of a contradiction CP...

Corresponding to the propositional paraconsistent relevant logic LP%[A$,A] we
construct the corresponding paraconsistent relevant first-order predicate calculus.

These new calculus will be denoted by LPA[A?,A¢].Let L., = £ (TP, ) be the formal
language corresponding to logic LP, and let F,, be the set of the all wff's of £, where
AY,A8 & F,,. (15.1)
Remark 15.1.We distinguish a weak negation —, and a strong negation —s.
The definition of formula is the usual. We denote the set of the all formulae of
CPL[A?,A8] by F . where A? and Ag is a given by A9 = Upeny Al™, A2 = Uney ALV,
The language Zf, of paraconsistent logic ﬁf, has as primitive symbols (i) countable
set
of a clalassical propositional variables, (ii) the connectives —,—s, A, V,— and (iv) the
parentheses (,), (iii) the letters A,B,C, ... will be used as metalanguage variables
which
indicate formulas of CPL[A?,AS].
Remark 15.2.Note that in contrast with a set A7 and a set AY the set Zi”} and the set
Zé”}are recursively undecidable.
The language of the paraconsistent predicate calculus ﬁﬁ, denoted by Iﬁ, is an
extension of the language £} introduced above, by adding:
(i) for every m € N, denumerable families of m-ary consistent (or strong) predicate
symbols 2 = £ = RP,RY,...,RT,... and m-ary consistent function symbols
fr,f2,....fm ..., which depend only on classical consistent object (or consistent set)
variables;
(ii) for every m € N, denumerable families of m-ary inconsistent predicate symbols
RMRY,...,RM,...,and mary inconsistent function symbols f,",f,;",....fr",...,
which depend only on non classical inconsistent object (or inconsistent set) variables;
(iii) for every m,I € N, denumerable families of m; + my-ary mixed predicate symbols



RpwHme RiwMz - RMHM2 - and my + mp-ary mixed function symbols

fueme gmuemegmem2 which depend on classical consistent object variables and
on non classical inconsistent object (or inconsistent set) variables;

(iv) the universal Vv and existential 3 quantifiers.

We assume throughout that: the language EZ contains also

(i) the classical numerals 0,1, ...;

(ii) countable set T of the classical consistent object (or consistent set) variables
I'con = [ = {X,¥,2,...} = {Xcon, Ycon, Zcon- - - };

(iii) countable set I of the non classical inconsistent object (or inconsistent set)
variables Tinc = T' = {%,¥,2,...} = {Xinc,Yinc, Zinc- - - }; ] )

(iv) countable set © of the classical non-logical constants ® = {a,b,C...};

(v) countable set ® of the non classical non-logical constants © = {a,b,&... };
(vi)The notions of formula, free and bound variables in a formula, sentence (formula
without free variables) etc. are standard. The notations and metalogical conventions
extend those made for the propositional calculi.

The postulates of LP,, are those of LP# (suitably adapted), i.e.

1) A-(B-A),

2 A-B)-~>((A-(B-C) - (A->0),
3 A-(B-AAB),

(4 AANB - A,

5) AAB-B,

6 A-(AVB),

(7) B~ (AVB),

® A-C-~((B-~C~(AVB-C),

(9)—'s—|sA - A,

(10) —s—wA - A,

(11) —w—wA » A,

(12) A - (A ~ B),

(13) A > (-,A > B)ifB ¢ A7,

(14) AA-WAIfA € A7,

(15)The law of non exclusion the contradictions

(AV =AYV = AVA A=AV (=A A —A) VALY VAR VAT (15.2)
or
(AV AV =AWV (=sA A —yA) V \/ Al (15.3)

1<n<wo

where A,B,C e F.,plus the following:

a ~ p(X) a ~ p(X) a > B&.Y)
1) s P oo 19w vavypay
(2a) VXa(X) > a(y), (2b) VXa(X) — a(y),(2¢) VXVya(X,y) - a(Xy),

(33) a(x) - Ixa(X),(3b) a(X) - Ixa(X),(3c) a(x,y) - IXAYa(X,y),



a(X) - a(X) - a(x,y) ~
(43) S50 —>ﬁﬁ (49) 3 ® —>ﬁ/3 ,(4¢) axaya();,y) f B’
(5a) VX[(a(x)M] » FRa(x)", (5b) YX[(a(X)M] - (VXa ()™
(5¢) VVY[(a(x,Y)M] - (VXvYa(x,y)M,
(62) [VX((a(®x)]™ — (VRa(X) A (F%-wa (X)),
(6b) [VX((a(X)]™ - (VXa(X)) A (Fx—wa (X)),
(6¢) [VRVY((a(x )] — (VXY (%,¥) A (3X3Y—wa(%.9)),
Il.Rules of a conclusion:
Restricted Modus Ponens rule RMP:
()A,A > B eyp Bif A > B ¢ AV,
(i)A,—sA FrypB eF3.
Modus Tollens rules: P -» Q,—sQ + —sP.

lll.Inconsistent equality

From the calculus ﬁﬁ,we can construct the following predicate calculus with
inconsistent equality. This is done by adding to their languages the binary predicates
symbol of strong equality (- =s -) and weak equality(- =, -) with suitable
modifications in the concept of formula, and by adding the following postulates:

(1) VX(X =5 %),

) vx[ (x = - B],

(3) VXVY[X =s § ~ (a(X) < a(9)],

(4) VXVYVZ (X =s y) A(Y=s2) - X=s12],

(5) Vk(k < n)Ixx =y X),

6) VYVK(K < MIXF =w 0K,

(7) vxvyvkk < [ (X =w N¥ > Va(e) @M (®) < M) ],

8) Vxvyvkk < m[ (X =w ¥ - Va()(@® (%) < a® @) ],
@) Vxvyvzvkk < m[ % =w YA =w 2 > X = 2],
(10) vxvyvzvkk < [ (X =w DX A T =w 20¥ > x = 20¥ ].

16.Paraconsistent Set Theory ZFC?.

In this section we distingvish: (i) classical von Neumann universe or von Neumann
hierarchy of consistent sets, denoted V°, is the class of hereditary consistent
well-founded sets. This consistent collection, which is formalized by Zermelo—Fraenkel
set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of
ZFC,;

(ii) nonclassical universe or hierarchy of inconsistent sets,denoted V'". This
inconsistent collection, which is formalized below by set theory ZFC¥.

The Axioms and Basic Properties of Inconsistent Sets.

Remark 16.1.In this section we distingvish:

(i) a classical consistent sets which is a members of von Neumann universe V¢

(ii) a nonclassical inconsistent sets which is a members of non classical universe V'™,
(iii) a non classical mixed sets which is

Remark 16.2.In this section we distingvish:

(i) classical consistent set variables X,y,z,...;



(i) non classical inconsistent set variables %,V,z,...

(i) a non classical mixed set variables %,7,2,... .

Remark 16.3.In this section we distingvish:

(i) a strong membership predicate (- € +) such that for any X,y,z only the following

______

VVVVVV

Designation 16.1.We denote: (i) a strong membership predicate (- € -) by s,

(i) a weak membership predicate (- € «) by ey .

Definition 16.1. We shall say that:

(i) an well formed formula @ of the set theory ZFC?¥ is a classical formula if formula @

contains only consistent predicates X =s y,X €s y and contains only classical
connectives  —s, A, V,—.We will be denoted such formula by @ or by ®s;
(ii) an well formed formula @ of the set theory ZFC? is a purely non classical formula if
formula ® contains only predicates x =y y,X €y Yy and only the following connectives
—w A, V,—.We will be denoted such formula by @ or by ®¥;
(iii) an well formed formula @ of the set theory ZFC% is a mixed formula if formula @
contains predicates X =s y,X =w Y,X €s Y,X €y Y and the connectives —y,—s A, V,—.
We will be denoted such formula by @ or by ®sV.
Abbreviation 15.1. Before introducing any set-theoretic axioms at all, we can
introduce some important abbreviations. Let X,y and z be any classical sets, then
(i) x Ss y abbreviates Vz(z €s X - Z €5 Y);
(i) x cs y abbreviates X Ss YA X #s V;
(i) x ¢ y abbreviates —s(x €5 Y);
(iv) x #5 y abbreviates —s(X =5 y);
Mu=s Usx=2Us(X) 2VZzesu« (Fy es X)(zes Y)];
(Vlu=s NsX=Ns(X) 2VZzesU« (VyesX)(zesy)];
(vii) (Ix €5 y)® abbreviates Ix(x €s y A D);
(viil) (VX €5 y)® abbreviates VX(X €s y - D);
(ix) (Fs!X)D(x) abbreviates (IX)P(X) A VXVY[D(X) A P(Y) - X =5 Y]
(X) (Fw!X)D(x) abbreviates (IX)P(X) A VXVY[D(X) A D(Y) - X =w Y].
Abbreviation 15.2. (i) a ™% stands for (a*)){% = g A —ya{™,0<k<n
where ai% = a A —s(a A —wa),at = (a A =wa); (i) a™ stands for
alMl = g0 v oW v, Ve,
Abbreviation 15.3. For any terms r,s, and t, we make the following abbreviations of
formulas.
(i) (WX €5 )YD(X) for VX(X €s t = D(X)); (ii) (X €s )D(X) for IX(X €s t - D(X));
(iii) (VX ey DP(X) for VX(X ew,; t = @(X)); (iv) (X ew, HP(X) for IX(X ew,, t - D(X));
(V) (VX ew,, DD(X) for VX(X ew,, t - ®(X)); (Vi) 3X ew,, DD(X) for
IX(X Ewyy t > D(X));
Abbreviation 15.4.We abbreviate:
(i) X €wyy X (OF X €wgny X) instead  (x ew X)™;
(i) X €wyy X (OF X €wm X) instead (x ew X)™ ;



(il)) X €w,,, X (OF X €wgoy X) instead A (x ew X)™;
New

(i) X €y X (or X ewm X) instead \/(x ew X
new

Designation 15.2. We sometimes abbreviate
X €y X instead X ew,, X. (15.1)
Definition 15.2. (i) If x ey X we call such x as w-element of the set X.
(ii) If X ew,, X we call such x as wyn,-element of the set X.
(iii) If X ew,, X we call such x as wyn,-element of the set X.
(iv) If X ew,, X we call such x as w<n}-element of the set X.
(V) If X ewy, X we call such x as wyy-element of the set X.
(Vi) If X ewy, X we call such x as w—element of the set X.
(vii) If x ew,,, X we call such x as wy,y-element of the set X.
(viii) If X ew,, X we call such x as w,;-element of the set X.
DeS|gnat|on 13.3.Let X,y and z be any nonclassical set, then
(1) X #4,, ¥ abbreviates —s(X =w,, Y);
(i) X Sw,, Yy abbreviates Vz(z ey, X > Z €w,, Y);
(iii) X cw,, Yy abbreviates X Cw,,, YAX 3, V;
(iv) X ¢34, Y abbreviates —s(X €w,, Y);
(V) U =w, UW<n> X éW<n> UW<n> ) éW<n> VZ[Z Sy, U< (Ely Swiny x)(z Swiny y)];
(vi) u =wiy gy X éW<n> Nwp, () éW<n> vz Swyy U (vy Swiny X)(z Swiny Uk
(vii) (3X ew,, Y)P abbreviates IX(X ew,, YA @);
(viii) (VX €w,,, Y)® abbreviates VX(X ew,, Y~ @);
(iX) Qwg, X)@(X) abbreviates (IX)D(X) A VXVY[D(X) A P(Y) = X =w,, Y];
(X) Aw!x)®(x) abbreviates (IX)D(x) A VXVY[D(X) A D(Y) - X =w VY].
Designation 13.4.Let X,y and Z be any nonclassical set, then
(1) X #4,, ¥ abbreviates —s(X =, ¥);
(i) X Sw,, Yy abbreviates VZ(z ew, X » Z €wy Y);
(iii) X cw,, y abbreviates X Cw,, YAX #5,, Y
(iv) X &3, y abbreviates ﬁs(x Cwy V)
(V) U =w,; Uwgy X 2wy Uwg, (X) = _Wn] VZZ ewyy U (3Y €wyy X)(Z Ewgy V)T
(Vi) U =wy Nwy X 2wy Ny (X) Zwyy VZZ €wyy U < (VY €y X)(Z €wyy V)T
(vii) (X ew, y)db abbrewates Ax(x ewn] y A ®);
(viii) (VX €w,, Y)P abbreviates VX(X ew,, y - ®);
(ix) (EIW[H]!x)d)(x) abbreviates (IX)D(x) A VXVY[D(X) A D(Y) = X =wy; Y]
Definition 13.3. (i) The set X is called wy,-set of the order inconsistency n,where
n = 0,1,...if any w-element of the set X is a w,-element of the set X,i.e.
VX(X ew X = X €w,, X) and there is no any w.1,-element of the set X.
(i) The set X is called wyn-set of the order inconsistency n,where n = 1,2, ...
if there exists at least one w,,-element of the set X and there is no any
Wn.1)-element of the set X.
(i) The set X is called mixed wm -set of the order inconsistency n, wheren = 0,1,...



if any w-element of the set X is a wyn, -element of the set X and there is no any

W n,1y-element of the set X.

