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Abstract. The thinness of a simple graph G = (V,E) is the smallest integer

k for which there exist a total order (V,<) and a partition of V into k classes
(V1, ..., Vk) such that, for all u, v, w ∈ V with u < v < w, if u, v belong to the

same class and {u,w} ∈ E, then {v, w} ∈ E. We prove that

• there are n-vertex graphs of thinness n− o(n), which answers a question
of Bonomo-Braberman, Gonzalez, Oliveira, Sampaio, and Szwarcfiter,

• the computation of thinness is NP-hard, which is a solution to a long

standing open problem posed by Mannino and Oriolo.

1. Introduction

The notion of a k-thin graph was introduced by Mannino, Oriolo, Ricci, Chan-
dran [14, 15] and motivated by applications to frequency assignment problems. One
particular result in [15] showed that the maximum weight stable set problem can
be solved in polynomial time, provided that the input graph is given with the cor-
responding ordering and partition of its vertices, as in the definition of a k-thin
graph, and where k should be bounded by a constant fixed in advance. We remark
that G is 1-thin if and only if G is an interval graph, so the result of [15] came as
a generalization of the earlier polynomial time solution for the maximum weight
stable set problem on interval graphs [11, 13]. Nowadays, the polynomial time so-
lutions, in cases when the inputs are restricted to the k-thin form with bounded k,
are known for the maximum weight stable set [15], list matrix partition, rainbow
domination [2], capacitated graph coloring [7], and several other problems [1, 6].

Problem 1 (graph thinness).
Given: A simple graph G = (V,E), a positive integer k.
Question: Do there exist

• a total ordering < of the vertex set V and
• a partition of V into k disjoint classes s = (s1, . . . , sk)

such that, for all u, v, w ∈ V with

(1.1) (u < v < w) and ({u,w} ∈ E) and (u, v ∈ si for some i),

one always has {v, w} ∈ E?

Definition 2. If (G, k) is a yes-instance in Problem 1, then the graph G is called
k-thin. The thinness of G is the smallest integer τ for which G is τ -thin.

The aim of this paper is to prove the following.

Theorem 3. The problem graph thinness is NP-complete.
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Theorem 4. There exist graphs with n vertices and thinness n− o(n).

The above mentioned algorithmic applications motivate the study of the algo-
rithmic complexity of k-thin graph recognition. As said above, the case k = 1
corresponds to interval graphs, which can be detected in polynomial time [8]. For
general k, the question of the determination of the algorithmic complexity of de-
tecting k-thin graphs was posed by Mannino and Oriolo [14] in 2002, and, until
now, it remained open despite further extensive research [1, 2, 3, 4, 5, 6, 9, 10, 16].

In what follows, the pair (s,<) as in Problem 1 is to be called a certificate of
the k-thinness of G, and, since the validity of such a certificate can be checked
in polynomial time, Problem 1 belongs to NP. Therefore, the remaining part of
Theorem 3 is the NP-hardness, and we prove it with the use of the following gadget.

Problem 5 (graph thinness with a given partition).
Given: A simple graph G = (V,E), an integer k, a partition s = (s1, . . . , sk) of

V .
Question: Does there exist a total ordering < of the set V such that, for all

u, v, w ∈ V satisfying the conditions (1.1), one always has {v, w} ∈ E?

Definition 6. If (G, k, s) is a yes-instance in Problem 5, then the partition s is
said to allow a certificate of the k-thinness of G.

The complexity of Problem 5 is known.

Theorem 7 (Bonomo, de Estrada [2]). Problem 5 is NP-complete.

Several other results on the complexity of graph thinness are as follows. Bonomo
and de Estrada [2] give a polynomial time algorithm to determine the optimal value
of k in the definition of the k-thinness provided that the ordering < is fixed. Also,
they prove [2, 6] that the NP-completeness of the k′-thinness recognition implies
the NP-completeness of the k-thinness recognition, for any fixed k′, k with k′ 6 k.
Bonomo-Braberman, Gonzalez, Oliveira, Sampaio, and Szwarcfiter [6] extend this
result to a related notion of proper thinness and several other graph invariants.
Sampaio, Oliveira, and Szwarcfiter [16] construct a polynomial time algorithm for a
notion similar to the 2-thinness but with respect to the so called precedence proper
thinness. Bonomo-Braberman, Oliveira, Sampaio, and Szwarcfiter [3, 4, 5] show
that the precedence proper k-thinness is NP-complete for general k and polynomial
time solvable when k is fixed. In a more recent preprint, Bonomo-Braberman and
Brito [1] present a polynomial time algorithm for the situation when, additionally
to the partition (V1, . . . , Vk) in the definition of the k-thinness, one is given the
restriction of the ordering < to every set in the partition.

