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Abstract

By combining the complex analytic Cauchy-Riemann derivative with
the Cayley-Dickson construction of a quaternion, possible formulations
of a quaternion derivative are explored with the goal of finding an ana-
Iytic quaternion derivative having conjugate symmetry. Two such ana-
lytic derivatives can be found. Although no example is presented, it is
suggested that this finding may have significance in areas of quantum me-
chanics where quaternions are fundamental, especially regarding the enig-
matic phenomenon of complementarity, where a quantum process seems
to present two essential aspects.

Introduction

Early progress in complex analysis was due to the realization, by Cauchy and
Riemann in the nineteenth century, that a function of a complex variable has two
complex derivatives. One derivative is called analytic, the other anti-analytic.
The analytic derivative is taken with respect to the complex variable, and the
anti-analytic derivative is taken with respect to its conjugate, corresponding to
opposite directions of rotation of the variable. A quaternion variable can be
formed from two complex variables by the Cayley-Dickson construction. It is
proposed that quaternionic and octonionic analysis ought to be based on these
two foundations, and constructed to satisfy a presumed symmetry shared by
analyticity and conjugation. Under this hypothesis there are four branches of a
quaternion derivative, two of which are analytic.

A function of a real or complex variable is analytic if its Taylor series con-
verges to the function. Proving analyticity entails a suite of techniques involv-
ing derivatives and limits of power series, but a simpler meaning will suffice
for this essay - an analytic function is one that is capable of being analyzed.
The issue of analyticity gained importance with the development of complex
analysis and the difficulties encountered due to different directions of rotation
of a complex variable. These difficulties were overcome when it was found that
there are two branches of a function of a complex variable. Each branch has
a complex derivative associated with it according to the variable’s direction of
rotation. These are the analytic and anti-analytic branches. Recognition of this
separation allows a complex function to be analyzed in two parts, each complex
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variable having opposite rotation.

An analytic function can then be defined as one whose complex variables rotate
in only one direction. Anti-analyticity is related to conjugation which reverses
the rotational direction of a complex variable. The anti-analytic derivative is the
derivative of a function with respect to the conjugate of a complex variable. The
anti-analytic derivative of an analytic function is zero. For example, consider
a complex variable, z, and its conjugate, z*, and their derivatives (analytic
derivatives on the left),

dz/dz =1 dz/dz* =0 (1)
dz*/dz=0 dz*/dz* =1 (2)

The variable, z, is an analytic function, so the anti-analytic derivative, dz/dz*,
is zero. On the other hand, z* is an anti-analytic function whose analytic
derivative is zero. Thus, the conjugate of a variable can be treated as a constant
when taking a complex derivative. Quaternion and octonion analogs for (1)-(2)
will be presented, but corresponding analyticity is not investigated beyond that.

It is the symmetry shared by analyticity and conjugation shown in the above
equations that is the focus of this essay. In the conventional approach to quater-
nionic analysis due to Fueter, this correspondence is lost. Fueter considers the
asymmetric representation of a quaternion consisting a real variable and three
imaginary variables with independent Cauchy-Riemann equations. The Cauchy-
Riemann equation produces analytic or anti-analytic complex derivatives from
real derivatives of a complex function. See [1] for an exposition on quaternionic
analysis and Fueter’s work.

The Cayley-Dickson construction forms a quaternion number from two complex
numbers. This symmetric view of a quaternion (two complex numbers vs one
real and three imaginary numbers) leads to an extension of the Cauchy-Riemann
equation to quaternions via the Cayley-Dickson construction resulting in four
branches of quaternion analyticity which can be arranged to have the symmetry
required for a correspondence between analyticity and conjugation.

Quaternion analyticity then depends on complex analyticity and requires that
complex derivatives are either both analytic or both anti-analytic. This prop-
erty can be extended to octonions where an analytic octonion derivative would
require that quaternion derivatives are both analytic or both anti-analytic.

When used in reference to quaternions or octonions in this essay, it must be un-
derstood that the terms ‘analyticity’ and ‘analytic’ will refer to a mathematical
property which has not been demonstrated. At this point, it is not even clear
how to apply the various branches of a derivative in order to do so. It is the
prerequisite development of symmetry in the quaternion derivative through a
hypothetical relationship between conjugation and analyticity that will be the
concern here. Hence formulation of quaternion and octonion derivatives will
be guided by consideration of the conjugate derivative, and resulting forms will
be presumed to exhibit analyticity inferred from its value just as in equations
(1)—(2) for complex variables.



