THE LOCAL PRODUCT AND LOCAL PRODUCT SPACE

T. AGAMA

ABSTRACT. In this note we introduce the notion of the local product on a
sheet and associated space. As an application we prove under some special
conditions the following inequalities
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for all s € N, where (,) denotes the inner product and where e(q) = €274,

1. Introduction

The notion of an inner product and associated space is so rife in the literature
that there is hardly any formal introduction. The inner product space tends to offer
a useful terrain for achieving a large class of mathematical results, ranging from
identities to inequalities. The result in this setting is often always the best possible.
A typical instance is the Cauchy-Schwartz inequality achieved in the setting of the
Hilbert space [1]. In this paper we introduce the notion of the local product and the
induced local product space. This space turns out to be a special type of a complex
inner product space. We exploit this space to obtain the following inequalities
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Theorem 1.1. Let @,b € R™ such that 0 < (@,b) < 1. then the lower bound holds
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for all s € N, where (,) denotes the inner product and where e(q) = e*™,
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Theorem 1.2. Let Ez',l;e R™ such that 0 < (@,b) < %, then the upper bound holds
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for all s € N, where (,) denotes the inner product and where e(q) = €27,

Theorem 1.3. Let a = (al,ag,...,an),g = (b1,ba,...,b,) € R™ such that 0 <

- -

(@,b) and {(a@,b) # 1, then the lower bound holds
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for all s € N, where (,) denotes the inner product.
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2. The local product and associated space

In this note we introduce and study the notion of the local product and asso-
ciated space.

Definition 2.1. Let @b € C" and f : C — C be continuous on Uiy llasl, [b;]]-
Let (C™,(,)) be a complex inner product space. Then by the k" local product of @

with b on the sheet f, we mean the bi-variate map Q’; ((C™ () x (€™ () — C
such that
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where (,) denotes the inner product and where e(q) = ¢?™4. We denote an inner
product space with a k*" local product defined over a sheet f as the k" local
product space over a sheet f. We denote this space with the triple (C", (,), Q;E(; ).

The k" local product is in some sense a universal map induced by a sheet. In
other words a local product can be constructed by carefully choosing the sheet. By
taking our sheet to be the constant function f := 1 we obtain the local product
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Similarly, if we take our sheet to be f = log, then under the condition that (a@,b) # 0,
we obtain the induced local product
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By taking the sheet f = Id to be the identity function, then we obtain in this
setting the associated local product
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Again, by taking the sheet f = Id™! with (a,by # 0, then we obtain the corre-
sponding induced k*" local product
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3. Properties of the local product product

In this section we study some properties of the local product on a fixed sheet.

Proposition 3.1. The following holds
(i) If f is linear such that {a,b) = —(b,a) then

G5 (@) = (-1)"*'Gf ().
(i) Let f,g : R — R such that f(t) < g(t) for any t € [1,00). Then
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|Gy (a@;b)| < |Gg(a;b)|.
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Proof. (i) By the linearity of f, we can write
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(ii) Property (ii) follows very easily from the inequality f(¢) < g(¢).

4. Applications of the local product

In this section we explore some applications of the local product.

Theorem 4.1. Let @ = (al,ag,...7an)7g = (b1,b2,...,by) € R™ such that 0 <
(@,b) < %, then the lower bound holds

|bn| |bnf1‘ |b1‘

-

| log((d, b))|
(llaf[*=+4 + [[p[[*+4) (@, b))

lanllan—1]  la|

[br] [br—1] |b1] 45+§/ZT?S+3
i=1
<’/ / '“/e<—i J )dxlde"'d{En

- |a@|[4s+4 4 ||5H4s+4

|an‘ |an—1| |a1|

for all s € N, where {,) denotes the inner product and where e(q) = €*™*4.

Proof. Let f:R — RT and @, b € R" such that 0 < (@, l_;) < % We note that
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By taking the sheet f = Id to be the identity function, then we obtain in this
setting the associated local product
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Since log < Id for all t € [1,00), it follows that gﬁfg“(a’; b) < Gt (a; b) by taking

k =4s+ 3 for all s € N and the inequality follows from this inequality. |

Remark 4.2. Next we obtain another inequality which controls the multiple integral
of an exponential function by the multiple integral of their powers.
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Theorem 4.3. Let @ = (a1,a2,...,an),b = (b1,ba,...,b,) € R™ such that 0 <
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(@, by < %, then the upper bound holds
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for all s € N, where (,) denotes the inner product and where e(q) = €27,
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Proof. Let f:R — Rt and @,b € R" such that 0 < (@,b) < 1. We note that
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By taking the sheet f = Id™! to be the reciprocal of the identity function, then we
obtain in this setting the associated local product
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Since Id™! < log for all t € [2,00), it follows that g;‘;f?(a; b) < Qﬁfg?’(d'; b) by

taking k = 4s + 3 for all s € N and the inequality follows from this inequality. [
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Theorem 4.4. Let d = (al,ag,...,a”),g = (b1,ba,...,b,) € R™ such that 0 <
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(@,b) and {(a,b) # 1, then the lower bound holds
|bn| |bn—1‘ |b1‘

4s

n

4
E z7%dxidry - - - day,
i=1

lan|lan—1|  la]

-

< @O a4
27| log({a, b))]

n
11 1ol = lail
=1

for all s € N, where (,) denotes the inner product and where e(q) = e

2miq

-

Proof. Let f: R —s RT and @,b € R” such that 0 < (@, b) and (@,b) # 1. We note
that
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by taking k = 4s for any s € N. Also by taking the sheet f := || to be the distance
function, then we obtain in this setting the associated local product
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Since log < | -] on (1,00)) the claim inequality is a consequence by appealing to
Proposition 3.1. (]
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