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Abstract 

Two hard problems in the origin of life question are identification of the structure of biology’s 

ancestral replicator(s), and the emergence of replicators from a prebiotic environment. In the 

discipline of cellular automata (CA), not all CA abstractions of replication include any origin pathway 

to the replicating structures. In this work, an origin for the J. Byl (1989) CA replicator from an 

isolated non-quiescent cell is described. This origin pathway requires introduction of one oriented 

state and three other states, all of which permanently disappear from the subsequent replication 

process. Origin of the replicator and subsequent replication display three sequential and spatially-

expanding domains of counter-clockwise rotation: the oriented state of a single cell rotates as the 

first replicator structure develops around it, followed by rotation of the 2x2 cell information loop as 

a replication cycle proceeds, and in subsequent cycles of replication, orientation of a parent 

replicator also rotates counter-clockwise as directions of replication are successively blocked by the 

replicator’s children. 
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Introduction 

The origin of life (OOL) within a prebiotic world is a deep, unsolved problem in biology [6] for which 

there are many models and methods proposed as investigative tools. Cellular automata (CA) 

environments are one means of developing provisionally-useful abstractions of biological and 

biophysical phenomena, including replication. Two-dimensional abstractions of replication include 

[1], [2], [4]. A main motivating question in these and related studies is: what is the minimum 

threshold of complexity at which non-trivial replication is possible? This question immediately begs 

the question of how complexity in this context is defined and quantified [3]. A meaningful purpose 

of identifying the simplest-possible replicator is to approach the ideal of studying the phenomenon 

of replication itself, and not merely to study the replication behaviour of arbitrary replicating 

structures. 

Intuitively obvious variables defining replication complexity include the size of a replicator (e.g., the 

number of non-quiescent cells comprising a CA replicator structure), the size of the state-transition 

function required to support the replication process, and the size of the cell-state set [1]. The most 

transparent description of a state-transition function is a lookup table of all explicit state-transition 

rules - but is the length of a rule lookup table a meaningful quantification of complexity? Generally, a 

lookup table can be compressed in size by not explicitly listing default rules, and condensing many 

rules into one rule statement with a “wild-card” character (*) where possible, e.g., in the rule-

statement 5**** → 2, the * state entries correspond to “don’t matter” neighbour cell states, so in 

systems where this rule-statement applies, a 5 state at time t always transitions to 2 at time t+1. Is 

the reduced size of a so-condensed state-transition function a more relevant contribution to the 

quantification of complexity? Quantification of complexity is still an unresolved problem in many 

contexts [3]. 

I have studied abstractions of replication in cellular automata spaces as a means of thinking about 

homochirality in biology, e.g., [8]. This work was best facilitated by study of look-up tables of all 



explicit state-transition and state-preserving rules. Homochirality is a topic closely-related to the 

OOL problem, because it is so-far unknown how symmetry-breaking occurred within presumably 

racemic pre-biotic conditions to produce the ubiquitous chiral bias of biology observed today. 

 

The objective of this study  

Inspired by the inclusion of a mechanism for the emergence of replicators in [2], this work describes 

an origin mechanism for the J. Byl replicator [1]. Replication of the Byl structure is built on strong 

rotational symmetry, but the origin mechanism presented below (Figure 2) begins with an initial 

oriented state subject to the weak rotational symmetry which applies in [2]. Before presenting the 

result, brief descriptions of the Chou and Reggia [2] and Byl [1] systems follow: 

 

The H-H Chou and JA Reggia CA replicators [2] 

H-H Chou and JA Reggia developed a dynamic ecology of self-replicating structures including 

prebiotic emergence of minimal self-reproducing structures and subsequent development of a 

diverse size distribution of interacting replicators [2]. Chou and Reggia designed their system to 

incorporate a simple origin for the emergent replicators. In this system, the state-transition function 

of John Conway's Game of Life CA [5] is deployed as the initially-exclusive prebiotic physics, with 

each component of an initial random spatial distribution of unbound components {>, V, < , ^, O, L} 

interpreted as an on-state, and empty cells (quiescent state) interpreted as the off-state. The Game 

of Life state-transition rules are defined by counts (not specific spatial distributions) of on-cells 

within cell neighbourhoods, so it can be readily recognized that Game of Life CA physics is achiral (in 

the sense that a neighbourhood and its mirror-neighbourhood both correspond to the same state-

transition). 