Cauchy-Riemann equation for functions of a complex variable

The Cauchy-Riemann equation originated from the effort to define a complex
derivative. Consider a function f = f(x) of a complex variable 2 = a+bi where
a and b are real variables. The function is analytic if it satisfies the Cauchy-
Riemann equation which equates appropriately rotated® real derivatives,

d d
4i::4,4ii (3)
da db
Adding these expressions gives the analytic derivative with respect to the com-
plex variable, x, in terms of real derivatives as

df 1,df df.
i ) (4)

Taking their difference gives the anti-analytic derivative (the derivative with
respect to the conjugate variable, x*) as

At s

da b’ (5)

which will be zero if the function satisfies the Cauchy-Riemann equation. The
complex derivative is a unique concept and not the same as the gradient, which
would have the form of (5) except for the factor of one half.

Cayley-Dickson construction of the quaternion

Consider another complex number y = ¢ + di with real ¢ and d. The Cayley-
Dickson construction forms a quaternion, ¢, from complex numbers x and y
using a new imaginary number, j, as

g=z+yj (6)
Defining a third imaginary number, k = ij, gives the quaternion as

g=a+bi+cj+dk (7)

The Cauchy-Riemann-Fueter equations for functions of a quaternion

The Cauchy-Riemann-Fueter equations come from applying (3) to each real
derivative of a quaternion function f = f(q) so that

df df . df . df

da ' A’ T Tad ®)
Analogous to the complex case, a quaternion derivative can be formed by adding
these real derivatives to get

%:ﬂﬂ_ﬂpéf M@

da db' de’  dd 9)

IThe rotation comes from equating df/da = df/d(bi) which becomes (3). Carrying a 90°
rotation (the imaginary number, i) with the real variable, b, makes the complex derivative
different from a gradient.




with a condition for regularity (not analyticity) given by

df df . df . df

=4 = =L — k=0 10

da "' A’ T ad (10)
Analyticity has been shown to be limited to constant and some linear func-
tions. Fueter proposes no correspondence between conjugate derivatives and

analyticity.

Extending Cauchy-Riemann via the Cayley-Dickson construction

An overlooked possibility for extending the Cauchy-Riemann equation to a func-
tion f = f(q) of a quaternion variable, g, is to procede from the Cayley-Dickson
construction (6) and form the “Cayley-Dickson-Cauchy-Riemann” equation us-
ing j instead of i, and complex derivatives in place of real derivatives in (3),

df df .

de  dy J
The derivative of a function of a complex variable has two branches, one for
analytic functions (4) and one for anti-analytic (5). Being composed of two
complex variables, the resulting expression for a quaternion derivative will have
four branches, and each can be clearly identified as analytic or anti-analytic. If
complex derivatives come from branches with similar analyticity, the quaternion
derivative will be analytic. Otherwise, the quaternion derivative will be anti-
analytic. Hence, a quaternion derivative formed from two complex anti-analytic
derivatives is analytic. Unlike the conventional approach, the conjugate of a
quaternion variable is an anti-analytic function whose analytic derivative is zero.

(11)

When a quaternion derivative is evaluated, two of the four real derivatives will
cancel.? Thus the following expressions omit the expected factor of 1/2 in
anticipation of the cancellation. Also, reversal of the sign in the second branch
of the quaternion derivative (13) is necessary to have the branches balance
analyticity with anti-analyticity. The quaternion derivative is then composed
from complex derivatives as

, _df _df df
faa_diq_a_@
, _df _df  df

J (analytic) (12)

fio= i~ ds + i j (antianalytic) (13)
flo= ;q]i = (if* — %j (anti analytic) (14)
df df df . .
4 = —_— = — 1 t ]-
fa= =Ll (analytio (19

where the four branches of a quaternion derivative are denoted by f.., fi., fr.

and f! with “a” for analytic and “n” for anti-analytic complex derivative, and

2The initial part of the Cauchy-Riemann-Fueter equations, i.e. (8) equating appropriately
rotated real derivatives, is implicitly assumed.



where the first subscript indicates the z complex derivative and the second is
for y. For example, the analytic branch composed from two analytic complex
derivatives (12) is given by

df _df. df df )

== - = 16
Joa = (da ' de’! T dd (16)
The derivative of a quaternion variable and its conjugate are of interest. For
f = q the real derivatives are

dg _ dg . dg _ . dg

1= &—z &—J @:k (17)

and, noting that i2 = j2 = k? = —1, thus ¢/, = dq/dg=(1+1+1-1)/2 = 1.
The sign of the three derivatives associated with the imaginary numbers changes
for the conjugate, so that ¢! = d¢*/dg = (1—-1—-1+1)/2 = 0, allowing the same
connection between conjugation and analyticity found in the complex case.