(iv)The set X is called mixed wn-set of the order inconsistency n, where n = 0,1,...
if there exists at least one w,,, -element of the set X and there is no any

W n,1y-element of the set X.

(vi) The set X is called wy,,-set of the order inconsistency o if for any n e N

there exists at least one w , -element of the set X.

(vii) The set X is called w,;-set of the order inconsistency  if for any n e N

there exists at least one wyn-element of the set X.

(viii) The set X is called mixed W1 -Set of the order inconsistency o if for any n e N
there exists at least one wn, -element of the set X.

(ix)The set X is called mixed w,;-set of the order inconsistency  if for any n € N
there exists at least one wy-element of the set X

Designation 13.5. (i) Let X is a wyn, -set of the order inconsistency n we denote such
W -Set X by X, O Xu,, OF BY Xuny-

(i) Let X is a wyn)-set of the order inconsistency n we denote such

Wi-set X by X, OF Xuw,, O by Xun.

(iii) Let X is a mixed wyn, -set of the order inconsistency n we denote such

mixed W, -set X by X, O X, OF by Xuny-

(iv) Let X is a mixed wy-set of the order inconsistency n we denote such

mixed Win-set X by X, 0 Xu,, OF by Xuqm.

(vi) Let X is a wy, -set of the order inconsistency @ we denote such

W o) -S€t X by Xu,,, OF Xu,, OF by Xua}.

(vii) Let X'is a wi,)-set of the order inconsistency o we denote such

Wie)-S€t X by X, 0 X, OF by Xufo].

(viii) Let X is a mixed wy,}-set of the order inconsistency « we denote such

mixed W, -set X by Xu,,, 0r Xu,,, 0r by Xuo) .

(ix) Let X is a mixed wy,-set of the order inconsistency o we denote such

mixed Wi, -set X by Xu,, 0F Xuw,, 0 bY Xuja).

Definition 13.4. (i) The wo,-set X of the order inconsistency zero is called w o, -set
for short and we often denote such w g, -set X by >V<W<O> or simply by Xu,y, .
Remark.13.1. Note that for any w,g,-set X the following statement holds by the non
classical law of the excluded fourth (see sect.7,8)

VX [(X €w X) V =s(X €w X) V —w(X €w X) ]. (13.2)

It follows from (13.2) that the notion of the w g, -set is not equivalent the notion of the

classical consistent sets, since for any classical set X the following statement holds by
the

classical law of the excluded third

Ux [(x €5 X) V—s(X €5 X) ] (13.3)

Definition 13.4. (i) The w q,-set Xu,, is called almost classical w.q,-set if only the
following statement holds

VX [(X €w Xy, ) V —s(X €w Xug,) | (13.4)



but not the full statement (3.1.2).

Remark 13.2. Note that the almost classical wq,-sets very similar to classical
consistent

sets, since the statement (3.1.4) says that the classical law of the excluded third holds.

Designation 13.6.(i) Let Xu,, is almost classical w,q,-set then we denote such set by
the

symbol X& or simply Xg. (i) We shall often write

x e X¢ (13.5)

instead x ey X$ or simply x ey, X& instead x €y, X3,

Remark 13.3.Note that the almost classical w-sets look very similar to classical

consistent sets, see Remark 13.2, however there exist fundamental differences in

comparizon some properties of the almost classical w-sets with a properties of the

classical consistent sets.These principal differences arises from the postulate of the

Strong Separation 4.1.(i).

Designation 13.7.Let x,y and z be any almost classical w-set, then

(i) x 8 y abbreviates —s(x =3 y);

(i) x =g y abbreviates Vz(z €§ x - z €§ y);

(iii) x =§ y abbreviates x <§ y A X 3 V;

(iv) x ¢% y abbreviates —s(x €% V);

(M u=4 UG x2§ US () 28 vz el ue Ty el Xz V)]

(Vi) u=§ NEx=5 NG (X) 24 VZz €} u o (Vy ) X)(Z €l V)];

(vii) (Ix €% y)D abbreviates Ix(x €3 y A D);

(viii) (Vx €% y)® abbreviates Vx(x €3 y - ®);

(ix) (3S!IX)D(x) abbreviates (IX)D(X) A YXVY[D(X) A D(Y) - X =8 V];

1.Axiom of Existence of the Universal set.
VIeYRYANYKAM{(X €s V'™) A (X €y V™) A (X €wmy V™). (15.6)

2.Axioms of Existence of the empty set.
(i) There exists almost classical w,o,- set 5, which has no s-elements and which has

no w-elements in a strong consistent sense
HQ‘?‘I'«» VX|:—|S<X €s m\luo;) A _‘S<X Sw %\I/(m) :I (13.7)

(ii) There exists a wyo,-set fw,, which has no s-elements in a strong consistent sense
and
which has no w-elements in a weak sense

I, VX[5(X €5 Bug,) A —w(X €w Bug,)]. (13.8)

3. Axioms of a Strong Extensionality.
3.1.(i) Let X3 and Y4 be any almost classical w-sets.
VXIVYI[XS = YO o VXX ew X& o X ew YI)]. (13.9)

(i) Let X and Y4 be any mixed almost classical w-sets.



YXAVIS[ XS =w 78 o [VX(R es X§ & X e T8) ] AN, 1310
/\[‘V’)'(()'(ew )A(S%—»)“(ew YSD]] (13.10)

3.2.(i) Let Xy, and Y., be any w-sets of the order inconsistency zero.
VXV Yu[Xw =w Y o VXX €y Xuw < X €w Yu)]. (13.11)
(ii) Let X, and Y., be any mixed w-sets of the order inconsistency zero.

VXWVYw[j\(W —w YW A |:V)_(<)_( Es >A<W And )_( eS YW)] /\\

. ; (13.12)
ALK 0 o o 0 7))
3.3.(i) Let Xy and Yy be a w -sets of the order inconsistency n.
v wa{n}vvvwm} [5<W<,1} =win) \i(wm} © \ (13.13)
VXYM(M < N)(X €wmy Xwiny < X Ewmy Yuuiny ).
(if) Let Xy and Yum) be a wny-sets of the order inconsistency n.
VXt ¥ Yot [Xugn) =win) Yagny < (13.14)

VXYM(M < N)(X Enmy Xuin] < X Ewpmy Yugn)) -
3.4.(i) Let Xy, and Yy, be a mixed wyn, -sets of the order inconsistency n.

Xty ¥ Ty [ Ky =winy Yuwgny
[ V(% €5 Xwiny © X €s Yugmy ) J AN (13.15)
[ vxvm(m < n) (X €wimy Xugmy < X €wim Ywmy) | -
(ii) Let Xy and Yumy be a mixed wiy-sets of the order inconsistency n.
XtV Yoy [ Xy =wim) Yoy
[VR(% €5 Xu © % €s Tum) ] AN, (13.16)
[ vxvm(m < n) (X € Xum) < X €winy Ywmy) -
3.5.(i) Let X, and Yug,y be a wy,,-sets of the order inconsistency o.

Y Xwiny Vi [Xwior =wior Ywioy <\

o g < . g (3.16)
VXVm(m < a))(x Sw{o) Xw{a;} < X Ew{w} Yw{m})]-
(ii) Let Xwjw) and Yy, be a wy,-sets of the order inconsistency .
VX1 ¥ Yago) Xuin =wio] Yuio] <—>v (13.17)

VXYM(M < @) (X Ewim Xufo] < X Ewim Yu])]-

4. Axioms of a Weak Extensionality.

4.1.(i) Let Xw[n] be any wy-set of the order inconsistency 0 < n < o and \?W[m] be any
inconsistent wym-set of the order inconsistency 0 < m < .



v wa[n]vvw[n]gxw[n] =wid YW[m,] < ] (13.18)
VXVI(I < n)Vr(r < m)(X ewgy Xumy < X €upry Yum)) -
where k = min{n,m}
(ii) Let Xwmy be a wqp-set of the order inconsistency 0 < n < @ and and Yym, be a
w;m,-set of the order inconsistency 0 < m < .
Y Xuwiny V' Yaermy [Xwimy =wie Ywm < N\,

) ’ : ’ . (13.19)
VXV'(' < n)Vr(r < m)(x Sw{l} Xw{n} — X Sw{r} Yw{m})]-

where k = min{n,m}.
4.2.(i) Let Xy, be a mixed w,-set of the order inconsistency 0 < n < » and \o(wm
be a mixed wy, -set of the order inconsistency 0 < m < .
VKt ¥ Puwgo [ Xt =wimy Yy >
[VX(% €5 Xum < % €s Yugny) J AN (13.20)
[vxvI(l < mvr(r < m)(X €wm Xwgny < X €wimy Ywgny ) 1.

where k = min{n,m}.

(ii) Let Xy, be a mixed wyn,-set of the order inconsistency 0 < n < w and \o(w{m}
be a mixed wy, -set of the order inconsistency 0 < m < .
¥ Xty ¥ Y [ Ky =wimy Yy
[VR(X €s Xugny © % €s Yumy) ] AN (13.21)
[vxvI(l < mvr(r < m)(X €wm Xwgny < X €wimy Ywgny ) 1.

where k = min{n,m}.

5.Axioms of separation.

4.1 Strong Separation Schemes.

(i) Let #(u,p1,...,px) be a formula free from symbols ¢% ¢35 , 25 , W .

For any almost classical w-set X§ and almost classical w-sets P§,,, ..., Pg,,, there
exists almost classical w-set Y¢ :

Ve =w {U cw X3P PR J, (13.22)

VXGPS, VPR, IYuVUlU ey Y§ < (U ew X§) A d(U,PS,, ..., PE)] (13.23)

(i) Let ¢(u,p1,...,px) be a formula free from symbols ¢§ ¢35  Ewgy 1 EW -

For any w-set X,, of the order inconsistency zero and w-sets Py, ..., Pxw of the order
inconsistency zero there exists a w-set of the order inconsistency zero Yy, :

Yo =w {U €w Xulp(U,P1w,...,Pxw)} . (13.24)

VXV P1w. .. VPwIYuVUU €y Yw < (U €w Xw) A ¢(U,P1w,...,Prw)] (13.25)



(iii) Let ¢(u, pa,..., px) be a formula free from symbols &3, , €%, €W, » €W,y
For any wp, -set Xw[n] of the order inconsistency n and wyn)-sets Piw, ..., Pkwy Of
the order inconsistency n there exists a wyj-set of the order inconsistency n, \?W[n]

Yoy =wm {U Sy Xuigy (U, Piwys o Piw )y, (13.26)
i.e.
HYW  VUlU Ewg, Y “ (u Ewpy X) /\¢(u P1ws -+ Piowgy) ]
(iv) Let ¢(u,py, ..., px) be a formula free from symbols ¢3, . ¢4, . €W, €W,
Forany X and pa,...,px there exists a set Y =w,, {U €w,, X[g(U,p1,..., P},
VXVpPIYVUU €w,, Y < (U ew, X)A¢U,p1,...,Px)] (13.28)

(2) Weak Separation Schemes.
() Let ¢(u,p1,...,px) be a stratified formula. For any X and p4,...,pk, there exists a set
Y =w {U €w X|p(U,p1,...,Px) }i-€.
VXVPAYVU[U €w Y « (U €y X) A d(U,P1,...,PK)] (13.29)

(ii) Let ¢(u,p1,...,Px) be a stratified formula. For any X and pg,...,pk, there exists a set
Y =w, {U €y X|¢(u pl,...,pk)}w e

VXVPIYVU[U €y, Y © (U €y X) AB(U,P1, ..., PK) ] (13.30)

(iii) Let ¢(u,p1,...,px) be a stratified stratified formula. For any X and ps, ..., pk, there
exists a set Y =, {U €wy, Xg(UP1,... PO}, i

VXVPIYVU[U €, Y < (U €w,, X) ABU,PL,---,PK)] (13.31)

5.Axioms of Inconsistent Pairing.

