THE LOCAL PRODUCT AND LOCAL PRODUCT SPACE

T. AGAMA

ABSTRACT. In this note we introduce the notion of the local product on a sheet and associated space. As an application we prove under some special conditions the following inequalities

$$2\pi \frac{|\log(\langle \vec{a}, \vec{b} \rangle)|}{(||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4})|\langle \vec{a}, \vec{b} \rangle|} \left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \int_{4s+3}^{4s+3} \sum_{i=1}^{n} x_i^{4s+3} dx_1 dx_2 \cdots dx_n \right|$$

$$\leq \left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} e \left(-i \frac{\int_{|a_n|}^{4s+3} \sum_{j=1}^{n} x_j^{4s+3}}{||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4}} \right) dx_1 dx_2 \cdots dx_n \right|$$

and

$$\left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \mathbf{e} \left(i \frac{\frac{4s+3}{\sqrt{\sum_{j=1}^{n} x_j^{4s+3}}}}{||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4}} \right) dx_1 dx_2 \cdots dx_n \right|$$

$$\leq 2\pi \frac{|\langle \vec{a}, \vec{b} \rangle| \times |\log(\langle \vec{a}, \vec{b} \rangle)|}{(||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4})} \left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \frac{1}{4s+3} \sum_{i=1}^{n} x_i^{4s+3} dx_1 dx_2 \cdots dx_n \right|$$

and

$$\left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \sqrt{\sum_{i=1}^n x_i^{4s}} dx_1 dx_2 \cdots dx_n \right|$$

$$\leq \frac{|\langle \vec{a}, \vec{b} \rangle|}{2\pi |\log(\langle \vec{a}, \vec{b} \rangle)|} \times (||\vec{a}||^{4s+1} + ||\vec{b}||^{4s+1}) \times \left| \prod_{i=1}^n |b_i| - |a_i| \right|$$

for all $s \in \mathbb{N}$, where \langle , \rangle denotes the inner product and where $\mathbf{e}(q) = e^{2\pi i q}$.

1. Introduction

The notion of an inner product and associated space is so rife in the literature that there is hardly any formal introduction. The inner product space tends to offer a useful terrain for achieving a large class of mathematical results, ranging from identities to inequalities. The result in this setting is often always the best possible. A typical instance is the Cauchy-Schwartz inequality achieved in the setting of the Hilbert space [1]. In this paper we introduce the notion of the local product and the induced local product space. This space turns out to be a special type of a complex inner product space. We exploit this space to obtain the following inequalities

Date: March 21, 2022.

2010 Mathematics Subject Classification. Primary 11Pxx, 11Bxx; Secondary 11Axx, 11Gxx. Key words and phrases. Local product; local product space; sheet.

T. AGAMA

2

Theorem 1.1. Let $\vec{a}, \vec{b} \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle \leq \frac{1}{2}$, then the lower bound holds

$$2\pi \frac{|\log(\langle \vec{a}, \vec{b} \rangle)|}{(||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4})|\langle \vec{a}, \vec{b} \rangle|} \left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \int_{4s+3}^{4s+3} \sum_{i=1}^{n} x_i^{4s+3} dx_1 dx_2 \cdots dx_n \right|$$

$$\leq \left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \mathbf{e} \left(-i \frac{\int_{4s+3}^{4s+3} \sum_{j=1}^{n} x_j^{4s+3}}{||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4}} \right) dx_1 dx_2 \cdots dx_n \right|$$

for all $s \in \mathbb{N}$, where \langle , \rangle denotes the inner product and where $\mathbf{e}(q) = e^{2\pi i q}$.

Theorem 1.2. Let $\vec{a}, \vec{b} \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle \leq \frac{1}{2}$, then the upper bound holds

$$\left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \mathbf{e} \left(i \frac{\int_{|\vec{a}|}^{4s+3} \sum_{j=1}^{n} x_j^{4s+3}}{||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4}} \right) dx_1 dx_2 \cdots dx_n \right|$$

$$\leq 2\pi \frac{|\langle \vec{a}, \vec{b} \rangle| \times |\log(\langle \vec{a}, \vec{b} \rangle)|}{(||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4})} \left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \int_{4s+3}^{4s+3} \sum_{i=1}^{n} x_i^{4s+3} dx_1 dx_2 \cdots dx_n \right|$$

for all $s \in \mathbb{N}$, where \langle , \rangle denotes the inner product and where $\mathbf{e}(q) = e^{2\pi i q}$.

