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Abstract. Using the method of compression we show that the number of

integral points in the region bounded by the 2r × 2r × · · · × 2r (k times) grid
containing the sphere of radius r and a sphere of radius r satisfies the lower

bound

Nr,k � rk−δ ×
1
√
k

for some small δ > 0.

1. Introduction

The Gauss circle problem is a problem that seeks to counts the number of integral
points in a circle centered at the origin and of radius r. It is fairly easy to see that
the area of a circle of radius r > 0 gives a fairly good approximation for the number
of such integral points in the circle, since on average each unit square in the circle
contains at least an integral point. In particular, by denoting N(r) to be the number
of integral points in a circle of radius r, then the following elementary estimate is
well-known

N(r) = πr2 + |E(r)|

where |E(r)| is the error term. The real and the main problem in this area is to
obtain a reasonably good estimate for the error term. In fact, it is conjectured that

|E(r)| � r
1
2+ε

for ε > 0. The first fundamental progress was made by Gauss [3], where it is shown
that

|E(r)| ≤ 2πr
√

2.

G.H Hardy and Edmund Landau almost inedependently obtained a lower bound
[1] by showing that

|E(r)| 6= o(r
1
2 (log r)

1
4 ).

The current best upper bound (see [2]) is given by

|E(r)| � r
131
208 .

In this paper we study a variant of this problem in the region between a general k
dimensional grid 2r× 2r · · · × 2r (k times) and the largest sphere contained in the
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grid. In particular, we obtain the following lower bound for the number of integral
points in this region

Theorem 1.1. Let Nr,k denotes the number of integral points in the region bounded
by the 2r × 2r × · · · × 2r (k times) grid covering a sphere of radius r and a sphere
of radius r. Then Nr,k satisfies the lower bound

Nr,k � rk−δ × 1√
k

for some small δ > 0.

2. Preliminaries and background

Definition 2.1. By the compression of scale m > 0 (m ∈ R) fixed on Rn we mean
the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression roughly
speaking pushes points very close to the origin away from the origin by certain scale
and similarly draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale 1 ≥ m > 0 with Vm : Rn −→ Rn is a
bijective map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale m > 0 (m ∈ R) fixed, we
mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
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the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi ≤ xj for
1 ≤ i, j ≤ n.

Lemma 2.4. The estimate remain valid∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m > 0.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for each 1 ≤ i ≤ n and
xi 6= xj for i 6= j, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m > 0, denoted G ◦ Vm[(x1, x2, . . . , xn)], we
mean the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Definition 2.7. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all 1 ≤ i ≤ n. Then
by the ball induced by (x1, x2, . . . , xn) ∈ Rn under compression of scale m > 0,
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denoted B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ < 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality. We call the ball the circle induced by points under compression if we
take the dimension of the underlying space to be n = 2.

Remark 2.8. In the geometry of balls under compression of scale m > 0, we will
assume implicitly that 1 ≥ m > 0. The circle induced by points under compression
is the ball induced on points when we take n = 2.

Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.

In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Nn, where m2M◦ V1[(x21, . . . , x

2
n)] is the error term in this case.

Lemma 2.9 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2 and
xi 6= xj for i 6= j, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Theorem 2.10. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] < G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] ≥ G ◦ Vm[~y],

then it follows that ||~y|| ≤ ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] < G ◦ Vm[~y]

then it follows from Proposition 2.3 that ||~z|| < ||~y||. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �
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2.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 2.11. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 2.12. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball.

Theorem 2.13. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 2.10, we obtain the inequality

G ◦ Vm[~y] ≤ G ◦ Vm[~z] < G ◦ Vm[~x].

It follows from Proposition 2.3 that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining this
points to the origin by a straight line, this contradicts the fact that the point ~y
is an admissible point of the ball B 1

2G◦Vm[~x][~x]. The latter equality follows from

assertion that two balls are indistinguishable. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y lives on the outer of
the indistinguishable balls and must satisfy the inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
and ~y is indeed admissible, thereby ending the proof. �

Remark 2.14. We note that we can replace the set Nn used in our construction
with Rn at the compromise of imposing the restrictions ~x = (x1, . . . , xn) ∈ Rn such
that xi > 1 for all 1 ≤ i ≤ n and xi 6= xj for i 6= j. The following construction in
our next result in the sequel employs this flexibility.
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3. The lower bound

Theorem 3.1. Let Nr,k denotes the number of integral points in the region bounded
by the 2r× 2r× · · · 2r (k times) grid covering a sphere of radius r and a sphere of
radius r. Then Nr,k satisfies the lower bound

Nr,k � rk−δ × 1√
k

for some small δ > 0.

Proof. Pick arbitrarily a point (x1, x2, . . . , xk) = ~x ∈ Rk with xi > 1 for 1 ≤ i ≤ k
and xi 6= xj for i 6= j such that G ◦Vm[~x] = 2r. This ensures the ball induced under
compression is of radius r. Next we apply the compression of fixed scale m ≤ 1,
given by Vm[~x] and construct the ball induced by the compression given by

B 1
2G◦Vm[~x][~x]

with radius (G◦Vm[~x])
2 = r. By appealing to Theorem 2.13 admissible points ~xl ∈

Rk (~xl 6= ~x) of the ball of compression induced must satisfy the condition G ◦
Vm[~xl] = 2r. Also by appealing to Theorem 2.10 points ~xl 6∈ B 1

2G◦Vm[~x][~x] must

satisfy the inequality

G ◦ Vm[~xl] ≥ G ◦ Vm[~x] = 2r.

In particular points in ~xl 6∈ B 1
2G◦Vm[~x][~x] contained in the 2r× 2r · · · × 2r (k times)

grid that covers this ball must satisfy for their coordinates

max~xl∈(2r)ksup(xli)
k
i=1 = (2r)1+δ

for some small δ > 0 so that G ◦ Vm[~xl] ≥ 2r. The number of integral points
contained in the region between the 2r × 2r × · · · × 2r (k times) grid covering the
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ball and the ball is lower bounded by

Nr,k =
∑

~xl∈b2rck⊂Nk

G◦Vm[~xl]≥2r

1

≥
∑

~xl∈b2rck⊂Nk

2r

G ◦ Vm[~xl]

�
∑

~xl∈b2rck⊂Nk

1≤i≤k

2r√
k sup(xli)

= 2r
∑

~xl∈b2rck⊂Nk

1≤i≤k

1√
k sup(xli)

≥ 2r√
k

∑
~xl∈b2rck⊂Nk

1≤i≤k

1

max~xl∈b2rck sup(xli)

=
2r

(2r)1+δ
√
k

∑
~xl∈b2rck⊂Nk

1≤i≤k

1

� r

r1+δ
√
k
× rk

and the lower bound follows. �

1.
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