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Abstract

Recent analysis has uncovered a broad swath of rarely considered real numbers
called real numbers in the neighborhood of infinity. Here, we extend the catalog of
the rudimentary analytical properties of all real numbers by defining a set of fractional
distance functions on the real number line and studying their behavior. The main
results are (1) to prove with modest axioms that some real numbers are greater than
any natural number, (2) to develop a technique for taking a limit at infinity via the
ordinary Cauchy definition reliant on the classical epsilon-delta formalism, and (3)
to demonstrate an infinite number of non-trivial zeros of the Riemann zeta function
in the neighborhood of infinity. We define numbers in the neighborhood of infinity
with a Cartesian product of Cauchy equivalence classes of rationals. We axiomatize
the arithmetic of such numbers, prove the operations are well-defined, and then make
comparisons to the similar axioms of a complete ordered field. After developing the
many underlying foundations, we present a basis for a topology.
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§1 Introduction

The original Euclidean definition of a real number [1] has given way over
time to newer constructive definitions such as the Cauchy equivalence class
suggested by Cantor [2], the Dedekind cut [3], and also axiomatic definitions,
the most popular of which are the axioms of a complete ordered field based
in Hilbert’s axioms of geometry [4]. The main purpose of the present analysis
is to compare and contrast geometric and algebraic constructions of the real
numbers, and then to give a hybrid constructive-axiomatic definition which
increases the mutual complements among the two notions of geometry and
algebra.

The Euclid definition of R has its foundation in physical measurement.
Throughout most of the history of mathematics, it was sufficient to give the
Euclidean geometric conception of numbers as cuts in an infinite line, or “mag-
nitudes” as Euclid is usually translated [1]. In modernity, the preoccupation
of mathematics with algebra more so than quantity has stimulated the de-
velopment of alternatives which are said to be “more rigorous” than Euclid.
The main development of the present fractional distance analysis will be to
present an alternative set of algebraic constructions and axioms which more
thoroughly preserve the geometric notion that a number is a cut in an infinite
line. We will show that Cantor’s definition of R as the set of all Cauchy equiv-
alence classes of rationals leaves something to be desired with respect to the
underlying conception of R as an open-ended, infinite line (—o00, 00). Namely,
the equivalence class construction of R, which is based on an assumed set of
rational numbers QQ, precludes the existence of a neighborhood of infinity dis-
tinct from any neighborhood of the origin (outlined below), as does the similar
Dedekind cut.

For a finite interval 2" € [0,7), we may use x = tan(z’) to construct the
interval x € [0, 00) wherein everything is usually considered to be a real num-
ber. We will develop the notion of fractional distance to prove that if there
exists a number at the Euclidean midpoint 2’ = 7 of [0, 7), then the bijec-
tivity of the tangent function on [0, 7) should require a real number at the
Euclidean midpoint of [0,00). A proof (Theorem 3.2.2) that there must exist
such a number is the linchpin of everything in this analysis. Indeed, since Eu-
ler himself used this number [5-7], calling it % in his own work, the fractional
distance approach to R presented here should be considered a return to the
old rather than a proposition for something new. Such a number as %
will be said to be a number in the neighborhood of infinity because it will have
non-zero “fractional distance” with respect to infinity. In that regard, we will
say that every number having zero fractional distance with respect to infinity
is a number in the neighborhood of the origin. We will show that the existence
of the neighborhood of infinity is required to preserve Euclid’s conception of a
number as a cut in an infinite line. We will argue that any construction which
preserves the concept of real numbers as cuts in an infinite line is necessarily
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better than one which overwrites that concept.

Treatment of the neighborhood of infinity as a distinct numerical mode with
separate behavior from the neighborhood of the origin is the direct motivator
for everything new reported here. We will posit one very modest change to
Cantor’s Cauchy equivalence class construction such that it will more fully
preserve the favorable notion that R = (—o0, 00). This notion is equivalent to
granting that R has the usual topology. The modified equivalence class con-
struction will give formal constructions for real numbers in the neighborhood
of infinity rather than preclude their existence. With our new constructions
and axioms given, we will present an analysis of R yielding unexpected prop-
erties which are non-trivial and exciting, and then we will give the formal
topology.

In earlier work [8,9], we have demonstrated the existence of real numbers in
the neighborhood of infinity, and we will do so again for the present analysis.
Exceeding the previous work, here we will construct such numbers more or
less directly from Q. Then we will axiomatize the arithmetic of such numbers
and study the consequences which follow.