Wherever and whenever the 2x2-component configuration (O, O; L, >) appears, the status of the 

four components becomes bound. Chiral bound-component state-transition rules apply to bound 

components, while the unbound-component rules continue to apply for unbound components. The 

2x2-cell configurations replicate under the chiral bound-component subset of the state-transition 

rules. Setting of a special bit to status * within the 2x2-cell structure enables replication of the 

structure. In Figure 9 of [2], exact replication of a 2x2-cell structure in isolation is illustrated.  

The appeal of this system is that a replicating structure emerges by a conceptually simple process 

within an initially unstructured environment. The replicator incorporates some oriented states which 

rotate in accordance with rotation of the reference frame (i.e., the directed state ^ within a structure 

rotates from ^ → < → V → > through counter-clockwise rotation of the structure within the cellular 

automata space, i.e., weak rotational symmetry applies).  

Inspired by the inclusion of a mechanism for the emergence of replicators in [2], I considered the 

possibilities for simple origins of a strong rotational symmetry system of replicators, i.e., the J. Byl 

replicator [1].  

A strong rotational symmetry system of replicators: the J. Byl loop [1] 

In the J. Byl loop, an internal 2x2 instruction loop of states (3, 3; 4, 1) rotates counter-clockwise as 

the state transition function is applied iteratively. Under the transition function, the instructions are 

simultaneously interpreted and copied so that an identical child is progressively constructed with its 



own internal copy of the 2x2-cell instruction loop. To illustrate the rotation of the instruction loop 

under application of the state transition function, Figure 1 below shows a sterile loop. This loop 

instance lacks state 5 which is necessary for replication, so the instruction loop (3, 3; 4, 1) rotates 

unproductively (neither interpreted nor copied) indefinitely.  

 

 

 

Figure 1. A sterile loop. The state-2 cell labelled with gold highlight at Time = 0 is in state 5 within a viable 

replicator [1],[7]. The absence of state 5 prevents subsequent replication, and the 2x2 cell instruction loop 

(green background) rotates counter-clockwise and unproductively from (3, 1; 3, 4) at Time = 0 → (1, 4; 3, 3) → 

(4, 3; 1, 1) → (3, 3; 4, 1), and back to (3, 1; 3, 4) again at Time = 4 to complete a cycle which continues 

indefinitely as the state-transition function is applied iteratively.  

 

Results 

Figure 2 below shows one way the J. Byl replicator can emerge from a single non-quiescent cell (the 

oriented state ^). In addition to introducing this state, the three new non-oriented states L, E and F 

are also introduced to the state-set. 
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Figure 2. A constructed sequence showing emergence of the J. Byl replicator [1] at Time = 0 from a single non-

quiescent cell (oriented state ^ at Time = -4). The green highlighting indicates the counter-clockwise rotation of 

the initial non-quiescent oriented state ^ until it transitions to state 1 within the completed replicator. The 

state 5 cell (gold highlight, Time = 0) is essential for subsequent replication of the structure. The state-

transition function is shown as the list of rules in Table 1. 

 

In the sequence of development of a replicator from a cell in state ^ within a quiescent (state 0, 

white space in the Figures) background, this oriented state ^ rotates counter-clockwise (^ → < → V 

→ >) as more non-quiescent states accumulate around it. At Time = -1, the structure incorporates 

states 2 (sheath state), >, L, F and E. States >, L, F and E serve as placeholders which are replaced 

respectively by states 1, 3, 4 and 5 in the transition from Time = -1 to Time = 0. The configuration 

incorporating states 1, 2, 3, 4 and 5 at Time = 0 is the Byl replicator [1],[7]. Table 1 below shows the 

state-transition rules required for development of a replicator from the ^ state. These rules contain 

no contradictions with the rules established for subsequent replication [1], so they can be added to 

the established J. Byl replicator state-transition function to give a more comprehensive transition 

function supporting both replication and emergence of the replicator from a simple origin.  