Remark 8. Throughout our paper, all graphs are assumed to be simple.

The paper has the following structure. In the forthcoming Section 2, we recall
some relevant notation and prove several results needed in our discussion. In Sec-
tion 3, we present the polynomial reduction from graph thinness with a given
partition to graph thinness, and, in view of Theorem 7, this implies the validity
of Theorem 3. In Section 4, we switch to Theorem 4 and discuss its motivation,
and we prove this theorem with a probabilistic argument. The remaining Section 5
collects several further remarks on our arguments and possible further work.
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2. An auxiliary construction

We begin with two caveats on the use of some standard notation.

Remark 9. A clique of a graph G = (V,E) is a subset of V that induces a complete
subgraph of G. In particular, for any u ∈ V , the sets ∅ and {u} are cliques of G.

Remark 10. We write U ⊂ V for two sets U , V if every element of U is contained
in V . In particular, we can write U ⊂ V even if U = V .

We proceed with several techniques needed in our reduction.

Definition 11. Assume G = (V,E) is a simple graph, and let U ⊂ V . We define
B(G,U) as the graph

• with the vertex set V ∪ {α, β}, where α, β /∈ V are new vertex labels,
• with all edges in E, and, apart from these, with an edge from α to every

vertex in V \ U , and with an edge from β to every vertex in V \ U .

Figure 1. An example of G and B(G, {3}) as in Definition 11.

Our next result may look similar to Lemma 16 in [2], which states that

thinness(G ∨ 2K1) = thinness(G) + 1

if G is not a clique, where G ∨ 2K1 appears as B(G,∅) in Definition 11.

Lemma 12. Let G, U be as in Definition 11. Suppose that, for some integer k, a
partition s = (s1, . . . , sk) allows a k-thinness certificate of B(G,U). Then for some

• label i ∈ {1, . . . , k} and
• subset C ⊂ V \ U that is a clique of G,

no vertex in V \ (U ∪ C) belongs to the class si.

Proof. Let < be an ordering of V ∪ {α, β} that is compatible with the partition s,
so that (s,<) is a certificate of the k-thinness of B(G,U). Since the labels α, β can
be swapped without changing the graph B(G,U), we can assume without loss of
generality that α < β, and then we take a label i such that α ∈ si.

Step 1. Let w ∈ V \ U be a vertex with w < α. If w ∈ si, then we have

(2.1) w < α < β and w,α ∈ si.

However, Definition 11 implies that w and β are adjacent in B(G,U), but at the
same time α, β are not adjacent. Therefore, we arrived at a contradiction with the
fact that (s,<) is a k-thinness certificate, and hence we cannot have w ∈ si.

Step 2. Now let w′, w′′ ∈ V \ U be two vertices such that

(2.2) α < w′ < w′′ and w′ ∈ si.
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Also, by Definition 11, the vertices α,w′′ are adjacent in B(G,U), and, since (s,<)
is a k-thinness certificate, we get {w′, w′′} ∈ E.

In Step 1, we showed that every vertex

(2.3) w ∈ si ∩ (V \ U)

should satisfy α < w. Using Step 2, we see that, if there are two such vertices w′,
w′′, then they should be adjacent in E. In other words, the set of all vertices w as
in (2.3) should be a clique of G. �

Now we explain how to extend a k-thinness certificate of G to B(G,U).

Lemma 13. Let G, U be as in Definition 11. Suppose that, for some integer k, a
partition s = (s1, . . . , sk) and ordering < certify the k-thinness of G, where

(2.4) s1 = U.

Also, we define σ1 = s1 ∪ {α, β} and extend the ordering < by adding the relations

v < α, v < β, α < β

for all v ∈ V . Then the partition s′ = (σ1, s2, . . . , sk) and the extended ordering <
are a k-thinness certificate of B(G,U).

Proof. In order to apply the definition of the k-thinness, we take u, v, w ∈ V ∪{α, β}
such that u < v < w and u,w are adjacent in B(G,U), and

(2.5) u, v belong to the same class of the partition s′.

We need to check that v, w are adjacent in B(G,U).