5.1.Axiom of almost classical Pairing.

(i) For any almost classical w-sets 4% and B¢, there exists w-set C& such

that x €% C¢ if and only if X = A% or X =, Bg.

5.2.Axiom of mixed Pairing.

(i) For any 4 and B, there exists mixed w-set Cs,, such that

x s Cswifandonlyif x =s 4 and x €y, Csw if and only if x =, B.

(i) For any 4 and B, there exists mixed W, -set Csymy such that x s Cswny

if and only if x =s 4 and X €w,,, Cswin) if and only if x =, B.

(iii) For any 4 and B, there exists mixed Wipj-set Csuiny Such that x es Cswn

if and only if X =s 4 and X €w,, Cswp if and only if x =y, B.

5.3.Axiom of inconsistent Palrlng

(|) For any w-sets 4y and By, there exists w-set C,, such that x €, C,, if and only if
X =w Aw OF X =y By.

(i) For any wyny-sets 4w, and By, there exists Wn,-set Cwny such that X ewgmy  Cuwiny

if and only if X =wm, Awm and X €w,, Cwgmy if and only if X =w,, dw,, X =w,, Buny-

(iii) For any wiy-sets 4w, and BW there exists Wy -set Cyin) SUch that X ey Cw[n]

if and only if X =wm; Awn and X Ewy ny if and only if X =y, AW<n> X =w, BW



Definition 13.5.(i) We define the mixed unordered pair Cs, of 4 and B,, as the sw-set
having exactly 4 and B,, as its s-element and w-element correspondingly use {4, By} sw
to denote it.

Definition 13.6.(i) We define the unordered w-pair of 4, and By, as the w-set having
exactly 4 and By, as its w-elements and use {4, By}w to denote it.

(i) We define the unordered w n,-pair of Aw,, and B, as the w,-set having

exactly Ay, and BWW as its wy, -elements and use {Jw{n>,BW<n>}W{n> to denote it.
(iif) We define the unordered w,-pair of AW and Bw[n] as the wynj-set having
exactly 4w, and BWW as its w -elements and use {AVW[HJ,BW[H]}W[H] to denote it.

6.Axioms of union.

6.1. Axiom of w-union of w-set F
For any w-set &, there exists w-set 4 such that x ey A4 if and only if x ey Y
for some Y ey F :

VEFEIJVWXI:X ew YAY ey EF = X Ew /f] (13.32)
Definition 13.7. We call the w-set 4 the w-union of w-set & and denote it by w—U F
or }

by Uw &
Definition 13.8 We call w-set 4 a w-subset of B if every w-element of 4 is also an
w-element of B : VZz e, 4 = z €y B].We denote this by 4 <, B.
6.2.Axiom of wy-union of wy-set Xy, .
For any wpn-set xw,,, there exists wy-set yw,, such that the following holds

VXwi IYwiy VUL €wpy Y, < FUU Ewy XA T €y U)]. (13.33)
The set yy,, is denoted Uwy, X OF Winj-UXw,
6.3.Axiom of wy,-union of Wy - set Xw g -

VX 3y m Vit €wy, Vi © JUU €y, XAL Ewy, U] (13.34)

The set y,, is denoted Uw,,, X Or W, -UX.

7.Axioms of Power Set.
(i) Axiom of w-power set.
VXuAYW Vit ew Yw © VZ(zew t - Z ey Xu)] (13.35)
For any w-set Xy, a w-set Yy, is denoted Py (Xv).
(if) Axiom of wn-power set.
VX Wiy 3w VU €wgyy Yy < VZ(Z €y t = Z €wgy Xugy)] (13.36)

For any wpnj-set X, , @ W -set Yy, is denoted Py, (Xw,,)-
(iv) Axiom of w,, -power set.

VX wy Yy VUL €wpy Yy, © VZ(Z €wyy t = Z €wyy Xugy, )] (13.37)
For any w,;-set X,a wn,-set Yy, is denoted Py, (Xw,,, ).

Definition 13.9. (i) We call Py (Xw) the w-power set of Xy.
(i) We call Py, (Xw,,) the win-power set of Xy,,.



(i) We call Py, (Xw,,, ) the wn,-power set of Xy, .
(iii) We call Py, (Xw,, ) the wn,-power set of Xy, .

10.Axiom of Foundation (or Regularity)
10.1.Axiom of Foundation (or Regularity) to classical sets.
VXX #£s Tsw = (Y € X)(XNs ¥ =5 Tsw) ] (13.38)
Let’s investigate what this axiom says: suppose there were a non-empty X such that
V y(y €s X) (X Ns Y #s Tsw). For any z; € x we would be able to get z; € z3 NsX.

Since z; € x we would be able to get z3 € z; Ns X. The process continues
forever:

11.Axiom of Foundation (or Regularity) for a mixed nonclassical sets.
V)_([)_( Fs QS,W - (Ely S >_()(>_( ﬂsy =s QS,W)]- (13. 39)

12.Axiom of regularity.
Definition 3.1.10. AImost classical w-set X$ is regular (or well founded) if the following
the regularity condition holds

VXGRS #W Dw > (3Y8 € XD S NG Y8 =w Dw)]. (13.40)
The regularity condition for almost classical w-set X$ is abbreviated as
reg(xs). (13.41)

11.Axioms of wp,j-infinity.
11.1.1.Strong Axiom of almost classical regular w-infinity.

Let S¢(yd) is abbreviated as yg Ug {y&&}z.There exists at least one almost classical

w-family X¢ of the almost classical w-regular w-sets such that the following condition
holds.

3X%{<éw Ew XS\D A VYw(Yw €w XS\I/ - S?\I/(VW) Ew XS\I/) AN\

i (3.1.31)
AVYwYw €w X§ - reg(xq)]}.

Theorem 3.1.1.(Finite or weak almost classical regular w-induction)

There exists w-unique almost classical w-family of the almost classical w-sets Ng
such that

() Bwew N

(i) X\?\II Ew N\(I:\ll - S(I:\II(X\?\II) Ew N\(I:\ll

(i) if K¢ satisfies (i) and (i), then Ng <, K.

8.1.1.Weak Axiom of almost classical w-Infinity.



Let S¢(yd) is abbreviated as yg Ug {y&&}z.There exists at least one almost classical
w-family X¢ of the almost classical w-sets such that the following condition holds.

3X%{<éw Ew X\?\'/) A EI)V(\(/:\Il[()v(\(/:\ll € 5(%) A ﬁreg(fﬂ)] AN
V¥w(Yw €Ew X\?\'/ - S\?\Il(yw) Ew )v(\(,:\l,) AN\ (3.1.31)
AVYWV 20 [ (Yw €w )V(\(I:\ll) A (Zw Ew 5(\%) - (Yw €w Zw) V (Zw €w Yw)]}-

Theorem 3.1.1.(Finite or weak almost classical nonregular w-induction)
There exists

w-unique almost classical w-family of the almost classical w-sets 'N$ such that

(i)  Bw ew NG

(if) X\?\II Ew N\(I:\ll - S(I:\II(X\?\II) Ew N\(I:\ll

(i) if K¢ satisfies (i) and (i), then Ng <, K.

Proof. It follows from the weak axiom of almost classical w-infinity 8.1.1 that there
exists at least one almost classical w-family X¢ satisfying conditions (i) and (ii).
Let F¢ be the almost classical w-family of all those w-subsets of X& which satisfy
(i) and (ii):

373'1 = {g\ll Cw Xméw Ew vsﬁll A VYW<§/W Sw vsﬁll - S?\I/(VW) €w VSSD AN
/\VS/WVZW[ <yw Ew éﬁ';) A <2W Ew éﬁ'/) - (S/w Ew zw) V (zw Ew YW)]}

It is easy to show that W—ﬂ F ¢ (see Definition 3.2.3 (i)) is the required almost

classical w-family.

8.1.2.Strong Axiom of almost classical w-Infinity.

Let S8 (y) abbreviate y Ug {y}ﬂ. Let [yw] be almost classical w-set such that
Vuw[%w €w [Jw] < %w €w Yw]. There exists at least one almost classical w-family X&
of the almost classical w-sets such that the following condition holds.

HXS&{(ésw Ew X\?\'/) A VS/W[[S/WJ C\?\I/ )V(\(/:\ll - S/W Ew X\?\'/] /\\
AVYWYZu[(Yw Ew 5(\%) A (Zw €w XS\I/) - (Yw €w Zw) V (Zw €w Yw)]}-

(3.1.32)

(3.1.33)

Theorem 3.1.2.(Complete or strong almost classical w-induction).There

exists w-unique almost classical w-family of the almost classical w-sets Ng

such that:

() Osw cw NG

(i) [x6]) <=5 NG > X3 €w NG

(iii) if K¢ satisfies (i) and (i), then N& <, Kg.

Proof. It follows from the weak axiom of almost classical w-infinity that there exists at
least one almost classical w-family X¢ satisfying conditions (i) and (ii). Let £ be the
almost classical w-family of all those w-subsets of X& which satisfy (i) and (ii):

Fo = {vsﬁll Cw X\?\'/@SW Sw V$\II A VS’W<[37W] = é&'f ~ Yw €w §\|I> AN
AYYu V2o (Fw €w vsﬁD A (2w ew VSSD = (Yw €w 2w) V (Zw €w Yu) ] }-

It is easy to show that w—ﬂ F ¢ (see Definition 3.2.3 (i)) is the required almost

classical w-family.
8.2.1.Weak Axiom of w-Infinity of the order inconsistency zero.

(3.1.34)



(1) Let Su(y) abbreviate y Uw {y},. There exists at least one w-family X of the order
inconsistency zero such that the following conditions hold.

EIXW{<(33,W Ew 5(W> A @JW Ew 5(W> AVYu(w Ew Xw = Sw(Tw) €w X) A\,
AWV Zu[(Jw €w Xw) A (Zw €w Xw) = N\, (3.1.35)
Yw €w Zw) V (Zw €w Yw) V —w(Iw €w Zw) V —w(Zw €w Yw)]}-
(2) Let F;, be any w-family of all those w-subsets S, of X,, such that
Fu =w
{éw Cw Xw|<és,w €w éw) A <(3w Ew éw) A Vyw@’w ew Sw = Su(Yw) Ew éw)

AV 2Zu[ (Fw €w Su) A (Zw €w S) >\ (3.1.33)
(o € 20) V (i €0 5o0) V = € 20) V =l € o)1
Then
Xi e w7 (3.1.34)

see Definition 3.2.3 (ii).

Theorem 3.1.3.(Finite or weak induction)There exists w-unique w-family of the order
inconsistency zero Ny, of w-sets of the order inconsistency zero such that the following
conditions hold.

() Bsw €w Nu,Ow €w Nuy

(“) Xw €w Nw = Sw(Xw) €w Ny

(i) Ny <% N

(iv) if Ky satisfies (i) and (i), then Ny <y K.

Proof. It follows from the strong axiom of w-infinity that there exists at least one
w-family of the order inconsistency zero X, satisfying conditions (i), (i) and (iii).

Let % be the w-family of all those w-subsets of Xw Which satisfy (i), (i) and (iii):

~~

5UW =w
{éw Cw Xw|<és,w Ew SN) A <6W Ew SN) A VY/w(S/w Ew éw - S\N(S’W) Ew éw)
/\Vwa2w|: <)7w Ew SN) A <2w Ew SN) - \
(yw Ew 2w) V (2w Ew yw) V —|W(S/w Ew 2w) \% —|w(2w Ew yw)]}

(3.1.35)

It is easy to show that w-n ?W (see Definition 3.2.3 (ii)) is the required w-family.

Remark.3.1.3. Note that by 8.2.3 it follows N§ &5, Ny.

The next theorem scheme justifies strong mathematical induction. For brevity we shall
write W for wy, ..., Wn.