The structure is as follows.

e Section Two: We give a simple Euclidean definition for real numbers.
These geometric considerations set the stage for the algebraic considera-
tions which follow.

e Section Three: We define and analyze a set of functions called fractional
distance functions. These functions constitute the kernel of the analytical
direction of the present work.

e Section Four: We give the properties of real numbers in the neighborhood
of infinity. The formal algebraic construction of such numbers by
Cauchy sequences is given therein.

e Section Five: We axiomatize a set of arithmetic operations for R and make
a comparison with the similar field axioms. We find they are mostly the
same but slightly different.

e Section Six: We prove some results with the present arithmetic axioms.
Interestingly, we develop a technique by which it is possible to take a limit
at infinity with the ordinary Cauchy prescription for limits: something
that has been considered heretofore impossible.

e Section Seven: This section is dedicated most specifically to the topolog-
ical and generally set theoretical properties of the real number line. The
main thrust is to define a Cantor-like set on R and then to examine its
consequences for the least upper bound property of connected sets.

e Section Eight: We apply the notions and consequences of fractional dis-
tance to the Riemann hypothesis. We show that the Riemann ¢ function
does have non-trivial zeros off the critical line.
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§2 Mathematical Preliminary

§2.1 Real Numbers

In this section, the reader is invited to recall the distinction between the real
numbers R and the real ordered number field R = {R, +, x, <}: real numbers
exist independently of their operations. Here, we define real numbers as cuts
in the real number line pending a more formal, complementary definition by
Cauchy sequences in Section 4, and by Dedekind cuts in Section 7. By defining
a line, giving it a label “real,” defining cuts in a line, and then defining real
numbers as cuts in the real number line, we make a rigorous definition of
real numbers sufficient for applications at any level of rigor. Specifically, the
definition given in this section underpins the Cauchy and Dedekind definitions
given later.

Generally, the definition of real numbers given in the present section is
equivalent to the Euclidean magnitude defined in Euclid’s Elements. Fitz-
patrick, the translator of Euclid’s original Greek in Reference [1], points out
that Euclid’s analysis was deliberately restricted to that which may be mea-
sured with a physical compass and straight edge: what are called the con-
structible numbers. Euclid surely was well aware, however, that the real num-
ber line is of immeasurable, non-constructible length, and that non-construct-
ible numbers exist. The main motivator for the new formalism presented here
is that we would like to consider both measurable and immeasurable magni-
tudes, or constructible and non-constructible numbers, exceeding those which
can be defined in the canonical Cauchy and Dedekind approaches [2, 3].

Definition 2.1.1 A line is a 1D Hausdorff space parameterizable by the iden-
tity map on an unbounded scalar. The interval representation of a line is
(—00,00). In other words, the connected interval (—oo, 00) is an infinite line.

Definition 2.1.2 A number line is a line equipped with a chart = and the
Euclidean metric

d(z,y) =y —=| .
Definition 2.1.3 The real number line is a number line given the label “real.”

Definition 2.1.4 If x is a cut in a line, then
(_007 OO) = (—OO, {E] U (CL’, OO)
Definition 2.1.5 A real number x € R is a cut in the real number line.

Axiom 2.1.6 Real numbers are such that

1
Ve,y e R st. z#y IneN st. |y—x}>—
n
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Neither infinitesimals nor numbers having infinitesimal parts are real numbers.

Axiom 2.1.7 Real numbers are represented in algebraic interval notation as
R = (—o00,0)

In other words, = € R if x is both less than infinity and greater than minus
infinity. The connectedness of R is explicit in the interval notation.

Remark 2.1.8 In Section 4.2, we will supplement Axiom 2.1.7 by giving a
definition in terms of Cauchy equivalence classes. Axiom 2.1.7 is often con-
sidered as lacking sufficient rigor, but the Cauchy definition will remedy any
so-called insufficiencies of the broad generality of Axiom 2.1.7.

Definition 2.1.9 R, is a subset of all real numbers
Ry={z€R| (FneN)[-n<z<n]}

Here, we define Rj as the set of all x € R such that there exists an n € N
allowing us to write —n < x < n. We call this the set of real numbers less
than some natural number (where absolute value is implied.) These numbers
are said to lie within the neighborhood of the origin.

Definition 2.1.10 R, is a subset of all real numbers with the property
R =R\ Ry .