Theorem 1.3. Let $\vec{a} = (a_1, a_2, \dots, a_n), \vec{b} = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle$ and $\langle \vec{a}, \vec{b} \rangle \neq 1$, then the lower bound holds

$$\left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \int_{1}^{4s} \sum_{i=1}^{n} x_i^{4s} dx_1 dx_2 \cdots dx_n \right|$$

$$\leq \frac{|\langle \vec{a}, \vec{b} \rangle|}{2\pi |\log(\langle \vec{a}, \vec{b} \rangle)|} \times (||\vec{a}||^{4s+1} + ||\vec{b}||^{4s+1}) \times \left| \prod_{i=1}^{n} |b_i| - |a_i| \right|.$$

for all $s \in \mathbb{N}$, where \langle , \rangle denotes the inner product.

2. The local product and associated space

In this note we introduce and study the notion of the **local product** and associated space.

Definition 2.1. Let $\vec{a}, \vec{b} \in \mathbb{C}^n$ and $f : \mathbb{C} \longrightarrow \mathbb{C}$ be continuous on $\bigcup_{j=1}^n [|a_j|, |b_j|]$. Let $(\mathbb{C}^n, \langle, \rangle)$ be a complex inner product space. Then by the k^{th} local product of \vec{a} with \vec{b} on the sheet f, we mean the bi-variate map $\mathcal{G}_f^k : (\mathbb{C}^n, \langle, \rangle) \times (\mathbb{C}^n, \langle, \rangle) \longrightarrow \mathbb{C}$ such that

$$\mathcal{G}_{f}^{k}(\vec{a}; \vec{b}) = f(\langle \vec{a}, \vec{b} \rangle) \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} f \circ \mathbf{e} \left((i)^{k} \frac{\sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \right) dx_{1} dx_{2} \cdots dx_{n}$$

where \langle,\rangle denotes the inner product and where $\mathbf{e}(q) = e^{2\pi i q}$. We denote an inner product space with a k^{th} local product defined over a sheet f as the k^{th} local product space over a sheet f. We denote this space with the triple $(\mathbb{C}^n, \langle,\rangle, \mathcal{G}_f^k(;))$.

The k^{th} local product is in some sense a universal map induced by a sheet. In other words a local product can be constructed by carefully choosing the sheet. By taking our sheet to be the constant function f := 1 we obtain the local product

$$\mathcal{G}_{1}^{k}(\vec{a}; \vec{b}) = \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} dx_{1} dx_{2} \cdots dx_{n}$$
$$= \prod_{i=1}^{n} |b_{i}| - |a_{i}|.$$

Similarly, if we take our sheet to be $f = \log$, then under the condition that $\langle \vec{a}, \vec{b} \rangle \neq 0$, we obtain the induced local product

$$\mathcal{G}_{\log}^{k}(\vec{a}; \vec{b}) = 2\pi \times (i)^{k+1} \frac{\log(\langle \vec{a}, \vec{b} \rangle)}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} \sqrt{\sum_{j=1}^{n} x_{j}^{k}} dx_{1} dx_{2} \cdots dx_{n}.$$

By taking the sheet f = Id to be the identity function, then we obtain in this setting the associated local product

$$\mathcal{G}_{\mathrm{Id}}^{k}(\vec{a};\vec{b}) = \langle \vec{a}, \vec{b} \rangle \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} \mathbf{e} \left(\frac{(i)^{k} \sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \right) dx_{1} dx_{2} \cdots dx_{n}.$$

Again, by taking the sheet $f = \operatorname{Id}^{-1}$ with $\langle a, b \rangle \neq 0$, then we obtain the corresponding induced k^{th} local product

$$\mathcal{G}_{\mathrm{Id}^{-1}}^{k}(\vec{a};\vec{b}) = \frac{1}{\langle \vec{a}, \vec{b} \rangle} \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} \mathbf{e} \left(-\frac{(i)^{k} \sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \right) dx_{1} dx_{2} \cdots dx_{n}.$$

3. Properties of the local product product

In this section we study some properties of the local product on a fixed sheet.

Proposition 3.1. The following holds

(i) If f is linear such that $\langle a, b \rangle = -\langle b, a \rangle$ then

$$\mathcal{G}_f^k(\vec{a}; \vec{b}) = (-1)^{n+1} \mathcal{G}_f^k(\vec{b}; \vec{a}).$$

(ii) Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}^+$ such that $f(t) \leq g(t)$ for any $t \in [1, \infty)$. Then $|\mathcal{G}_f(\vec{a}; \vec{b})| < |\mathcal{G}_g(\vec{a}; \vec{b})|$.