 

Table 1. The list of 43 von Neumann state-transition rules supporting development of the J. Byl 

replicator from a single cell of oriented state ^ shown in Figure 2. No rotational-symmetry 

equivalents are included. The format of each rule is CNESW → C’, where C is the state of the centre 

cell of the von Neumann neighbourhood at time t. State C is replaced with state C’ at time t+1. The 

quiescent state is shown as 0 in the rule statements, and as white space in the Figures. 

 

00000 --> 0 0000F --> E 2002> --> 2 F<000 --> F 

00002 --> 0 000F2 --> 0 200V2 --> 2 F>2EL --> 4 

00022 --> 0 002L0 --> 2 202L0 --> 2 F000< --> 2 

^0000 --> < 00L00 --> 2 20E2V --> 2 FV2EL --> F 

<2FFL --> V 0200E --> 0 20L00 --> 2 L0<00 --> L 

>22FL --> 1 0E002 --> 0 20L20 --> 2 L2>L2 --> 3 

0^000 --> F 0F00F --> 2 2200F --> 2 L2VL2 --> L 

00^00 --> L 0LE00 --> 2 2LE00 --> 2 LLF00 --> L 

000^0 --> 2 0LF00 --> L E0002 --> 0 LLF22 --> 3 

0000^ --> F 200<0 --> 2 EF000 --> E V22FL --> > 

Time = -1 Time = 0

2 2 2 2

2 L > 2 2 3 1 2

2 L F 2 2 3 4 2

2 E 2 5



0000E --> 0 200>2 --> 2 EF002 --> 5  

(end of Table 1) 

 

To illustrate the weak rotational symmetry of rules containing oriented states, the rule <2FFL → V 

yellow-highlighted in Table 1 is shown below with its three unlisted equivalent rotations: 

<2FFL → V    VFFL2 → > >FL2F → ^ ^L2FF → < 

 

Just as left- and right-handed replication of the J. Byl replicator cannot coexist under one state-

transition function [8], some of the Table 1 state-transition rules are contradicted by mirror-rules: 

Rule ^0000 → < is contradicted by its mirror-rule ^0000 → > 

The mirror-rule of 00^00 → L is 0000^ → L which contradicts 0000^ → F 

The mirror-rule of 0000^ → F is 00^00 → F which contradicts 00^00 → L 

 

The origin pathway producing a right-handed loop cannot coexist with its mirror origin pathway to a 

corresponding left-handed loop. More comprehensively, origin of right-handed loops and 

subsequent replication cannot coexist with origin of left-handed loops and their replication. 

 

Discussion 

In the Introduction above, the general question of quantification of complexity was noted, and in 

the context of this work, a degree-of-complexity comparison between Byl replication [1] and Chou 

and Reggia replication [2] is of specific interest.  

In conducting my past work on CA replicators, I derived lists of all explicit state-transition and state-

preserving rules to facilitate work specifically about the chirality of replication of CA structures, e.g., 

[8]. If we accept a count of explicit state-transition and state-preserving rules necessary for one cycle 

of exact replication as a relevant complexity quantifier, the values are 140 von Neumann rules 

supporting replication of the Byl replicator and 192 Moore rules supporting generation of a 2x2-cell 

child from a 2x2-cell Chou and Reggia replicator.  

In the interest of condensing their results, the authors of the original research [1], [2] provided 

short-form state-transition functions which exclude many state-preserving rules as implied default 

rules, and condense multiple rules into one rule statement with “wild-card” characters where 

possible.  

We can ask which abstraction of replication is the less complex: Byl, or Chou and Reggia? The first 

point to note in making this comparison is that the Chou and Reggia system is a comprehensive CA 

ecology incorporating an origin mechanism by which replicators emerge, extended replication which 

over time generates a dynamic and diverse size spectrum of replicators, and rules necessary for 

handling the inevitable interaction of replicators within the dynamic environment. The state 

transition function which comprehensively supports the system is presented in their Appendix as 

three pages of code incorporating about 70 code-statements. By contrast, the state transition 

function supporting Byl replication is a table of cell state-transition rules condensed to 57 rule 



statements, but before [2], most CA replicator research was motivated exclusively by the question of 

quantifying the minimum complexity supporting non-trivial self-replication, which limits the number 

of rules required.  