The roles of the variable and its conjugate are reversed for the two anti-analytic
branches of the quaternion derivative, f! and f],, again like the complex deriva-
tive. The two anti-analytic branches correspond to the derivative with respect
to the conjugate quaternion variable, and are zero for analytic functions. One of
the anti-analytic quaternion derivatives formed from complex derivatives with
differing analyticity (13) is given by

f (df af . df . df )

an — =ttt

da db de? T dd (18)

In this case ¢}, = dg/dg¢* = (1+1—1—1)/2 = 0, and the derivative of the
conjugate is ¢’/ = dq*/dq* = (1—14+41+1)/2 = 1 as expected for an anti-analytic
derivative.

The other anti-analytic quaternion derivative (14) is given by

e (Y

da " b dc’! T dd (19)

In this case ¢, = dg/d¢* = (1 —1+1—1)/2 = 0, and the derivative of the
conjugate is ¢} =dq*/d¢* =(1+1—-1+1)/2=1.

The analytic quaternion derivative formed from two anti-analytic complex deriva-
tives (15) is given by

af df . df . df

fnn“(@*@ SR (20)

In this case ¢}, = dg/dg = (1 =1+ 14 1)/2 = 1, and the derivative of the
conjugate is ¢}t = dg*/dg=(1+1—1—-1)/2 =0 as required.



Non-associativity of quaternion derivative

Consider the following analytic quaternion derivatives of basic linear functions
formulated using two analytic complex variables (16):

dg _ dig) . dUg _ . d(kg) _
dqi1 dg ' dg 7 dg =k &1)
dg _ dlgi) . dlgs) _ .  dlgk) _
dq_1 dg - dg -/ dg b (22)

The last of the above equations stands out because of the negative sign on the
k basis. The other analytic quaternion branch has a similar reversal affecting
the ¢ basis for the function (gi), and the anti-analytic branches also have one
basis? that does not conform, leading to possible restrictions on linear analytic
forms, or at least complicating their development.

Now consider a constant quaternion, u, and encapsulation of the above two sets
of equations (21)-(22) by the derivatives

d(u Q) d(q 7_1,) _ UK (23)

=u
dg dg

where the superscript ¥ in X operates to reverse the k basis in .

Consider another constant quaternion, v, and the product, ugv. Quaternions are

associative so u(qu) and (uq)v are equal. However the derivative discriminates

between the two formulas so that, assuming a right-associated chain rule for
functions of functions,

dlu(gn)] _ dlu(gn)] (o) _ ] | o, o)
dg d(quv)  dg dg
It can be shown that for the elementary quadratic function, ¢2,
dq2 K
S 25
a ¢ e (25)
It can also be shown that
- 74 26
1 ¢ a4 #q (26)

indicating another selection since q ¢* = ¢*¢. Judging from these examples for
one branch, the price of symmetry is structural complexity.

There is one linear form that is well-behaved. Functions of the form ug with
constant u always have the same derivative (u) for the analytic branches, and
zero for the anti-analytic branches. It is only derivatives of the commuted form
qu that have a nonconforming basis.

3The anti-analytic quaternion derivative f.  (13) is zero for the functions in question

except d(ggf) = 2i. Likewise, the anti-analytic quaternion derivative f/, (14) is zero except
% = 2j. An analytic derivative takes the nonconforming basis one step backward instead of

forward — an anti-analytic derivative takes the nonconforming basis two steps forward instead
of not moving at all.



Complex matrix form of quaternion derivative

Recall that two complex variables
r=a+bi y=c+di
were used to form a quaternion, g, via the Cayley-Dickson construction
q =x+yj] = a+bi+cj+dk

The real quaternion basis in complex matrix form is

10 i 0 0 1 0 4
e A B e
where a quaternion is formed from real coefficients (a, b, ¢, d) as
€ Y
Q:[ . x*}:al—i-bI—&—cJ—i—dK (28)
and its conjugate is given by

QY = F _y} —al-bI—cJ—dK (29)
y x
Note that the conjugate of the quaternion is the Hermitian transpose of the

matrix. All of the formulas in the preceding sections can use the matrix basis
by substituting (1,1,J,K) for (1,4, j, k).