§2.2 Affinely Extended Real Numbers

To prove in Section 3.2 that R, is not the empty set, namely that there are
real numbers larger than every natural number, we will make reference to “line
segments” beyond the simpler construction called “a line.” Most generally, a
line with two different endpoints A and B is a called a line segment AB. We
will use notation such that AB = [a, b] where [a, b] is an interval of numbers.
Nowhere will we require that the endpoints must be real numbers so the in-
terval [a,b] = [—00, 00] will conform to the definition of a line segment. The
real line R together with two endpoints {00} is called the affinely extended
real number line R = [—o0, co]. The present section lays the foundation for an

analysis of general line segments in Section 2.3 by first giving some properties
of R.

Definition 2.2.1 For x € R and n € N, we have the properties

=0t I n—oo

1 n
lim — = diverges , and lim Z k = diverges .
k=1
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Definition 2.2.2 Define two affinely extended real numbers oo such that
for x € R and n, k € N, we have the properties

lim —=+00 , and nh_)HOlo;k:oo

The limit as x approaches zero shall be referred to as “the limit definition of
infinity.” We avoid the appearance of self-reference noting that n — oo means
“as n increases without bound.”

Axiom 2.2.3 The infinite element oo is such that

oo — oo = undefined , and 2 _ undefined .
00

Definition 2.2.4 The set of all affinely extended real numbers is
R=RU{+o0} .
This set is defined in interval notation as

R = [—00, 9]

Remark 2.2.5 If 2, > 0 with {z,} being a monotonic sequence, the co sym-
bol is such that if x,, € R and

lim x, = diverges ,
n—oo

then for the same z,, € R we have

lim x, = oo .
n—oo

Definition 2.2.6 An affinely extended real number x € R is 400, or it is a
cut in the affinely extended real number line:

[—OO, OO] = [—OO, I] U (ZE, OO]
Theorem 2.2.7 If x € R and x # +o0o, then x € R.
Proof. Proof follows from Definition 2.2.4. &

§2.3 Line Segments

In this section, we review what is commonly understood regarding Euclidean
line segments [1]. We begin to develop the relationship between points in
a line segment and cuts in a line. During the analyses which follow in the
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remainder of this work, we will closely examine the differences between cuts
and points as a proxy for the fundamental relationship between algebra and
geometry. Section 3.3 is dedicated specifically to these distinctions though
they are treated throughout this text. The general principle of the distinction
between cuts and points is the following. If x is a cut in a line, then

(—00,00) = (—o0, 2] U (z,00)

If x is a point in a line, then we have a tentative, preliminary understanding
that
<_007 OO) = (—OO, Zl?) U {ZE} U (ZL‘, OO)

Definition 2.3.1 A line segment AB is a line together with two different
endpoints A # B.

Definition 2.3.2 AB is a real line segment if and only if the endpoints A and
B bound some subset of the real line R = (—o0, 00).

Definition 2.3.3 Much of the analysis presented here will depend on rela-
tionships between geometric and algebraic expressions. The = symbol will be
used to denote symbolic equality between geometric and algebraic expressions.

Axiom 2.3.4 A real line segment AB is represented in interval notation as
AB = [a, b] where a and b are any two affinely extended real numbers a,b € R
such that a < D.

Definition 2.3.5 The Euclidean notation AB is called the geometric repre-
sentation of a line segment. The interval notation [a, b] is called the algebraic
representation of a line segment.

Definition 2.3.6 The formal meaning of the relation AB = [a, b] is that a is
the least number in the algebraic representation of A, b is the greatest number
in the algebraic representation of B, and that every other number z in the
algebraic representation of any point in AB has the property a < z < b.

Axiom 2.3.7 If AB and AC' are two colinear line segments such that A is
not between B and C', then

AB=AC <= B=C(C .

Axiom 2.3.8 Two line segments AB and C'D are equal, meaning AB = CD,

if and only if
AB CD

CD  AB
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Definition 2.3.9 AB is a special label given to the unique real line segment
AB = [0, 00]. We have

AB=AB <<= AB=]0,00]

Definition 2.3.10 X is an interior point of AB if and only if
X#A , X#B , and X eAB .

Axiom 2.3.11 If X is an interior point of AB, then
AB=AX+XB .

Axiom 2.3.12 Every geometric point X along a real line segment AB has
one and only one algebraic interval representation 2. If 2 is the algebraic
representation of X, then X = 27, and 2 is a unique subset of [a,b] = AB.

Remark 2.3.13 Axioms 2.3.4 and 2.3.12 establish that line segments and
points in line segments have algebraic representations

AB=la,b] , and AB>X =2 C [a,}l]

It will be a main result of the fractional distance analysis to show that the
infinite length of a line segment such as AB = [0, oo will allow us to put more
than one number into the algebraic representation 2~ of a geometric point X.
If a line segment has finite length L € Ry, we will show that there is at most
one real number in the algebraic representation of one of its interior points.
However, this constraint will vanish in certain cases of len(AB).