Theorem 3.1.3.(Strong induction) For all W, if

vn(n ew Nw)[ Vm ey Ny[ @(Mm @) = o(n®) ]] (13)
then

vn(n ew Nw)[@(n®) ]. (13)



8.3.Axiom of wiy-Infinity.
Let Sw,, (V) abbrewate Ywe, Uwgy Ywy »

Wiy
E|>v<w[n] {<és,w Swpp) >v<W > A <6W Ewppy >v<w > A \ 3.1 36)
/\VSIW[n] (yW[n] eW[ - SWn] (yW n]) EW XW n])}'
8.4.Axiom of wpn-Infinity.
Let Sw,, (V) abbreviate Yw,, Uwy {yw[n]}w[m.
E|>v<w[n] {(Qs,w Swpp) >v<W > A <QW Ewpny >v<w > A \ 3.1, 34)

/\VSIW[n] (yW[n] eW[ - SW [n] (yW [n] ) EW XW [n] )} )

Theorem 3.1.3.There exists exactly one w,-family of win-sets Ny, such that

(i) Bsw Ewpy an],ﬂw Swiy Nwgy

(i) Xwy Ewy - Sw, (xW ) €wpy Nwgy

i) if Kuy, satlsfles (i) and (||), then Nu,, Swyy Kug -

Proof. It follows from the strong axiom of wpy-infinity that there exists at least one
W -family XW satisfying conditions (i) and (ii). Let F v, be the wpy-family of all

those Win -subsets of XW which satisfy () and (ii):

F i =wi {S’V <w X, |<ﬂ3W Sw [n]) A @W Ewim SN[n]) AN

/\vyW[n] <yW[n] Swi SW[n] S’V[n] (yW ) Ewny V nl>}

It is easy to show that w—ﬂ Fw,, (see Definition 3.2.3 (iii)) is the required wy-family.

8.4.Axiom of wy, -Infinity.

Let Sw,, (V) abbreviate Yw,, Uw,, {Yw, *

Wiy

EI)V(W<n> {(63‘” Cwiny 5(W<n>> A @W Cwiny XW{M) AN

SN - 5 g (3.1.35)
/\Vywm (yW<n> Sw xW<n> - SW<n> (yW<n>) Swn) me)} :

Theorem 3.1.4.There exists exactly one wn, -family of wynj-sets Ny, such that

(l) 0S,W EW{M NWiﬂW EW{M NW(m>

(“) Xw Swny NW(n) - S"’{ﬂ) (XW{n>) Swny NW{H)

(i) if Ky, satisfies (i) and (i), then Nw,, Cw,, Kw,.

Proof. It follows from the strong axiom of wy,, -infinity that there exists at least one

Wy -family XWW satisfying conditions (i) and (ii). Let v, be the w,-family of all
those  w,;-subsets of Xy, which satisfy (i) and (ii):



3:W<n> Wiy {S’Vw Cwiny S(W[n]|<éS’W Swiny éW[n]) A <6W Swiny éW<n>> A \
/\vyww <yW<n> Swiny SW<n> - SN<n> (yW<n>) Swiny S‘N<n>>}'

It is easy to show that W<”}'n Fw,, (see Definition 3.2.3 (iv)) is the required
W{nyfamily.

12.Axioms of Replacement.

(1) Strong Replacement Scheme.
() Let ¢(x,y,u) be a formula free from symbols ¢, , ¢\ ,then

VXVYVY [P, Y, U) A gy, U) > Y =w Y]~

(3.1.34)
- VSIZVY[Yy €w Z & IX(X €y S)P(X, Y, U)].
The set zis denoted {y[Ix¢(X,y,u) A (X €Ew S)},-
(i) Let ¢(x,y,u) be a formula free from symbols ¢, , ¢35, . then for any
u= (p1,..-,px), n=1212....
YXVYVY [B(X,Y,U) A p(X, Y, U) > Y =y, V'] =
YVY [y, u) A ¢(X Yy, u) = Y =wy V] (3.1.35)
- VSIZVY[Y €wyy Z < IX(X Ewy,y S)P(X, Y, U)].
The set zis denoted {y[FX¢(X,y,u) A (X Ewy, s)}w[ -
(iii) Let ¢(x,y,u) be a formula free from symbols ¢, , %, ,then for any
u= (p1,..-,px), n=1212....
YXTYVY [B(X,Y,U) A p(X,Y ) > Y =, Y] -
YVY oy, u) A¢(Xy,u) = Y =, Y] (3.1.36)
- VSIZVY[Y €w,,, Z < IX(X €wy,, S)P(X Y, U)].
The set zis denoted {y[FX¢(X,y,u) A (X €w,y, s)}W{ -
(2) Weak Replacement Scheme.
() Let ¢(x,y,u) be a stratified formula, then for any u = (p1,...,px), N =1,2,...
VYXVYVY' [ Y, U) A p(X Y U) =w Y =w V'] =w (3.1.37)
=y VSIZVY]Y €w Z <=w IX(X €w S)P(X,Y,U)]. o
The set zis denoted {y[Ix¢(X,y,u) A (X €w S)},-
(i) Let ¢(x,y,u) be a stratified formula, then for any u = (p1,...,px), n=1,2,...
VXVYVY [(X, Y, u) A o(X, Y, U) > Y =w, Y]~
YVY [9(KY,U) A Gy, U) = Y =wy V] (3.1.38)

- VSIZVY[Y €wyy Z © IX(X Ewyy S)P(X, Y, U) ]



The set zis denoted {yFX@(X,y,u) A (X Ewy, s)}w[ -
(iii) Let ¢(x,y,u) be a stratified formula,then for any u = (p1,...,px),.n = 1,2,...

VXYYVY (XY, u) A p(% Y U) = Y =w,, Y]~

(3.1.39)
- VsIZVYly €w,, Z < IX(X €w,,, S)P(X Y, U)].
The set zis denoted {y[FX@(X,y,u) A (X €w,, s)}w< K
11.Axioms of inconsistent choice
11.1.Weak Axiom of w-Choice
vcl cl cl _d PN d d sw N
VXGL(VX €w XGVY €w XG(X = Y © XNGY #& Dsw)) >\ (3.1.39)

= 3ZH(VX(X €w XR)IWYA(Y €w XNG Z3))]-

Remark.3.1.3. Note that in non formal language, the Weak Axiom of Choice says that
if you have almost classical w-set X& of pairwise w-disjoint non-empty almost classical
w-sets, then you get almost classical w-set z5 which contains one w-element from each
set in the collection. Although the axiom gives the existence of some almost classical
“choice w-set” z§, there is no mention of w-uniqueness-there are quite likely many
possible sets z8 which satisfy the axiom and we are given no formula which would single
out any one particular zg.

Theorem 5. almost classical w-set X8 there is a w-choice almost classical w-function
on

any almost classical w-set of non-empty almost classical w-sets; i.e.,

VX[ Dsw # XS - FFD(FD 2 XS - [XG A (VX ew XDFL(X) ew X))].  (3.1.39)

Proof. Given such an X, by Replacement thereisa set Y = {{x} x x: x e X}
which satisfies the hypothesis of the Weak Axiom of w-Choice. So, 3z Vye Y 3lpp e
yNnz. Letf=zN(SY). Thenf: X - S X and each f(x) € x.

12.The wyy-union and wpy-intersection.

Definition 3.2.1. (i) The w-union of 49 and Bg is the almost classical w-set X&
such that

VXX €w X& o (X ey 49) V (X ew BI)]. (3.2.1)

We denote it by 4% Uy BY.
(i) The w-union of 4,, and B, is the w-set X,, such that

VXX €w Xw © (X €w Aw) V (X €w Bw)]. (3.2.2)
We denote it by 4y Uw Buw.



(iii) The wn,-union of 4, and By, is the wyn,-set Xy, such that
VXX €wpy Xy © (X €wgy Awn ) V (X €y By, )] (3.2.3)
We denote it by 4w, U, Bu,,-
(iv) The win-union of Ay, and By, is the wiy-set X, such that
VXX €wgy Xy © (X Ewyy Awgy) V (X Ewgy By )]- (3.2.4)
We denote it by Aw,, Uwy Buy,-

Definition 3.2.2. (i) The w-intersection of 48 and B¢ is the almost classical
w-set X¢ such that

VXX €w X& o (X ey 49) A (X ew BD)]. (3.2.5)

We denote it by 48 Ny, BY.
(i) The w-intersection of 4y and By, is the w-set X,, such that

VXX €w Xw « (X €w Aw) A (X €w Bw)]. (3.2.6)
We denote it by 4w Nw Buw.
(iii) The w n,-intersection of 4, and Bu,, is the wyn,-set Xu,,, such that
VXX €wpy Xy © (X €wgy Awgn ) A (X €y By )] (3.2.7)

We denote it by 4w, N, Buw,,-
(iv) The win-intersection of 4y, and By, is the wyy-set Xy, such that

VXX €wgy Xy © (X €wyy Awgy) A (X Ewgy By )]- (3.2.8)
We denote it by Aw,, Nwy Buy,-
Definition 3.2.3.(i) For any almost classical w-set F§, there exists almost

classical w-set 4y such that x ey A if and only if x ey Y§, for any Y§ ey Fd.
We call the w-set 49 the w-intersection of F¢ and denote it by

w-nfrg& or nwfm. (3.2.9)

(i) For any w-set ﬁfw, there exists 4y such that x ey, Aw if and only if X €w Y. for
any Y ey Fw. We call the w-set 4,, the w-intersection of &, and denote it by

w- () Fwor ), Fu- (3.2.10)

(iif) For any wy, -set EFW<H>, there exists 4w, such that x ew,, Aw,, if and only if

X €wypy \?W{n} for any Y S ﬁfww. We call the w,,-set 4, the w-intersection of EFWW
and
denote it by

W{n}' n ((}-W{n} or nWm} ‘(}-Wm} . (3. 2. 11)

17.The wyy-difference

Definition 3.3.1.(i) The w-difference of 4% and B¢ is the w-set X¢ of all x €y, 4%
such that —w(X ey BS) :

VXX ew X& o (X ew 49) A —w(X ew BY)] (3.3.1)



and we denote it by

A9\,Bd or 49 —,, BS. (3.3.2)
(i) The w-difference of 4, and By, is the w-set X of all x ey 4’ s
uch that —w(X ew Bw) :

VXX €w Xw < (X €w Aw) A —w(X €w Bw)] (3.3.3)

and we denote it by

Aw\wBw or Ay —y By (3.3.4)
Definition 3.3.2. The s-w-difference (strong w-difference) of 4,, and By, is the w-set Xy,
of all x ey Aw such that —s(x ew Bw) : VX[X €w Xw < (X €w 4dw) A —s(X €w Bw)].

We denote it by Ay —sw Bw or by A\swBuw. If By cw Aw We say that A\s,B is a
sw-complement By, in 4w or Aw\swBw is a strong w-complement By, in Ay.

16.Inconsistent w-relations and w-functions of the order

inconsistency zero.
Definition 16.1. (i) Almost classical w-ordered pair (a,b)$ is defined to be

(@b =w {{a,{abri}¥. (16.1)
We further define almost classical w-ordered triples

(@ b,0)f =w ((a,b)§,0) =w {{{a}, {a b}irw, {{{a}¥ {a b}a}y, ci}d,  (16.2)
almost classical w-ordered quadruples . . .almost classical w-ordered n-tuples etc.
(i) An w-ordered pair (a,b)y is defined to be {{a}w,<{a,b}w}w-

(@b)w =w {{a}w, {a,b}w}w. (16.3)
We further define w-ordered triples

(a1 b1 C)w =w ((a1 b)W1C)W =w {{{a}w, {a1 b}w}m{{{a}w, {a1 b}w}ic}w}m (16-4)

w-ordered quadruples . . .almost classical w-ordered n-tuples etc.

Definition 16.2. (i) Almost classical w-set RY is an almost classical binary

w-relation if all w-elements of RS are almost classical w-ordered pairs, i.e. for z ey R

there exists x and y such that z =, (x,y)%.We can also denote (x,y)w €w RS as xRy,

and say that x is in relation RS with y if xRSy holds.

(i) A w-set Ry, is a binary w-relation if all w-elements of R, are

w-ordered pairs, i.e. for z €y, Ry there exists x and y such that z =, (X,y)w.We can

also denote (x,y)w €w Rw as xRwy, and say that x is in w-relation Ry, with y if XRwy
holds.