Step 1. If u, v, w ∈ V , the conclusion follows because the purported certificate
of the k-thinness of B(G,U) extends the initial certificate for G.

Step 2. If exactly one of the vertices u, v, w is in {α, β}, then we assume without
loss of generality that w = β. By Definition 11, since β and u are adjacent, we
get u /∈ U , and, according to the condition (2.4), this implies u /∈ s1. Now we
apply (2.5) to get v /∈ s1, and then we use (2.4) to get v /∈ U , from which, by
Definition 11, we get a desired conclusion that v and β are adjacent in B(G,U).

Step 3. If both α, β appear among u, v, w, then v = α, w = β. Similarly to
Step 2, we get u /∈ s1 and hence u /∈ σ1. Since v = α ∈ σ1 by the assumptions of
the lemma, the condition (2.5) violates, so there is nothing to prove in Step 3.

Since Steps 1, 2, 3 cover all possibilities, the proof is complete. �

3. The reduction

The following is the main construction in our reduction.

Definition 14. Assume that G = (V,E) is a simple graph, k is a positive integer,
and s = (s1, . . . , sk) is a partition of V . We define the graph G(G, k, s) as

B(B(. . .B(G, s1), . . .), sk−1), sk),

that is, in other words, G(G, k, s) is the k-fold application of the construction in
Definition 11, in which the i-th application is

(3.1) Gi := B (Gi−1, si) ,
where G0 = G, and Gi−1 is the graph obtained at the (i− 1)-st iteration.

For yes-instances of Problem 5, the desired outcome is straightforward.
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Lemma 15. If (G, k, s) is a yes-instance of Problem 5, then G(G, k, s) is k-thin.

Proof. Let αi, βi be the vertices added to the graph at the i-th application of
Definition 11. Then, for every t ∈ {0, . . . , k}, the partition

(3.2) (s1 ∪ {α1, β1}, . . . , st ∪ {αt, βt}, st+1, . . . , sk)

allows a k-thinness certificate of Gt because, in fact, for t = 0, this is true as (G, k, s)
is a yes-instance, and, for t > 0, this follows from Lemma 13 by the induction. In
particular, the t = k version of (3.2) certifies the k-thinness of Gk = G(G, k, s). �

A converse direction of Lemma 15 requires some further work.

Definition 16. If G1 = (V1, E1), G2 = (V2, E2) are simple graphs with V1∩V2 = ∅,
then we define G1 ⊕G2 as the graph (V1 ∪ V2, E1 ∪ E2).

Definition 17. If s = (s1, . . . , sk) is a partition of a set S, and P is a subset of S,
then the partition

(s1 ∩ P, . . . , sk ∩ P )

is called the restriction of s on P .

Lemma 18. Let G1, . . . , Gk+1 be non-empty simple graphs. We consider the graph

G = G1 ⊕ . . .⊕Gk+1

and a partition s = (s1, . . . , sk) of the vertex set of G. If, for every q ∈ {1, . . . , k+1},
(N1) the graph Gq is not (k − 1)-thin,
(N2) the triple (Gq, k, ψq) is a no-instance for Problem 5, where ψq is the re-

striction of s on the vertex set of Gq,

then the graph G(G, k, s) is not k-thin.

Proof. We argue by contradiction, so we assume that G(G, k, s) is k-thin. Therefore,
some partition σ = (σ1, . . . , σk) allows a k-thinness certificate of G(G, k, s), and
then, for all t ∈ {0, . . . , k} and j ∈ {1, . . . , k}, we define

σjt := σj ∩ Vt,

where Vt is the vertex set of the graph Gt as in Definition 14. Since the k-thinness
certificates remain valid at the restrictions to induced subgraphs, the partition

(σ1t, . . . , σkt)

certifies the k-thinness of Gt. We recall that

(3.3) Gt = B (Gt−1, st)

by the condition (3.1). An application of Lemma 12 to the graph (3.3) allows us to
find a clique Ct in Gt−1 such that the set Vt \ (st ∪ Ct) lies in the union of at most
(k−1) classes in (σ1 t, . . . , σk t). A restriction of the latter statement to the vertices
of G gives us a clique Ct of G and an index rt such that

(3.4) V \ (st ∪ Ct) is a subset of V \ σ0 rt

for all t ∈ {1, . . . , k}. Since we had G = G1⊕ . . .⊕Gk+1 by the initial assumption,
there exists an index q ∈ {1, . . . , k + 1} for which