The Cayley-Dickson construction can be put in matrix form. Instead of complex
variables = and y, start with complex diagonal matrices

cf ovehy e

A quaternion is then constructed as
Q=X+YJ (31)

Treatment of the quaternion derivative can procede as before, ultimately taking
derivatives with respect to the real variables (a,b,c,d). The matrix form is
complicated by the presence of conjugate variables which are redundant, but in
some sense informative. In the initial development, the matrix form was found
to have the advantage that (31), for instance, can be distinguished immediately
from its commuted alternative as the obvious place to start. This is not so clear
otherwise using imaginary numbers where a bit of a search would be involved
to see which possibility could be eliminated.



Summary

This work was motivated in part by a perceived lack of symmetry between
analytic and anti-analytic derivatives in conventional approaches to quaternion
analyticity, in comparison to the complex derivative. The picture of an analytic
quaternion that emerges is one of some complexity with four branches of the
derivative. There is one analytic derivative for complex variables, but there are
two analytic derivatives for quaternions in the Cauchy-Riemann-Cayley-Dickson
scheme. While these branches are complicated by non-associative exceptions,
their relatively simple form may provide an avenue for their analysis. Notably,
none of the four branches of quaternion derivative correspond to the possibility
considered by Fueter.

While technical aspects of analyticity which were neglected in the above presen-
tation require more study, a re-examination of the role of a quaternion derivative
may be required in the context of the rules of quantum mechanics, with the aim
of discovering some correspondence.

An interesting hypothesis is that the presence of two analytic derivatives could
be linked to complementarity, the property that a quantum process can be
described in two mutually exclusive classical ways.



Appendix

Extension to derivative of octonion function

Octonion analyticity requires the combination of two quaternions of similar an-
alyticity. An octonion [2] variable ¢ = p + ¢l is created from two quaternion
variables p and ¢ and a new imaginary number, [, using the Cayley-Dickson
construction. Consider an octonion function f = f(¢). Extending the Cayley-
Dickson-Cauchy-Riemann equations for the quaternion derivative (12)-(15) gives
this generic expression for the octonion derivative in terms of quaternion deriva-

tives,
df df df
/ = L — L _ L = fp) = (o) 32
f'(9) a5 ~ A dg f'(p) = f'(a) (32)
where f’(p) stands for the derivative of the octonion function, f, with respect to
a quaternion part (p) of the octonion variable, ¢, which produces the following
sixteen possible branches of an octonion derivative,

faa 2a(0) = fan(D) = [aa(a@)1 (analytic) (33)
fraan(®) = faa(D) + fan(@)1 (antianalytic) * (34)
frana(®) = faa(P) + fra(@)1 (antianalytic) (35)
faann(®) = faa(P) = fin(@)1 (analytic) (36)
fan 2a(®) = fan(P) = fral@) 1 (anti analytic) (37)
fanan(®) = fan(p) = fan(a@)1 (analytic) (38)
fanna(®) = fan(p) = Fra(a)1 (analytic) (39)
fanmn(®) = fan(p) — fan(@)1 (anti analytic) (40)
fraaa(®) = fra(P) = faala)l (anti analytic) (41)
fraan(®) = fra(p) = fan(a@)1 (analytic) (42)
frana(®) = fa(p) = fra(a@)1 (analytic) (43)
frann(®) = fia(p) — fan(@)1 (anti analytic) (44)
fonaa(®) = fan(D) = faala@)l (analytic) (45)
fanan(®) = Fan(P) + fan(a)1 (antianalytic) (46)
fanna(®) = Fan () + frala)l (antianalytic) (47)
fonnn(®) = fan(®) = (@)1 (analytic) (48)

Note: * indicates a sign change like that required for the quaternion derivative.

As with complex and quaternion derivatives, the derivative of an octonion
variable with respect to the conjugate octonion variable is zero. Cancellation
among components again leads to a missing factor of two compared to Cauchy-
Riemann. The octonion derivative has non-associative exceptions for linear
functions similar to the quaternion.



Quaternion Exceptions

Consider functions of the form ge,, where e, = 1,¢,j0rk. Each of the four
branches of quaternion derivative with respect to ¢ (or ¢* for anti-analytic
derivatives) will break with associativity for one of the functions. These ex-
ceptions are given by the value 2 or —1 in the following table. For example,
the fourth branch (15) of the derivative of ¢i can be found from the fourth row
in the table in the column under ¢ which shows —1 as the entry, so that the
derivative of ¢i is —¢ for that branch.