Definition 16.3. (i) The almost classical w-membership w-relation on 4§ is defined by

em% = {(@,b)j|(@acd 49) A (b el 49) A (a € b)}. (16.5)
The almost classical w-identity w-relation on A4S is defined by
1dS s =w {(@D)3l(@ el 43) A (b e 49) A (@ =w b)}. (16.6)
(i) The w-membership w-relation on 4, is defined by
€win =w {(@b)wl(@ew dw) A (b €w Aw) A (a €w b)}. (16.7)

The w-identity w-relation on A4, is defined by
Idy i, = {(@b)wl(@ ew 4w) A (b €w 4w) A (@ =w b)}. (16.8)



Definition 16.4.(i) Let 4,, be w-set and B be a classical set. The cartesian
ws-product of 4 and B is

Aw xw B =us {(a,b)us|(@ ew 4w) A (b s B)}. (16.9)

(i) Let 4 be a classical set and B be a w-set. The cartesian
sw-product of 4 and B is

A xw B =us {(@,b)sw|(@es 4) A (bey B)}. (16.10)
(iii) Let 4, B be w-sets. The cartesian w-product of 4 and B is
defined by
AxwB={(@b)wl(@aecw 4) A (bewB)}. (16.11)
Definition 16.5.(i) A binary w-relation F, is called a w-function if aF,b; and aF b2
imply

b1 =w bo for any a, b1, and b,. This w-unique b is the value of F,, at a and is denoted
Fu(a)

or Fya. If dom(F) =w 4w and ran Fy, v Bw, we can denote Fy, by Fy : 4w » By,

(Fu(@la cw Aw),,,(Fuald cw 4),, or (Fwa),_ ;.

Definition 16.6.(i) Let f, : 4w —w Bw be a w-function.

1) f., is w-injective if for a; ew Aw and @z €y Aw,fw(a1) =w fw(az) if and only if

a1 =w a2.We call f,, a w-injection.

2) fw is w-surjective if for every b e, By, there exists some a e, 4, such that

fw(a) = b.We call f,, a w-surjection.

3) fu is w-bijective if it is both w-injective and w-surjective. We call f,, a w-bijection.

(i) Let fsw : 4 —sv Bw be a sw-function.

1) fsw is sw-injective if for a; €s 4 and a; €5 A, fsw(ai1) =w fsw(az) if and only if

a1 =s az.We call fsy, a sw-injection.

2) fsw is sw-surjective if for every b €,, By, there exists some a € 4 such that

fsw(@) =w b.We call fsy a sw-surjection.

3) fsw is sw-bijective if it is both sw-injective and sw-surjective. We call fsy, a
sw-bijection.

(iii) Let fws : Aw »ws B be a ws-function.

1) fus is ws-injective if for a; ey 4w and az ey Aw,fws(@1) =s fus(az) if and only if

a1 =y az.We call fys an ws-injection.

2) fws is Ws-surjective if for every b s B, there exists some a €, 4y such that

fws(@) =s b.We call fy,s a ws-surjection.

3) fws is ws-bijective if it is both ws-injective and ws-surjective. We call fys a
ws-bijection.

Definition 16.7.(i) (a) w-functions fy and gy are called w-compatible if f(x) =w g(x)

for all x e, dom(fy,) Nw dom(gw).

(b) A w-set of w-functions Fy, is called a w-compatible system of w-functions if any two

w-functions f,, and gy from F,, are w-compatible.

Theorem 16.1. If Fy is a w-compatible system of w-functions, then w—U Fwisa

w-function with dom(w-|_J Fw) =w w-|_J{dom(fw)ffw €w Fu}, The w-function

w-(_JFw

extends all fy ew Fuw.



Proof. We need to show that:
(1) W-U Fw is a function and
(2) dom(w-U Fu) = w-|_J<dom(fu)lfw €w Fu},,
(1) Suppose there exists (a,b1)w €w W-U Fwand (a,b2)w €w W-U Fu.
Then there exists functions fy1,fw2 €w Fw such that fy1(a) =w b1 and fy2(a) =w ba.
But since fy1 and f,,» are compatible and a €,, dom(fy1) Nw dom(fy2), therefore
bl =w fw,l(a) =w fW,Z(a) =w b2-
This shows that w—U Fw is a w-function.
(2) Suppose x ey dom(w-| JFw). Then x e, dom(f) for some fi €w Fu.
Suppose y ey, dom(fw) for some f,, €w Fu. Then x e, dom(w- U Fu).
Therefore dom(w- | JFw) =w w-_J {dom(fu)lfw €w Ful},.
Definition 16.8.(i) Let 4 and B be w-sets. The set of all w-functions on 4 into B is
denoted w-B4.
(i) Let 4 be a classical set and let B,, be w-set. The w-set of all sw-functions on 4
into B is denoted w-B~,
(iii) Let 4,, be w-set and let B a classical set. The w-set of all ws-functions on 4
into B is denoted w-B.

17. Inconsistent wp,-Relations and wy-Functions of the

order inconsistency n > 1.
Definition 17.1. (i) An w,-ordered pair (a,b)wn: is defined to be
Hawiny» {@ B winy Jwiny
(@b)wmy = {{@wmy, {a, bl winy fwiny - (17.1)
We further define wy,,-ordered triples

(@,b,0)wmy = ((@,D)winy, Owiny =winy
{{HL{& winy» @, B winy Fwiny s S winy» {&, B} winy }s Crwiny Fwiny

w.n,-ordered quadruples . . . w,-ordered n-tuples etc.
(iv) An wp,j-ordered pair (&, b)wn is defined to be {{a}wn, {a b} wni}win-

(@,b)win = {{awiny, <@ b} wingF wing- (17.3)
We further define wyn-ordered triples

(17.2)

(a, b, C) wn] = ((a, b) w[n], C) wln] =w[n]
{{{a&} win]s {a,b} W[n]}W[n] K& w(n], {a,b} w[n]} ,C} w[n]}w[n] ,

wn-ordered quadruples . . . wyy-ordered n-tuples etc.

Definition 17.2.(i) A wn)-set I?{Ww is a binary wn-relation if all wy,-elements of I?Wm are

W-ordered pairs, i.e. for z ey, Rw,, there exists x and y such that z =u,, (X,Y)w,,-We
can

also denote (X,Y)w,, €wy Ruwy, as XRw,,Y, and say that x is in wiy-relation Ry, with y if

XRuw,,y holds.

Definition 17.3.(i) The wi-membership w-relation on 4w, is defined by

(17.4)



€

wey {@D)wy, @ wyy Awy) A (B €y Awy) A (@ Ew, D). (17.5)

Win) oAy
The wn-identity win-relation on AW is defined by

Awgy = {(q, b)w |(a S Aw DA (b Swpy Aw DA (@ =w, b)} (17.6)
Definition 17.4.(i) Let Aw,, be w,-set and B be a classical set. The cartesian
Wms-product of 4w, and Bis
AuW[n] X W) B =wis (@ D)wyysl(@ €wy /an]) A (b s B)}. (17.7)

(i) Let 4 be a classical set and BW be a wiy-set. The cartesian
swin-product of 4 and B,

A X, BW =swy @D swy,l(@es 4) A (b ew, B)}. (17.8)
(iii) Let A’WWBWM be wn-sets. The cartesian w,-product ofAW and BW
Awgy ¥z Bwy =wy L@ D)w (@ Ewgyy Awyy) A (D €y Buy)}- (17.9)

Definition 17.5.(i) A binary w[n]-relatlon FVv is called a wy,-function if aFW b1 and
alfw[n] bz imply by =y, b2 for any a,b;, and b2. This wiy-unique b is the value of Fww
at aand is denoted Fu,, (a)

or Fu,a. If dom(Fu,,) =w, Aw, and ran(Fw) Cw Bw, we can denote F,, by

Fuw * Awy = Bwy (Fwn](a)la Swpy Awn]> (Fugald wyy Awg),, s or (Fu

[n [”]'a>aew[n] Awgy

Definition 15.6.(i) Let fW ; AW —w - be a wp-function.

1) fw IS Wnj-injective if for a1 Ewy AW and a2 Ewy, Awn],fVv (A1) =w, fW(az) if and
only

if a1 =w,, az.We call fvv [n]-injection.

2) fugy |s Wnj-surjective |f for every b ey, , there exists some a ey, 4w, such
that

fw,, (8) =w,, b.We call fu,, aw-surjection.

3) fu,, is Win-bijective if it is both Win-injective and win-surjective. We call fu,, a

n] buectlon.
(ii) Let fswy, : 4 »swy Bwy, be a swpy-function.

1) fswy, IS swp |nject|ve |f fora; es 4 and a; €s A fsw,, (a1) =wy, fsw,, (@2) if and only if

a; =s az.We caII fsw, @ Swinj-injection.

2) fswy, IS SWn-surjective if for every b €, By, there exists some a e 4 such that

fsw, (@) = bWe call fsw,, a swinj-surjection.

3) fs,,W is SN 1-bijective if it is both Swin -injective and swinj-surjective. We call fsy,,, a
SW[n) bljectlon.

(iii) Let fu,s : Aw, —wys B be awyys-function.

1) fwgy.s IS Wn |nJect|ve |f fora; ew, AW and az ew,, AW g s(@1) =s fu,s(az)

ifand only if  a; =w,, a2.We call fW s an wp s-|nject|0n

2) fus is wins-surjective if for every b s B, there exists some a e, 4, such that

fw,.s(@) =s b.We call fw,, s @ Wiy s-surjection.

3) fwyy s is wWinis-bijective if it is both wys-injective and wyns-surjective. We call fy, s a

wnS-bijection.



Definition 17.7.(i) (a) w-functions fy, and gw,, are called wy,-compatible if

fw () =wyy Gwy, (X) for all x ey, dom(fw,, ) Nw,, dom(Qw,, ).

(b) A wpnj-set of win-functions Fy,,, is called a wy,;-compatible system of wi,-functions
if

any two w-functions fu,, and gw,, from Fy,, are wy-compatible.

Theorem 17.8. If Fy,, is a wy,-compatible system of w-functions, then

Wi Fugy is @ win-function with

dom (Wi~ | Fuy ) =wey Wim={J<dom(fu ) fuyy €wyy Fugm -

[n]
The win-function win-|_J Fw,, extends all fuy, €y Fuy:
Proof. We need to show that:
(1) Win-|_J Fuy is @ function and

(2) dom (Wi~ | Fwiy) =iy Wim={J<dom (g Mgy €y Fug b, -

[n]
(1) Suppose there exists (a,b1)w €w W-U Fwand (a,b2)w €w W-U Fu.
Then there exists functions fy1,fw2 ew Fw such that fy1(a) = b1 and fy2(a) =w bo.
But since fy1 and f,,» are compatible and a €,, dom(fy1) Nw dom(fy2), therefore
bl =w fw,l(a) =w fW,Z(a) =w b2-
This shows that w—U Fw is a w-function.
(2) Suppose x ey dom(w-| JFw). Then x e, dom(f) for some fi €w Fu.
Suppose y ey, dom(fw) for some f,, €w Fu. Then x e,, dom(w- U Fu).
Therefore dom (w-|_J FXV> =w w-_J {dom(fu)lfw €w Fu},, o
Definition 17.9.(i) Let 4 and B be w-sets. The set of all w-functions on 4 into B is
denoted w-B4.
(i) Let 4 be a classical set and let By, be w-set. The w-set of all sw-functions on 4
into B is denoted w-B4.
(iii) Let Aw,, be w-set and let B a classical set. The wiy-set of all wiys-functions on 4y,
into B is denoted win-B™n.

Inconsistent Equivalences and Orderings.

18.Inconsistent w-Equivalences and w-Orderings of the

order inconsistency zero.

In these subsections, we will finish defining a few important types of inconsistent
relations that will help in defining inconsistent natural and inconsistent real numbers in
set theory ZFC¥.

Definition 18.1. (i) Let RS be almost classical binary w-relation in w-set A4S,

(@) RY is w-reflexive in A4S if for all a €, 49, aR%a.

(b) RY is w-symmetric in 49 if for all a,b e, 4%,aR%b implies bRYa.

(c) RY is w-antisymmetric in A9 if for all a,b e, 4%,aR%b and bR3a imply a = b.

(d) RY is w-asymmetric in 49 if for all a,b e 4%, aR%b implies that —s(bR%a).

i.e. aR%b and bR%a cannot both be true.

(e) RY is w-transitive in 49 if for all a,b,c e, 4%, aR%b and bRSc imply aRdc.

(i) Let Ry be a binary w-relation in w-set 4.

(a) Rw is w-reflexive in Ay, if for all a €,y Aw,aRya.



(b) Rw is w-symmetric in 4, if for all a,b €., 4w, aRub implies bRya.

(c) Ry is w-antisymmetric in Ay, if for all a,b €, 4w, aRyb and bRya imply a = b.
(d) Ry is w-asymmetric in A4y, if for all a,b €y Aw,aRwb implies that —s(bRwa).
i.e. aRyb and bRya cannot both be true.

(e) Ry is w-transitive in 4, if for all a,b,c €y 4w, aRyb and bRyc imply aRyc.
Remark.18.1. Note that if R ia binary w-relation in w-set 4., then by the non
classical law of the excluded fourth (see sect. 2.1)

aRuwb V —s(aRub) V —w(aRuwb) (18.1)

Definition 18.2.Let Ry be a binary w-relation in 4.