There are further comparisons to consider. A set of five active cell states is required for Byl 

replication, but exact replication of an isolated 2x2-cell Chou and Reggia replicator requires eight 

active states, with a control-bit set (→ *) in some cells at various times to facilitate the replication 

cycle. State transitions within Chou and Reggia replication require eight neighbour cell inputs 

(Moore rules apply), compared with only four neighbour cell inputs (von Neumann rules) required 

for Byl replication. We can conclude that although the 2x2-cell Chou and Reggia replicator structure 

is smaller than the Byl replicator with its outer sheath of state-2 cells, the state transition function 

required for basic replication of the 2x2-cell Chou and Reggia structure is larger and more complex. 

We have observed that rotation of a single oriented state can facilitate emergence of a Byl replicator 

structure (Figure 2), and that the 2x2 cell information loop within the structure rotates as a 

replication cycle proceeds. Continuing to iterate, we can see another emergent level of rotation with 

further replication cycles. Figure 3 below shows a second replication cycle underway at Time = 29.  

 

 

Figure 3. After one replication cycle, the parent structure (the left of the two shown) has produced a child 

structure to the right, which is replicating its own child to its right. The parent structure is blocked by its child, 

so at Time = 29 a second replication is occurring up (“North”). The orientation of the parent structure and the 

direction of its next replication has rotated counter-clockwise.  

 

After the second child is formed and blocks replication north, a third replication occurs to the left 

(“West”), and after that the continuing counter-clockwise rotation of the replication direction allows 

a fourth and final replication down (“South”). All directions of replication of the parent structure are 

by this point blocked so no further replications of the parent are possible.  

We have now seen three successive manifestations of counter-clockwise rotation. The domain of 

counter-clockwise rotation has expanded from rotation of the oriented-state ^ of a single cell, to 

rotation of the 2x2 cell instruction loop during replication, to rotation of the entire replicating 

structure as sequential production of children occurs. Rotation of the 2x2 cell information loop, and 

rotation of replication direction as sequential blocking of replication by child structures occurs are 

both observable in the animation of the Byl replicator [1] by C. Rocchini [7]. 

 

There is no doubt that many origin pathways to a specific CA replicator can be constructed. In 

biology, the structures and functions observed in anatomy and physiology are often not 

parsimonious, indicating an expectation that the sequence of OOL steps was not simple and direct. 



Allowing for the likelihood of an indirect ad hoc OOL pathway opens up a vast number of prospective 

OOL histories, with perhaps no means of determining any correct one [6]. 

There is nothing in the J. Byl replicator (from Figure 2, Time = 0) and its subsequent replication 

process which retains any evidence of the pre-replicator states ^, L, E and F. These states 

permanently disappear from the system on establishment of the initial replicator. In the history of 

real biology, it is as good as certain that much evidence of the chemistry and physics crucial to the 

emergence of biological replication has been lost permanently. We can only hope that some 

universalities relevant to the OOL problem exist and are tractable [6]. 

There are many questions still waiting for answers, including: 

In the search for OOL universalities, are there any meaningful isometries of logic between any 

cellular automata replicators and material chemistry and biophysics? 

Of specific interest to CA enthusiasts, can other J. Byl replicator origin pathways be derived requiring 

no active states more than the set {1, 2, 3, 4, 5} that is sufficient for subsequent replication? 

The specific Byl replicator origin presented in this work models OOL as a process which is exclusively 

chiral from pre-biotic conditions to subsequent chiral replication. In comparison, the Chou and 

Reggia system [2] models OOL as a sharp transition from achiral conditions to chiral replication. In 

contrast with both of these, a current viewpoint is that biochirality developed from a preceding 

racemic condition, i.e., of two initially-coexisting chiralities, one was gradually excluded by its now-

ubiquitous complement. 
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