(3.5) Gq does not intersect C1 ∪ . . . ∪ Ck.
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Now we take the partition ψq = (ψq1, . . . , ψqk) as in (N2), that is, ψq is the restric-
tion of s on the vertex set Uq of Gq, which means that we have

(3.6) ψqj = sj ∩ Uq

for all j ∈ {1, . . . , k}. Also, we define another partition τ = (τ1, . . . , τk) of Uq as
the restriction of σ, that is, we get

(3.7) τj = σ0j ∩ Uq

for all j ∈ {1, . . . , k}. Now we use the conditions (3.6) and (3.7) to restrict the
formula (3.4) to the set Uq. In view of (3.5), we get that

Uq \ ψqt is a subset of Uq \ τrt
for all t ∈ {1, . . . , k}, and hence

(3.8) τrt is a subset of ψqt

for all t ∈ {1, . . . , k}. If t → rt is a permutation, then (3.8) implies τrt = ψqt for
all t, which shows that τ is a permutation of ψq, and hence ψq allows a k-thinness
certificate of Gq. This contradicts to the condition (N2), and hence, in fact, the
mapping t→ rt cannot be injective. Therefore, there exists a label h such that

h = rt1 = rt2 for some t1 6= t2,

and then τh is a subset of both ψqt1 and ψqt2 . Since ψq is a partition, this implies
that τh is an empty set, so the graph Gq admits a k-thinness certificate in which the
empty sets appears in the corresponding partition of the vertices. This means that
Gq is (k−1)-thin, so we obtain a contradiction to (N1) and complete the proof. �

We need to generalize the notation from Definition 16.

Definition 19. Let V1, V2 be disjoint sets. For some k, let s1 = (s11, . . . , s1k),
s2 = (s21, . . . , s2k) be partitions of V1, V2, respectively. Then we define

s1 ⊕ s2 = (s11 ∪ s21, . . . , s1k ∪ s2k).

Definition 20. Let V1, V2 be disjoint sets, and let <1 and <2 be total orderings
on V1, V2, respectively. Then a total ordering < on V1 ∪ V2 is denoted <1 ⊕ <2 if

• <1 is contained in <,
• <2 is contained in <,
• one has v1 < v2, for all v1 ∈ V1, v2 ∈ V2.

Observation 21. Assume G1 = (V1, E1), G2 = (V2, E2) be simple graphs with
disjoint vertex sets. Let k be an integer, and assume that

• <1 is a total ordering of V1,
• <2 is a total ordering of V2,
• s1 is a partition of V1 into k classes,
• s2 is a partition of V2 into k classes,

then the following are equivalent:

• (s1 ⊕ s2, <1 ⊕ <2) is a k-thinness certificate of G1 ⊕G2,
• (si, <i) is a k-thinness certificate of Gi with both i = 1, 2.

We need one further auxiliary graph, which was previously considered in [2, 6].
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Definition 22. We consider the graph Hk with the vertices

{α1, β1, . . . , αk, βk}

in which ∗i and ?j are adjacent if and only if i 6= j, for any ∗, ? in {α, β}.

Remark 23. According to Lemma 16 in [2], the thinness of Hk equals k.

Definition 24. We write (ψk, <k) for the k-thinness certificate of Hk defined by

• ψk = ({α1, β1}, . . . , {αk, βk}),
• ∗i < ?j if i < j and ∗, ? ∈ {α, β},
• αi < βi, for any i ∈ {1, . . . , k}.

Now we are ready to proceed with the reduction.

Definition 25. Let (G, k, s) be an instance of Problem 5. We create

• the k + 1 copies G1, . . . , Gk+1 of G,
• the k + 1 copies Hk1, . . . ,Hk k+1 of Hk

so that the vertex sets of all these copies are pairwise disjoint. We define

G = (G1 ⊕Hk1)⊕ . . .⊕ (Gk+1 ⊕Hk k+1),

and, assuming that sj and ψkj denote the copies of the corresponding partitions of
the vertex sets of G and Hk, we take

s = (s1 ⊕ ψk1)⊕ . . .⊕ (sk+1 ⊕ ψk k+1),

and then we define the graph

Γ(G, k, s) := G(G, k, s),

where G stands for the construction in Definition 14.

Theorem 26. An instance (G, k, s) of Problem 5 is a ‘yes’ if and only if the graph

Γ(G, k, s) = G(G, k, s)

is k-thin.

Proof. If (G, k, s) is a yes-instance in Problem 5, then (G, k, s) is also a yes-instance
by Observation 21. In this case, the graph Γ(G, k, s) is k-thin by Lemma 15.