(a) Rw is an w-equivalence on Ay, if it is w-reflexive, w-symmetric, and w-transitive in
Auw.

(b) Rw is a w-ordering of A if it is w-reflexive, w-antisymmetric, and w-transitive in Ay.

The pair (4w, Rw) is called an w-ordered w-set.

(c) Ry is a strict w-ordering of Ay, if it is w-asymmetric and w-transitive in 4.

Remark 18.2. Now that we have established the definition of w-orderings and strict

w-orderings, we can use <,, and to denote w-orderings and <,, and <y, to denote strict

w-orderings.Thus (4w, <w ) is an pair consisting of a set 4,, and an w-ordering <y, ,

and (Bw,<w ) is a pair consisting of a set B,, and a strict w-ordering < .

There is a close relationship between w-orderings and strict w-orderings as we will

see in the next theorem.

Theorem 18.1.(a) Let Ry, be an w-ordering of Ay. Then the w-relation S, in 4,

defined by aS,b if and only if aRyb and —s(a =w b) is a strict w-ordering of 4.

(b) Let Sy be a strict w-ordering of 4. Then the w-relation Ry, in 4, defined by

aRyb if and only if aS,b or a =, b is an w-ordering of Ay.

Proof. (a) We need to show that S,, is w-asymmetric. Suppose aSyb and bS,a both
hold

for some a,b €, 4w. Then aR,b and bR,a both also hold. It follows that a =, b
because

Rwis w-antisymmetric. This is a contradiction since —s(a =w b). Therefore Sy is

w-asymmetric.

(b) We need to show that Ry is w-antisymmetric. Suppose aR,b and bR,a both hold
for

some a,b ey Aw.Suppose that —s(a =w b). Then aSyb and bSya both hold. This is a

contradiction since S, is w-asymmetric.Therefore a =, b, showing that Ry is

w-antisymmetric.

Definition 18.3.An w-ordering < of 4,, is called strong w-linear w-ordering

if any two w-elements of 4,, are comparable in the w-ordering <y in classical

sense i.e. in accordance with classical law of the excluded third (see sect. 2.1)

i.e. for any a,b ey Ay, either

a<w b,b<yaora=yb. (18.2)
The pair (4w, <w ) is called a strongly w-linearly w-ordered w-set.

Definition 18.4.An w-ordering <y of 4, is called weak w-linear if any two
w-elements of 4,, are comparable in the w-ordering <, i.e. for any a,b €,, 4w, either

a <W b,b <W a.,—|w(a. <W b),—|w(b <W a), ora —w b. (18. 3)



The pair (4w, <w ) is called weakly w-linearly w-ordered w-set.

Definition 18.5. Let <y, be a w-linear w-ordering <, of a w-set 4.
(i) The condition that a w-set X, Cw Aw has a strong <, -least w-element x reads

IX(X ew X)[VY €w XX <w V)] (18.4)

(i) We assume now that a set X <, 4y has no a strong <, -least element
The condition that a set X <, 4 has a weak <,, -least element x reads

IX(X ew X)[VY €w X[(X <w Y) V =Y <w X)]] (18.5)

Remark.18.3.Note that the conditions (i) and (ii) are not equivalent since (3.5.4) and

(3.5.5) are not equivalent by the non classical law of the excluded fourth (see sect.
2.1)

Definition 18.6.A w-linear w-ordering <, of a w-set 4, is a weak well w-ordering if

every
nonempty w-subset X of 4, has at least a weak <,, -least w-element. The structure
(Aw,<w ) is called a weakly well w-ordered w-set.

19. Inconsistent wy,-Equivalences and wp,-Orderings of
the order inconsistency n > 1.

Definition 19.1.Let I?{Ww be a binary wyy-relation in w, setAW
(@) Ruy, is W-reflexive in 4y, if for all a ey, Awn],aRW o
(b) RN is Win-symmetric in AW if for all a,b €w,, Aw,,,aRw, b implies bRy, a
(€) Rw,, is Win-antisymmetric in AW if for all a,b ey, AW ,aRy,, b and bRy, a
imply a =, b.
(d) IV?W is Wiy-asymmetric in A4y, if for all a,b S AW aﬁw[n]b implies that
ﬂs(bRW a).i.e. aRW b and bRW a cannot both be true.
(€) Ruy, is Wi transmve in Aw,, if for all a,b,c ew,, 4w, aRw,band bRy, c
imply aRWm
Definition 19.2.Let RN be a binary wyy-relation in A’W
€)) IV?W IS an win equwalence on Ay if |t IS Wpn reflexwe wn-Symmetric, and
n]-transmve in AWW.
(b) IV?WW iS a wn)-ordering of JW if it is winj-reflexive, wp,-antisymmetric, and
W -transitive in A'W[n]. The pair (AW RW ) is called an wy,-ordered wp, -set.
(c) RWW is a strict w-ordering of /fw if it is w-asymmetric and Win transmve in AW
Remark 19.1. Now that we have establlshed the definition of wy, -ordenngs and strict
Wy -orderings, we can use <y, and to denote wynj-orderings and <y, and <y, to
denote strict wyn-orderings.Thus (AVv w; ) IS an pair consisting of a setAW and
an wy-ordering <y, ,and (Bw[n], Wi ) is a pair consisting of a set me and a stnct
-orderlng Wiy
There is a close relatlonshlp between w,-orderings and strict wy,-orderings as we will
see in the next theorem.
Theorem 19.1.(a) Let I?W be an wiy-ordering of 4y, . Then the wyy-relation SNM in
14VW
deflned by aSN b if and only if aRW b and —s(a =w,, b) is a strict wy,-ordering of A'W[n].

(n]



(b) Let SNM be a strict wyn-ordering of A’W Then the w-relation I?{Ww in Jw[n] defined by

aRw,, b if and only if aSy, b or a =w,, bis an wyy-ordering of A, .

Proof. (a) We need to show that SN[ IS Wnj-asymmetric. Suppose aSN b and bS,v[n]a

both hold for some a,b ey, Aw... Then aRW b and bRW a both also hoId It follows

that a =, b because RW IS W antlsymmetnc This is a contradiction since

—s(@ =w, b) Therefore SN IS Win-asymmetric.

(b) We need to show that RW IS Wnj-antisymmetric. Suppose aRW b and bﬁw a both

hold for some a,b ey, AW Suppose that —s(a =w,, b). Then aSN b and bSN a both

hold. This is a contradlctlon since SN[ IS W -asymmetrlc Therefore a=wy, b, showmg

that RW IS Wnj-antisymmetric.

Def|n|t|on 19.3.An Winj-ordering < of Ay, is called strong wiy-linear wy,-ordering or

strong total wy,)-ordering if any two elements of AVWW are comparable in the
wnj-ordering

<wy I-€. forany a,b ey, AW , either

a <wy b,b <w, aora=y, b. (19.1)

The pair (4w, <w,, ) is called a strongly wy,-linearly wi,-ordered wiy-set.
Definition 19.4.An wy-ordering <w,, Of 4w, is called weak wy,-linear if any two
n-elements of 4y, are comparable in the wyy-ordering <u, i.e. for any
a, b S AW
enher

[n]

[n]

a <wy b,b <w, a-w(@<wy b),—w(b <w, a), ora=w, b. (19.2)
The pair (4w, <w,, ) is called weakly w-linearly wy,-ordered wy-set.
Definition 19.5. Let <u,, be a wyy-linear wyy-ordering <y, of a win-set 4w, .
(i) The condition that a wiy-set Xw,, Swy, 4w, has a strong <w, -least wyy-element x
reads
XX wyy Xuiy VY Ewpy Ky (X Swiy ¥)1- (19.3)
(i) We assume now that a set wa Cwyy A4 Wm has no a strﬂ <wy -least winj-element
The condition that a wy-set XWW Cwyy Aw, has a weak <y, -least wy-element x
reads

[n]

E|X(X eW[n] XW[n] )[vy EW[n] )V(W[n][(x SW[n] y) \ _‘W(y <W[n] X)]] (19 4)

Remark.19.2.Note that the conditions (i) and (ii) are not equivalent since (3.5.4) and
(3.5.5) are not equivalent by the non classical law of the excluded (n + 1)-th (see sect.
2.2)

Definition 19.6.A wy-linear winy-ordering <w,, of a win-set A, is a weak well

wnj-ordering if every nonempty Wnj-subset me of 4w, has at least a weak <y, -least
Win-element. The structure (Aw,,,<w,, ) is called a weakly well wy,-ordered wy-set.

Inconsistent natural numbers Ny,

20. Almost classical w-natural numbers Ng.

In defining the almost classical w-natural numbers (or a.cl. w-natural) we begin by



examining the most fundamental set, the empty almost classical set fs,..We can very
easily create a pattern that is a prime candidate for the definition of the almost classical
w-natural numbers:

OS\I/ = és,w’

18 =w {08}, =w 0% Uw {08}, =w {02} w,

2\% = {0\%11\%}\,\, =w 1\9\'/ Uw {1\%}\,\, ~w {ésm{és,w}w}w

3¢ =y {09, 15\',,23\',}\,\, =w 28 Uw {25\',}\,\, =w {Bsw, Bsw}wr Bsw, Dsw)w)whw, €LC.

Definition 20.1. Let Sd(y) abbreviate y U$ {y}&. Almost classical w-set X§ is called

w-inductive if

IX[ Bsw €w X% A VY(Y €w XG = SH(y) ew X3) - (20.1)

Definition 20.2. (i) The set of all almost classical w-natural numbers is defined by

A

NG 2 {yly ew X§ for any almost classical w-inductive w-set X§ } .

(i) If n ey N, then n+¢ 18 e, N&, where n+$ 18 denotes the w-successor to n.
Theorem 20.1.Almost classical w-induction.

YXGXS cw N[ [Bsw ew X3 A VXX €w X§ > SH(X) €w X§]1] > X§ = N ] (20.2)

Proof.Immediately from theorem 3.4.1.

Definition 20.3. An almost classical w-ordering <§ of N¢ is called
almost classical w-linear w-ordering if any two w-elements of N¢ are
comparable in the w-ordering <$ , i.e. for any a,b e,, Ng, either

a<% bb<%aora=¢ b.

Definition 20.4.We define now the almost classical w-relations:

(i) <¢ on N¢ by: for all m,n €, N&,m <& nif and only if m €, n,

(i) <¢ on Ny, by: for all m,n €y Ny, m <8 nif and only if m €, nor m =, n,
Theorem 20.2. (Ng,<% ) is a linearly ordered almost classical w-set.
Proof. We need to show () The relation <¢ is an almost classical
w-ordering of N¢ and (II) Any two elements in N§ are

comparable. We will do this by induction.

() We need to show (A) <¢ is w-transitive on N$ and

(B) <% is w-asymmetric on Ng.

(1.A.) Consider the property P$(n) : for allk,m ey, Ng, if k <¢ m

and m <$ n, then k <§ n.

We need to show this holds for all n €, NZ.

(i) Base case: Consider PS(0).

Since there does not exist an m € N¢ such that m < 0, P$(0) is trivially true.
(i) Induction hypothesis: Suppose P§(n) holds. Consider PZ(n + 1).
Suppose k < m and m < n + 1 both hold. This implies m <norm=n.
Case 1) m < n. Then k < n by induction hypothesis.

Case 2) m =n. Then since k < m, k < n is trivial.

Thus P(n) holds for all n e N§.

Therefore < is transitive on Ng.

(1.B.) Suppose have n <§ mand m <$ n. Then by w-transitivity n <& n.
Consider the property QZ(n) : n «§ n,where n «$ n abbreviate —s(n <§ n).
We need to show this holds for all n ey, Ng.

(i) Base case: Consider QZ(0%).




Suppose Q¢(0%) does not hold. Then we have 0 <§ 0¢, which by
definition is Gsw €w @sw, Which is a contradiction to the defnition of s, .
(i) Induction hypothesis: Suppose Qg (n) holds. Consider Qg(n + $1%).
Suppose Q4 (n +% 18) does not hold. Then n + 1 < n + 1, by definition,
isn+len+1.

We know n + 1 =n U {n}, which impliesthatn+1enorn+1=n.
Casel)n+1len. Thusn+1l<n.Butsincen<n+1, by

transitivity we have n < n, which

contradicts the induction hypothesis.

Case 2) n+ 1 =n. This is obviously a contradiction.