1 4« 3 k
aa a 1 1 1 -1
an n o 2 0 O
na n 0 O 2 0
nn a 1 -1 1 1

Octonion Exceptions

Octonions have three exceptions for each branch instead of just one. Here
e, represents the octonion basis. As an example, for the function ¢eg of an
octonion, ¢, the third branch of the derivative (35), which is an anti-analytic
exception, is found from the third row of the seventh column of the table (under
e6) to be 2eg.

ep ey €y €3 €4 €5 € ey
aaaa aa a 1 1 1 -1 1 -1 -1 1
aaan an n o 2 2 0 0 2 0 O
aana an n 0 2 2 0 0 O 2 0
aann aa a 1 1 1 -1 1 1 -1 -1
anaa na n 0 2 0o o0 2 0 0 2
anan nn a 1 1 -1 -1 1 -1 1 1
anna nn a 1 1 -1 -1 1 -1 1
annn na n 0 2 0 2 0 0
naaa na n o o0 2 2 o 2
naan nn a 1 -1 1 -1 1 -1 1 1
nana nn a 1 -1 1 -1 1 1 -1 1
nann na n 0 0 2 o 2 2 0 0
nnaa aa a 1 -1 1 1 1 -1 -1 1
nnan an n o o0 2 2 0 0 0
nnna an n 0 0 2 2 0 2 0
nnnn aa a 1 -1 1 1 1 -1 -1
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> This essay is an edited version of a submission to a FQXi essay contest.

Seeking the Analytic Quaternion (2017)
https://fqgxi.org/community/forum/topic/2822

> Machian gravitation can avoid the Schwarzschild singularity by applying the
relativity of redshifts to the derivation of classical gravitational potential energy.
From the Abstract: “A relativistic composition of gravitational redshift can be
implemented using the Volterra product integral. Using this composition as
a model, expressions are developed for gravitational potential energy, escape
velocity, and a metric. Each of these expressions alleviates a perceived defect
in its conventional counterpart. Unlike current theory, relativistic gravitational
potential energy would be limited to rest energy (Machian), escape velocity
resulting from the composition would be limited to the speed of light, and the
associated metric would be singularity-free.”

Composition of Relativistic Gravitational Potential Energy (2021)
vixra.org/abs/2007.0009

> One consequence of Machian gravitation is that cosmological inflation would
be untenable. In Walther Nernst’s alternative to inflationary cosmology, the
redshift of light can be viewed as evidence of a quantum mechanical harmonic
oscillator by Planck’s hypothesis, in which light energy decays exponentially by
losing a quantum of energy, hH, every cycle. It is proposed that the primary
obstacle to tired light posed by supernova data can be overcome by complemen-
tarity between distant time dilation and received light energy.

Uncertainty and complementarity in the cosmological redshift (2015)
https://fqxi.org/community/forum/topic/2292

> Machian gravitational relativity implies a rest frame compatible with quantum
mechanics in which to compose Machian escape velocity. This universal rest
frame could correspond to a plenum of energy populated by fundamental quanta
at the inferred zero point of electromagnetic radiation, hH/2. The properties
of space, if not space itself, could be due to these quanta.

A Tale of Two Relativities (2018)  fqxi.org/community/forum/topic/3071
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> A simple noisy vector model is shown to be in accord with Robert McEachern’s
hypothesis that Bell correlations are associated with processes which can provide
only one bit of information per sample. Unlike Richard Gill’s treatment of
Pearle’s Hidden-Variable Model (arXiv:1505.04431), this classical model does
not quite approach the expectation of quantum mechanics as the number of
trials is increased. However, the noisy vector model has the advantage of an
obvious separation of signal from noise used to measure information. It has yet
to be shown if the Gill-Pearle model satisfies the one-bit criterion.

How Well Do Classically Produced Correlations Match Quantum Theory?
(2017) http://vixra.org/abs/1701.0621

> Simulating Bell correlations by Monte Carlo methods can be time-consuming
due to the large number of trials required to produce reliable statistics. For a
noisy vector model, formulating the vector threshold crossing in terms of geo-
metric probability can eliminate the need for trials, with inferred probabilities
replacing statistical frequencies.

Simulated Bell-like Correlations from Geometric Probability (2017)
http://vixra.org/abs/1705.0377
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