T. AGAMA

4

Proof. (i) By the linearity of f, we can write

$$\begin{split} \mathcal{G}_{f}^{k}(\vec{a};\vec{b}) &= f(\langle \vec{a}, \vec{b} \rangle) \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} f \circ \mathbf{e} \bigg((i)^{k} \frac{\sqrt{\sum\limits_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \bigg) dx_{1} dx_{2} \cdots dx_{n} \\ &= f(\langle \vec{a}, \vec{b} \rangle) \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} f \circ \mathbf{e} \bigg((i)^{k} \frac{\sqrt{\sum\limits_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \bigg) dx_{1} dx_{2} \cdots dx_{n} \\ &= f(-\langle b, a \rangle) (-1)^{n} \int_{|b_{n}|}^{|a_{n}|} \int_{|b_{n-1}|}^{|a_{n-1}|} \cdots \int_{|b_{1}|}^{|a_{1}|} f \circ \mathbf{e} \bigg((i)^{k} \frac{\sqrt{\sum\limits_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \bigg) dx_{1} dx_{2} \cdots dx_{n} \\ &= (-1)^{n+1} f(\langle b, a \rangle) \int_{|b_{n}|}^{|a_{n}|} \int_{|b_{n-1}|}^{|a_{n-1}|} \cdots \int_{|b_{1}|}^{|a_{1}|} f \circ \mathbf{e} \bigg((i)^{k} \frac{\sqrt{\sum\limits_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \bigg) dx_{1} dx_{2} \cdots dx_{n} \\ &= (-1)^{n+1} \mathcal{G}_{f}^{k}(\vec{b}; \vec{a}). \end{split}$$

(ii) Property (ii) follows very easily from the inequality $f(t) \leq g(t)$.

4. Applications of the local product

In this section we explore some applications of the local product.

Theorem 4.1. Let $\vec{a} = (a_1, a_2, \dots, a_n), \vec{b} = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle \leq \frac{1}{2}$, then the lower bound holds

$$2\pi \frac{|\log(\langle \vec{a}, \vec{b} \rangle)|}{(||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4})|\langle \vec{a}, \vec{b} \rangle|} \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \int_{4s+3}^{4s+3} \sum_{i=1}^n x_i^{4s+3} dx_1 dx_2 \cdots dx_n$$

$$\leq \left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \mathbf{e} \left(-i \frac{\int_{4s+3}^{4s+3} \sum_{j=1}^n x_j^{4s+3}}{||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4}} \right) dx_1 dx_2 \cdots dx_n \right|$$

for all $s \in \mathbb{N}$, where \langle , \rangle denotes the inner product and where $\mathbf{e}(q) = e^{2\pi i q}$.

Proof. Let $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ and $\vec{a}, \vec{b} \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle \leq \frac{1}{2}$. We note that

$$\mathcal{G}_{\log}^{k}(\vec{a}; \vec{b}) = 2\pi \times (i)^{k+1} \frac{\log(\langle \vec{a}, \vec{b} \rangle)}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} \sqrt{\sum_{j=1}^{n} x_{j}^{k}} dx_{1} dx_{2} \cdots dx_{n}.$$

By taking the sheet f = Id to be the identity function, then we obtain in this setting the associated local product

$$\mathcal{G}_{\mathrm{Id}}^{k}(\vec{a}; \vec{b}) = \langle \vec{a}, \vec{b} \rangle \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} \mathbf{e} \left(\frac{(i)^{k} \sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \right) dx_{1} dx_{2} \cdots dx_{n}.$$

Since $\log < \mathrm{Id}$ for all $t \in [1,\infty)$, it follows that $\mathcal{G}^{4s+3}_{\log}(\vec{a};\vec{b}) \leq \mathcal{G}^{4s+3}_{\mathrm{Id}}(\vec{a};\vec{b})$ by taking k = 4s + 3 for all $s \in \mathbb{N}$ and the inequality follows from this inequality.

Remark 4.2. Next we obtain another inequality which controls the multiple integral of an exponential function by the multiple integral of their powers.

Theorem 4.3. Let $\vec{a} = (a_1, a_2, \dots, a_n), \vec{b} = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle \leq \frac{1}{2}$, then the upper bound holds

$$\left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \mathbf{e} \left(i \frac{\int_{|\vec{a}|}^{4s+3} \sum_{j=1}^{n} x_j^{4s+3}}{||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4}} \right) dx_1 dx_2 \cdots dx_n \right|$$

$$\leq 2\pi \frac{|\langle \vec{a}, \vec{b} \rangle| \times |\log(\langle \vec{a}, \vec{b} \rangle)|}{(||\vec{a}||^{4s+4} + ||\vec{b}||^{4s+4})} \left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \int_{4s+3}^{4s+3} \sum_{i=1}^{n} x_i^{4s+3} dx_1 dx_2 \cdots dx_n \right|$$

for all $s \in \mathbb{N}$, where \langle , \rangle denotes the inner product and where $\mathbf{e}(q) = e^{2\pi i q}$.