Thus Q(n) holds for all n e Ng.

Therefore < is asymmetric on N§.

(1) We need to show any two elements in N¢ are comparable in <.
Consider the property R(n) : Vm €

N, either m < n, n <m, or m = n. We need to show this holds for all n e N¢.
(i) Base case: Consider R(0).

0 <m for all m e N, so 0 < m or m =m. Thus R(0) holds.

(i) Induction hypothesis: Suppose R(n) holds. Consider R(n + 1).
Consider an arbitrary m € Ng. Since R(n) holds, n<m, m <n, or m = n.
Case 1) m < n. Then since n < n + 1, by transitivity m < n + 1.

Case2) m=n.Thensincen<n+1, m<n+1is trivial.
Case3)n<m.Weneedtoshowm=n+1orn+1<m.

Apply induction on m. Consider the property S(m) : for all n e N$ if n <¢ m,
then n + 1 <¢ m. Need to show this holds for all m €,, N¢.

a) Base case: Consider S0).

S(0) holds since there is no n <$ 0.

b) Induction hypothesis: Suppose S(m) holds. Consider S(m + 1).
Assumen<dm+1=n<¢morm=n.

Case i) n <m. Thus n + 1 <m by induction hypothesis.
m<m+limpliesn+1l<m+21 Thusn+1<m+ 1.
Casei)n=m.Thusn+1=m+1impliesn+1<m+ 1.

. S(m) holds for all m € N.

Thus R(n) holds for all n € N.

Therefore any two elements in N are comparable in <.

Therefore (N, <) is a linearly ordered set.

21.Inconsistent w gy -natural numbers of the order

inconsistency zero Ny, .
Definition 21.1. Let Su(y) abbreviate y Uw {y},,-A w-set X is called w-inductive if
IX[ G €w XA VY(Y €w X = Suy) ew X) . (21.1)

Definition 21.2. The set of all w-natural numbers is defined by
Nw £ {yly ew X for any w-inductive w-set X}
We denote this w-set by Ny,.



Theorem 21.1. w-Induction principle.
VXX w Nw)[ [Bw ew XA VXX € X = Su(X) ew X] ] = X =w Nu].  (2L.2)

Proof.Immediately from theorem 3.4.2.

Definition 21.3. An wo,-ordering <w,, 0f Ny, is called w o, -linear if any two
w0, -elements of Ny, , are comparable in the w,o,-ordering <, , i.e. for any
a,b ewgy Nug, either a<w, ba<y, bb<wab<y, a ora=ybh
Definition 21.4. (i) The wy,-relation <3, on Ny, is defined by: for all mn €y, Nw,,
such thatm=y,, n:m<y, nifandonlyifmew, norn ey, m

(ii) The relation <j;, on Ny, is defined by: for all mn €y Ny,m <, nifand only if mey n
orn g_iw@ morm=y n.

Definition 21.5.We define now the w o, -relations:

(1) <wg, ONNw,, by: forallmn ey, Nw,,m<w, nifandonlyifmey, n,

(il) <we, ONNwg by: forallmn ew, Nwg,m<w, nifandonlyifn ey —m,
(iii) <w,, On Ny, by: forall mn ew, Nw,,m<w, nifandonlyifmey, n
or m=y, N,

(V) 2wg ONNy by: forallmn ey, Nw,,m=w, nifandonlyifn ey m

or m=y, n.

Theorem 21.2. (Nw,,,<w,, ) IS @ Wy, -linearly w,o, -ordered w o, -set.

Proof. We need to show:

(I) The relation <y, is an wyo,-ordering of Ny, and

(I1) Any two w o, -elements in Ny, , are comparable in the w o, -ordering <w,, .
We will do this by induction.

(1) We need to show:

(A) <wy, Iswpy-transitive on Ny, and

(B) <w,, is Wyoy-asymmetric on Ny, .

(I.A.) Consider the property P(n) : for all k,m ey, Ny, , if kK <w, mand m<y, n,
then k <w,, n.

We need to show this holds for all n ey, Nu,g,.

(i) Base case: Consider P(Ow,y, ).

Since there does not exist an m €, Ny, such that m <,, @, P(9) is trivially true.
(i) Induction hypothesis: Suppose P(n) holds. Consider P(n +y 1).

Suppose k <, mand m <y, n+y 1, both hold. This implies m <y nor m =y n.
Case 1) m <y, n. Then k <y n by induction hypothesis.

Case 2) m =y, n. Then since k <y, m,k <y nis trivial.

Thus P(n) holds for all n €y Ny.

Therefore <, Is transitive on Ny,.

(1.B.) Suppose have n <, mand m <y n. Then by transitivity n <y n.
Consider the property Q(n) :

—s(N <§ n). We need to show this holds for all n e, N.

(i) Base case: Consider Q(0y).

Suppose Q(0y) does not hold. Then we have 0y <, Ow, Which by definition is g ew 0,
which is a contradiction to the defnition of @, .

(i) Induction hypothesis: Suppose Q(n) holds. Consider Q(n +w 1w).



Suppose Q(n +y 1y) does not hold. Then n+, 1, <§ n+y 1w, by definition, is
N+w 1w €w N+w Lu.

We know n+ 1y =y NUw {N}w, Which implies thatn+1 ey, norn+y 1 =y n.
Case 1) n+y 1y €w N. Thus n+y 1w <w N. But since n <y n+y 1y, by transitivity
we have n <y n, which contradicts the induction hypothesis.

Case 2) n+y 1y =w n. This is obviously a contradiction.

Thus Q(n) holds for all n €y Ny.

Therefore < is asymmetric on Ny,.

(I1) We need to show any two elements in N, are comparable in (- <y *)
Consider the property

R(n) : Ym €y Ny, either m <, n,n <, m, or m =, n. We need to show this holds
for all n ey Ny.

(i) Base case: Consider R(Oy).

Ow <w mfor all mey, Ny, so 0Oy <w mor m=, m. Thus R(0Oy) holds.

(ii) Induction hypothesis: Suppose R(n) holds. Consider R(n +y 1u).
Consider an arbitrary m €,y Ny. Since R(n) holds, n <y mym <y, n, or m =y n.
Case 1) m <y n. Then since n <y n+y 1y, by transitivity m <y n+y 1y.

Case 2) m =y n. Then since N <y N+w 1w, M <y N+y 1y iS trivial.

Case 3) n <y m. We need to show m =y, n+y 1y Or n+y 1y <y M.

Apply induction on m. Consider the property

S(m) :for all n ey Ny if n <y m, then n+,, 1y <y M.

Need to show this holds for all m €y, Ny.

a) Base case: Consider S(0Ow).S(0w) holds since there is no n <y Oy.

b) Induction hypothesis: Suppose S(m) holds. Consider S(m+y 1w).

Assume n <y M+y 1y > N <y Mor m=y n.

Case i) n <y m. Thus n+y 1y <w mby induction hypothesis.

m <w M+y 1y implies n+y 1y <w M+w 1w. Thus n+y 1y <y M+y Ly

Caseii) n =y m. Thus n+y 1y =4 M+y 1y implies n+y 1y <y M+y Ly.

. S(m) holds for all m €, Ny.

Thus R(n) holds for all n €y, Ny,.

Therefore any two elements in Ny, are comparable in <y, .

Therefore (Nw,<w ) is a w-linearly w-ordered set.

Definition 21.6. Let <, be a w-linear w-ordering <, of a set Ny,.

(i) The condition that a set X <., Ny has a strong <., -least element x reads

IX(X ew X)[VY €w X(X <w V)] (21.3)

(i) We assume now that a set X <,, Ny has no strong <, -least element
The condition that a set X <, 4 has a weak <,, -least element x reads

XX ew X)[VY ew X[(X <w ¥Y) V —w(Y <w X)]] (21.4)
or in the following equivalent form
IX(X ew X)[VY ew X(X <& ¥)]. (21.5)

Remark.21.2.Note that the conditions (i) and (ii) are not equivalent since (3.6.1) and

(3.6.3) are not equivalent by Theorem 3.6.2.

Definition 21.7.A w-linear w-ordering <, of a w-set Ny, is a weak well w-ordering if
every



nonempty w-subset X of Ny, has at least a weak <,, -least w-element. The structure
(Nw,<w ) is called a weakly well w-ordered w-set.

Theorem 21.3. (Nw,<w ) is a weakly well w-ordered w-set.

Proof. We will prove by using induction.

(I) Let X be a nonempty w-subset of Ny, and there exists strong complement Ny\swX.
Suppose that:

(i) X does not have a strong <y, -least w-element and

(ii) X does not have a weak <, -least w-element.

Then consider the set Ny\swX.

Case 1) Np\swX =y Gw. Then X =, N, and so Oy is a strong < -least element. But
this is a contradiction.

Case 2) —s(Nu\swX = B ). There exists an n €, Ny\suX such that for all k

such that (k <} n) A (k <& n) the following hold k €, Ny\swX (n necessarily exists

because Oy €w Nu\swX, else Oy €y X and would be a strong <y, -least element of X.)

Since we have supposed that:(i) X does not have a strong <y, -least least element

and (i) X does not have a weak <y, -least element, thus —s(n €y X) and therefore

n ew Nyw\swX. Thus we see that if for all k such that (k <§ n) A (k <g n),k ew Ny\swX

the following hold n ey Ny\swX.

Using now strong induction we can conclude that n ey Ny\swX for all n €y, Ny. Thus

N €w NwlswX =w Ny implies X =, #. This is a contradiction to X being a nonempty
subset

of Ny in consistent sense.

22.Recursion and the addition operation in Ny, .

Definition 22.1. A w-sequence is a w-function whose domain is a w-natural number
or Ny. A w-sequence whose domain is some w-natural number ny, €y Ny is called a
w-finite w-sequence of length ny, and is denoted (aifi <w n),,.

Definition 22.1. A w-function ty, : (m+y 1w) - 4w is called an m-step w-computation
based on a and gy, if two, =w @, and for all k such that

Ow <w k <w m, fw,k+W 1w =w gw(fw,k, k)

Theorem 22.1. The w-Recursion Theorem.

For any w-set 4y, any a €, Aw, and any function gy : Aw xw Nw = 4w,

there exists a w-unique w-sequence f, : Ny, - 4 such that

(@) fwo, =w aand (b) fwnew 1o =w Sw(fun, Nw)VNw Ew N

Proof. (The existence of fu)

Leta ew Awand gw: Ny xw Aw = Aw.

Let Fy =w {fw €w Pw(Nw xw Aw) | fw is an m-step w-computation on a and g,

for some m ey, Ny}.

Let fw =w Uw Fu.

Claim 1: fy is a w-function.

By Theorem 3.4.1, it is enough to show that F, is a system of w-compatible
w-functions.

Let tw,iw € Fw,dom(fw) =w N ew Ny, dom(u) = m €y Ny.

We can assume without loss of generality that n <, m. We will use w-induction
principle (Theorem 3.6)



to prove VK <y n (tk =w Uk) .

(a) Base case: k =, Oy.

We know {,, and i,, are w-computations based on a and g,.

Thus two, =w @ =w two,is trivial.

(b) w-Induction hypothesis: Let k be such that k +y 1 <w n.

Suppose fw,k =w ﬁw,k-Then fw,k+l =w gw(fk,k) =w gw(lzw,k,k) =w ﬁw,k+w 1w -
Therefore Fy, is a system of w-compatible w-functions.

Therefore f,, is a w-function.

Claim 2: dom(f) =w Nw and ran fu, Cu Au.

(It is obvious that dom (fu) Sw Ny and that ran fu Sw Aw.

We then need to show that Ny <, dom(fw) to

prove dom(fw) =w Nu. We will prove with w-induction.)

(a) Base case: Clearly ty = {(Ow,a)} is a O,-Step w-computation.

Thus Ow €, dom(fu).

(b) Induction hypothesis: Suppose t is an n-step computation, where

new dom(fw).

Define ty, on (n+w L1w) +w 1w by T, =w twi if K <w Nty ne, 1, =w Gw(twn,N).

We can see that t}, is an n+y1, step w-computation.

Thus (n+w 1) €w dom(fa). Therefore dom(fw) =w Nu.

Claim 3: f,, satisfies conditions (a) and (b)

(a) Clearly fuo =w asince two =w afor all f,, ey Fy. Thus satisfying (a).

(b) Let t be an (n+1) step computation. Then fuk =w fwx for all k ey dom(fw).
This implies fune1 =w twies =w Sw(fwn,N) =w Sw(fwn, N). Thus satisfying (b).
Therefore the existence of a function f,, satisfying the properties required by the
Recursion Theorem follows from Claims 1,2,3.