If (G, k, s) is a no-instance in Problem 5, then we apply Lemma 18 to the graph
G. Then the corresponding condition (N1) is true by Remark 23, and we get the
validity of (N2) from Observation 21. Therefore, the assertion of Lemma 18 is
applicable, and hence the graph Γ(G, k, s) is not k-thin. �

Theorem 26 gives a polynomial reduction to graph thinness from Problem 5,
which is known to be NP-complete [2]. This implies Theorem 3.

4. Graphs with large thinness

As said above, the notion of thinness is being extensively studied for almost two
decades, but there are still many open questions on the behavior of this function
and its relations to other graph invariants [1, 2, 5, 6, 14, 15]. One particular natural
problem concerns the largest value of the thinness of an n-vertex graph.

Problem 27 (Section 5 in [6]). Is there an n-vertex graph G with thinness > n/2?
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This section is devoted to the proof of Theorem 4, which gives an affirmative
solution to Problem 27, and, in fact, this theorem determines the largest value of
the thinness in the asymptotic sense. As we will see, our proof is probabilistic.

Definition 28. A graph G = (V,E) with |V | = 3m is called m-obstructive if one
can enumerate its vertices as (u1, . . . , um, v1, . . . , vm, w1, . . . , wm) so that, for every
i and j in {1, . . . ,m}, one has either {ui, wj} /∈ E or {vi, wj} ∈ E.

Lemma 29. If m, n are positive integers with m > 11 lnn, then there exists a
graph with n vertices which has no m-obstrucive induced subgraphs.

Proof. We consider the random graph G = (V,E) with |V | = n such that the
edges of G appear independently with probability 1/2 each. For every fixed non-
repeating sequence α = (u1, . . . , um, v1, . . . , vm, w1, . . . , wm) of vertices in V , the

probability that α certifies the m-obstruction is (3/4)m
2

because there are m2

independent choices of (i, j) as in Definition 28, and each of the corresponding
events {ui, wj} /∈ E or {vi, wj} ∈ E happens with probability 1/2 (which implies
that their union occurs with probability 3/4 by the independence). Since there are
a total of at most n3m ways to choose α, the expected total number of all those
choices of α which give the m-obstruction certificates is at most

n3m · (3/4)m
2

= exp
(
3m lnn−m2 ln(4/3)

)
< 1,

and hence some choices of G do not admit m-obstructions at all. �

Now we are ready to complete the proof of Theorem 4.

Theorem 30. For any positive integer n, there exists a graph with n vertices whose
thinness is at least n− 72 lnn.

Proof. Using Lemma 29, we take a graph G = (V,E) with |V | = n such that

(4.1) G has no induced m-obstructive subgraphs with any m > 11 lnn.

We are going to complete the proof by showing that the thinness of G is at least
n− 72 lnn as desired. If this was not the case, there would exist an ordering (V,<)
and a partition of V into at most n − 72 lnn classes as in the definition of the
thinness, and then, for some integer c satisfying

(4.2) c > 72 lnn/3 = 24 lnn,

we should be able to find c disjoint pairs in each of which both vertices are in the
same class (the bound (4.2) follows because the worst case scenario is when every
class has either 1 or 3 vertices). We enumerate these pairs as follows:

(u1, v1), . . . , (uc, vc) with v1 < v2 < . . . < vc and ui < vi for all i.

By the thinness, for any i ∈ {1, . . . , c}, it never occurs that

(4.3) ({ui, x} ∈ E) AND ({vi, x} /∈ E) with x ∈ {vi+1, . . . , vc}.

Now we define m = bc/2c and note that the sequence

α = (u1, . . . , um, v1, . . . , vm, vm+1, . . . , v2m)

induces an m-obstruction because the condition (4.3) never occurs. By (4.1), we
get m 6 11 lnn and hence c 6 22 lnn+ 1. A comparison to (4.2) implies 24 lnn 6
22 lnn+ 1, which is a contradiction unless we are in the trivial case n = 1. �
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5. Concluding remarks

We constructed a polynomial reduction from graph thinness with a given
partition to graph thinness. In view of the result in [2], this proves the NP-
completeness of graph thinness, but the complexity status of the

• recognition of the graphs of thinness 2,
• computataion of the proper thinness of a graph

and many other related problems remains open [1, 2, 3, 4, 5, 6, 9, 10, 16].
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