Proof. Let $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ and $\vec{a}, \vec{b} \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle \leq \frac{1}{2}$. We note that

$$\mathcal{G}_{\log}^{k}(\vec{a}; \vec{b}) = 2\pi \times (i)^{k+1} \frac{\log(\langle \vec{a}, \vec{b} \rangle)}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} \sqrt{\sum_{j=1}^{n} x_{j}^{k}} dx_{1} dx_{2} \cdots dx_{n}.$$

By taking the sheet $f = \text{Id}^{-1}$ to be the reciprocal of the identity function, then we obtain in this setting the associated local product

$$\mathcal{G}_{\mathrm{Id}^{-1}}^{k}(\vec{a}; \vec{b}) = \frac{1}{\langle \vec{a}, \vec{b} \rangle} \int_{|a_{n}|}^{|b_{n}|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_{1}|}^{|b_{1}|} \mathbf{e} \left(-\frac{(i)^{k} \sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{||\vec{a}||^{k+1} + ||\vec{b}||^{k+1}} \right) dx_{1} dx_{2} \cdots dx_{n}.$$

Since $\operatorname{Id}^{-1} < \log$ for all $t \in [2, \infty)$, it follows that $\mathcal{G}^{4s+3}_{\operatorname{Id}^{-1}}(\vec{a}; \vec{b}) \leq \mathcal{G}^{4s+3}_{\log}(\vec{a}; \vec{b})$ by taking k = 4s + 3 for all $s \in \mathbb{N}$ and the inequality follows from this inequality. \square

6 T. AGAMA

Theorem 4.4. Let $\vec{a} = (a_1, a_2, \dots, a_n), \vec{b} = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle$ and $\langle \vec{a}, \vec{b} \rangle \neq 1$, then the lower bound holds

$$\left| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_n|} \cdots \int_{|a_1|}^{|b_1|} \sqrt{\sum_{i=1}^n x_i^{4s}} dx_1 dx_2 \cdots dx_n \right|$$

$$\leq \frac{|\langle \vec{a}, \vec{b} \rangle|}{2\pi |\log(\langle \vec{a}, \vec{b} \rangle)|} \times (||\vec{a}||^{4s+1} + ||\vec{b}||^{4s+1}) \times \left| \prod_{i=1}^n |b_i| - |a_i| \right|.$$

for all $s \in \mathbb{N}$, where \langle , \rangle denotes the inner product and where $\mathbf{e}(q) = e^{2\pi i q}$.

Proof. Let $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ and $\vec{a}, \vec{b} \in \mathbb{R}^n$ such that $0 < \langle \vec{a}, \vec{b} \rangle$ and $\langle \vec{a}, \vec{b} \rangle \neq 1$. We note that

$$\mathcal{G}_{\log}^{4s}(\vec{a}; \vec{b}) = 2\pi \times (i)^{4s+1} \frac{\log(\langle \vec{a}, \vec{b} \rangle)}{||\vec{a}||^{4s+1} + ||\vec{b}||^{4s+1}} \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} \sqrt{\sum_{j=1}^n x_j^{4s}} dx_1 dx_2 \cdots dx_n$$

by taking k=4s for any $s\in\mathbb{N}$. Also by taking the sheet $f:=|\cdot|$ to be the distance function, then we obtain in this setting the associated local product

$$\mathcal{G}^{4s}_{|\cdot|}(\vec{a}; \vec{b}) = |\langle \vec{a}, \vec{b} \rangle| \int_{|a_n|}^{|b_n|} \int_{|a_{n-1}|}^{|b_{n-1}|} \cdots \int_{|a_1|}^{|b_1|} dx_1 dx_2 \cdots dx_n$$
$$= |\langle \vec{a}, \vec{b} \rangle| \times \left| \prod_{i=1}^{n} |b_i| - |a_i| \right|.$$

Since $\log < |\cdot|$ on $(1,\infty)$) the claim inequality is a consequence by appealing to Proposition 3.1.

References

 $1. \ \, {\rm Rudin}, \, {\rm W}. \, \, \textit{Real and complex analysis}, \, {\rm Tata \,\, McGraw-hill \,\, education}, \, 2006.$

Department of Mathematics, African Institute for mathematical sciences, Ghana. $E\text{-}mail\ address$: Theophilus@aims.edu.gh/emperordagama@yahoo.com