(The uniqueness of f,)

Let hy : Ny — A4 satisfy (a) and (b). We will show fun =w hwn for all n ey, Ny
by w-induction.

(a) Base case: fwo =w @ =w hwy is trivial.

(b) Induction hypothesis: Suppose fun =w hwn.

Then fw,n+l v:w gwgfw,nyn) =w gW(hW,n’n) =w ﬁw,n+l-

Therefore hy, =y fu.

Theorem 20.2. The Parametric w-Recursion Theorem

Let dw : Pw » Awand gw : Pw xw 4w xw Nw — 4w be w-functions. There exists a
unique w-function f, : Py xw Ny — Aw such that

(8) fw(p,0w) =w dw(p) for all p ew Py

(b) fu (PN +w 1w) =w Sw(p,fw(p,n),n) for alln €y, Ny and p €y Py.

Proof. Define a parametric m-step computation to be a w-function

fw : Pwxw (M+w 1) » Aw such

that, for all p €w Puw,tw(p,0w) =w dw(p) and fuw(p, K +w 1w) =w Sw(p, tw(p,K),K)

for all k such that Oy <w k <w m. The rest of the proof is similar to the proof of the
recursive theorem with the additional task of carrying p along and so will be omitted.
Notice that the parametric version takes into account an additional variable of p. This
allows us to define addition of w-natural numbers because addition is binary
w-operation.



Theorem 20.3. Addition Operation of w-Natural Numbers.

There is a unique binary w-operation (- +w «) : Ny x Ny, - Ny such that
(& m+y Oy =w mforall mey Ny,

(b) m+w (N +w 1w) =w (M+y N) + 1, for all mn €y Ny,.

Proof. This is the exact same proof as the parametric version of the
w-recursion theorem.

Let Aw =w Pw =w Nw,dw(p) =w p for all p ey Py, and

Sw(p,X,N) =y X+w Ly for all p,x,n ey Ny.

This definition satisfies all properties of addition such as

() a+w Ow =w &,(il) a+w b =w b+w a,(iii) a+w (b+w C) = (@a+w b) +w C.

Inconsistent w[n]-Integers Z .y, win]-Rationals Q,n, and
w[n]-Reals R .

21.Inconsistent w-Integers 7, w-Rationals Q,, and
w-Reals R\, of the order inconsistency zero Ny,.

Now that we have the inconsistent natural numbers, defining inconsistent integers and
inconsistent rational numbers is well within reach.

Definition 21.1. (i) Let Z§" =, N& x, N$.We can define an w-equivalence relation

~y on Z%" by (a,b)w =w (c,d)y if and only if a+y d = b+w c. Then we denote the
w-set

of all almost classical w-integers by 7§ =, 7%’/ =, (The set of all w-equivalence
classes

of %" modulo =y ).

(i) Let Z}, =» Ny xw Nyw.We can define an w-equivalence relation

~y on Z{, by (a,b)w ~w (c,d)y if and only if a+, d = b+, c. Then we denote the w-set

of all w-integers by 7,, = Z{/ ~w (The set of all w-equivalence classes of

Z;, modulo =y ).

Definition 21.2. (i) Let Q%" =y Z$ xw (Z3\w{03}w) =w {(a,b)w €w Z8 xw Z%|b £s 0% }w.

We can define an w-equivalence relation =, on Q%' by (a,b)w ~w (c,d) if and only if

axy d =y b xy c. Then we denote the w-set of all almost classical rational w-numbers
by

QY = QY = i.e.the almost classical w-set of all equivalence classes of Q%' modulo

Rw -

(i) Let Q) =w Zw xw (Zw\w{Ow}w) =w {(&,0)w €w Zw Xw Zw|b #s On}w.

We can define an w-equivalence relation ~,, on Q}, by (a,b)w ~w (c,d) if and only if

axy d =y b xy c. Then we denote the w-set of all inconsistent rational w-numbers by

Quw =w Q/ =y i.e.the w-set of all equivalence classes of Q}, modulo =, .

Definition 21.3. A w-linearly w-ordered w-set (Py,<w ) is called w-dense if for any

a,b ey P such that a <, b, there exists z €, Py, such that a <y, z <y b.

Lemma 21.1. (Qu,<w ) iS W-dense.

Proof. Let x = (a,b),y = (c,d) € Qy be such that x <y V.

Consider z = (axy d+w b xw C,2y xw b xy d) € Qy. It is easily shown that x <y, z <y Y.

Before we can define the real numbers, we will need a few more concepts.

Definition 21.4. Let (P,<y ) be a linearly w-ordered set.



A pair of w-sets (4, B) is called a w-cut if

(a) 4 and B are nonempty w-disjoint subsets of P and 4 Uy B = P.
(b) Ifaey 4andb ey B, thena <y b.

Definition 21.5. (4w, Bw) is called a strong Dedekind w-cut if additionally
(a) 4 does not have a strong <, -greatest w-element.

(4,B) is called a strong w-gap if additionally

(b) B does not have a strong <y -least w-element.

Definition 21.6. (4,B) is called a weak Dedekind w-cut if additionally
(a) 4 does not have even a weak <, -greatest w-element.

(4,B) is called a weak w-gap if additionally

(b) B does not have even a weak <, -least w-element.

Remark 21.1. We have two kinds of a strong Dedekind w-cuts
1) Ones where B =, {Xx €y P|xw >p for some p €, P},
2) strong w-gaps.

Remark 21.2. We have two kinds of a strong Dedekind w-cuts

This distinction will be needed later in the proof of completion.

We see even though rational numbers are dense, they clearly have gaps. Take for

example the two sets

1) 4 =w {X €w, QulXw >0 and X xw Xw >2}

2) B =u {X w Qul-w(x cw A)}

Clearly (4,B) is a gap in Qy,.

Intuitively, we know that the w-real numbers cannot have w-gaps,and so

our next step is to explore how to close gaps. We notice that the existence

of w-gaps is closely related to the existence of w-suprema of w-bounded w-sets.

Definition 21.5. Let (Py,<w ) be a w-dense linearly w-ordered w-set.

(i) Pw is a strongly w-complete if every nonempty S <, P bounded above has a

strong w-supremum.

(i.e. (Pw,<w ) does not have any w-gaps.)

(ii)

There is a close relationship between dense linearly ordered w-sets and complete

linearly w-ordered w-sets as we will show. This close relationship is what will allow

us to define the w-real numbers.

Theorem 21.1. Let (P, <w ) be a dense linearly w-ordered w-set without endpoints.

Then there exists a w-complete linearly w-ordered w-set (Cy,<w ) such that

(@) Pw <w Cu.

(b) If p,g ew Pw, then p <y gif and only if p <w Q.

(c) Pw is w-dense in Cy,.

(d) Cw does not have w-endpoints.

Furthermore, (Cw,<w ) iS unique up to an isomorphism over Py. The w-linearly
w-ordered

w-set (Cw,<w ) is called the w-completion of (Pw,<w ).

Proof. Part 1: (The existence of w-completion)

We reference the two kinds of Dedekind cuts from remark 7.6.



We will denote those of the first kind by

[plw = (Aw,Bw) where By =w {X €w Pulxw >p for some p €y Py} w.

We can then define the w-set

Pw =w {[PlwlP €w Pw}w

Cw =w {(Aw, Bw)|(Aw, Bw) is a Dedekind w-cut in (Py,<w )}.

Furthermore, we can order Cy and Py

by (Aw,Bw) < (Ay,By) if and only if A, < A,,.

Claim 1: (Pw,<w ) is isomorphic to (Pw,<w ).

Let p,q €, Py, and the corresponding [plw =w (Aw,Bw),[dlw =w (AW, Bw) €w Py

where Ay =w {X €w PulX <w p}w and A, = {x € PX <w Q}w.

Suppose p <y g. Then it follows that Ay < Ay.

So [p]w <w [q]w, Which proves the claim.

Claim 2: (Cw,<w ) is a w-linearly w-ordered w-set.

a) Let [rlw =w (Aw,Bw),[Slw = (Ay,By), and [tlw =w (Ay,By) €w Cw

where Ay =w {X €w PwlX <w I}w,

Ay =w {X €w Pu|X <w Stw,and Ay =y {X €y PulX <w t}w.

Suppose [rlw <w [S]w and [S]w <w [t]w. Then A cy A,

and A, c A}, = A c A}, - [r] <w [t]. Therefore (Cw,<w ) is W-transitive.

b) Suppose [r]w <w [S|w and [S]w <w [r]w. Then A cy A}, and A}, cw Ay Which is a

contradiction. Therefore (Cw,<w ) IS W-asymmetric.

c) Take [s]w and [t]w. Since these sets are defined based on sand t € Py,

one and only one of three cases

can occur: s <y t,t <y S, or s =y t. It follows that A < A, A, < A, or A= A,.

Thus [S]w <w [t]w, [tlw <w [S]w,Or [t]w =w [S]w. Therefore (Cw,<w ) IS w-comparable.

Therefore (Cw,<w ) is a w-linearly w-ordered w-set.

Claim 3: (Cw,<w ) satisfies (a)-(d) from the theorem.

(a) By definition, P, is a w-set of Dedekind w-cuts of P. Therefore P, <, Cyw

is trivial.

(b) Let [plw =w (Aw,Bw), [dlw =w (AW, Bw) €w Py

where Ay =w {X ew Pw[X <w p}w and

w =w {X €w PulX <w q}w. Suppose [p]w <w [A]w

(where <y, denotes the relation in Py).

It follows that A ¢, A),.

We know also that [p]w,[d]w €w Cw. .. [Plw <w [d]w

(where <y, denotes the relation in Cy). The

converse is similarly trivial. This shows that <, in Py, coincides with <,, in Cy,.

(c) Let [pJw =w (Aw,Bw),[d] =w (Aw,Bw) €w Py

where A = {X ew Pw | X <w p}w and

A= {X ew Pw | X <w q}w. Suppose [plw <w [q]w. Thus p <w gand A c,, A. Consider

ze A\A. Then

p<z<qand[p]<[z] <[q]. Since [z] € P, we can conlude that P is dense in (C, <).

(d) Let [p] = (A, B) where A={x € P | x < p}. Since (P, <) does not have endpoints,
there

exists z > p. It follows that there exists [z] such that [p] < [z]. Therefore C does not
have

w-endpoints.



Claim 4: (Cy, <w) is w-complete.

Let S be a nonempty w-subset of C that is w-bounded above.
LetAs=S{A|(A,B)eS}tandBs=P-As=T{B| (A, B) € S}.

We can see that (As, Bs) is a dedekind w-cut and is an upper bound of S.

(We need to show that (As , Bs) is the supremum of S.)

Suppose (A o, Bo ) is an upper bound of S. Then A< A o V(A, B) € S. It follows that
A s A . This shows that (As, Bs) (Ao, Bo). Therefore (As,Bs) is the

supremum of S and (Cy, <w) iS w-complete.

We can see that (As, Bs) is a dedekind cut and is an w-upper bound of S.

(We need to show that (As, Bs) is the w-supremum of S.)

Suppose (Ao, Bo ) is an w-upper bound of S. Then A < Ag V(A, B) € S.

It follows that As < Ao . This

shows that (As, Bs) (Ao, Bo). Therefore (As, Bs) is the w-supremum of S

and (C, <) is w-complete. Therefore (C, <) is the w-completion of (P, <).

Part 2: (Uniquness of w-completion up to an isomorphism)

Let (C, <) and (C* <*) be two w-complete w-linearly w-ordered w-sets

satisfying (a)-(d).

We need to show there exists an isomorphism between the two.

Ifcew C, thenlet S = {p € Pulp <w C}w.

If c* ew C, then let St =y {p €w Pulp < ¢*}w.

We define the w-mapping hy, : Cy — Cj, as follows: hy(c) =w W-sup* .

We now need to prove that h is onto, preserves w-orderings, and hy(X) =w XVX €y Puw.
(1) Let c* €y C*. Then c* = w-sup*(S&;), so we can choose € =y WwW-SUp S¢+.

We see that

S =w S+ and hy(c) =y c*, therefore showing that h is onto.

(2) Let ¢ <w d. Then there exists p ew Pw such that c <y p <w d because Py, is dense.
We see that w-sup* & <3, p <4 W-sup* &4, showing that h(c) <, h(d).

(3) Let x ey Pw. Then w-sup(Sy) =w W-sup*(Sx) =w X, SO h(X) =w X.
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