Definition 2.3.14 The algebraic representation 2 of a geometric point X
lying along a real line segment AB is

2 =[x1,25] , where 1,79 €ER .
The special (intuitive) case of x; = x5 = x gives
X =[rx]={z} =z .

Here, we have expressed 2 with included endpoints x; and z5. Most generally,
however, an algebraic representation of a geometric point is a single number,
or it is some interval of numbers, i.e.: all variations of (z1,xs), (21, zs], and
[x1,x9) are allowable algebraic representations of X. We do not require that
1 # To in all cases.

Remark 2.3.15 A point in a line segment has a representation as a set of
numbers, possibly only one number, and it remains to identify the exact re-
lationship between numbers (cuts) and geometric points. The key feature of
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Definition 2.3.14 is that it allows, provisionally, a many-to-one relationship
between cuts in lines (algebraic) and points in line segments (geometric). In
Section 3.3, we will strictly prove that which has been suggested: the algebraic
representation of X € AB is only constrained to be a unique real number for
certain cases of AB with finite length.

Definition 2.3.16 If X = 2" = [z, 25| with 1 # x9, and if z € [z, 23],
then z is said to be a possible algebraic representation of X. If 1 = x5 = z,
then x is said to be the algebraic representation of X. If x is the algebraic
representation of X, then x = X. If x is a possible representation of X, then
x € X, i.e.: if x is a possible algebraic representation of X, then

re X =z, =X .

This statement may be abbreviated as x € X, while x = X specifies the case
of x1 = x9. We will also write x € X when it is uncertain if z; is equal to xs.

Definition 2.3.17 A point C'is called a midpoint of a line segment AB if and
only if

AC  CB 1

AB  AB 2
Alternatively, C' is a midpoint of AB if and only if

AC=CB , and AC+CB=AB .

Definition 2.3.18 Hilbert’s discarded axiom [4] states the following: any four
points {A, B, C, D} of a line can always be labeled so that B shall lie between
A and C and also between A and D, and, furthermore, that C shall lie between
A and D and also between B and D.

Remark 2.3.19 Hilbert’s discarded axiom is discarded not because it wrong,
but rather because it is implicit in Hilbert’s other axioms [4]. It is discarded
by redundancy rather than invalidity.

Theorem 2.3.20 All line segments have at least one midpoint.

Proof. Let there be a line segment AB and two circles of equal radii centered
on the points A and B. Let the radii be less than AB but great enough
such that the circles intersect at exactly two points S and T. The geometric
configuration shown in Figure 1 is guaranteed to exist by Hilbert’s discarded
axiom pertaining to {A, X1, X3, B}. By construction, it follows that

AS =AT =BS =BT .
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Figure 1: This figure proves that every line segment AB has one and only one midpoint.

Let the line segment ST intersect AB at C. By the Pythagorean theorem, C'
is a midpoint of AB because

AC?* +CS* = AS* | and BC? + C0S? = BS* |

together yield
AC = BC .

C separates AB into two line segments so
AC+CB=AB .

These two conditions, AC' = BC and AC' + CB = AB, jointly conform to
Definition 2.3.17, so C'is a midpoint of an arbitrary line segment AB. &

Example 2.3.21 Theorem 2.3.20 regards an arbitrary line segment AB. The-
refore, the theorem holds in the case of an arbitrary line segment AB. One
might be afflicted, however, with the assumption that it is not possible to
define two such intersecting circles centered on the endpoints of an arbitrary
line segment such as AB = [0, cc]. To demonstrate how the arbitrary case of
any line segment AB covers the specific case of AB, suppose AB = [0, 7], and
let 2/ € 2 be a number in the algebraic representation of X € AB. We say
that [0, 7] is the algebraic representation of AB charted in 2’. Let = be such
that
r = tan(x') ,

so that x and x’ are two charts related by a conformal transformation. Using
T
tan(0) =0 , and tan (§> =00 ,
where the latter follows from Definition 2.2.2; it follows that [0, 00| is the

00
algebraic representation of AB charted in x. Therefore, AB = AB with
respect to the x chart.
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Hilbert’s discarded axiom guarantees the existence of two points X; € AB
and Xy € AB with algebraic representations 27 and 2, such that, for exam-
ple,

x;:%eﬁﬁq’, and x’zzgec%’.

If the radius of the circle centered on A is AX5 and the radius of the circle
centered on B is BXj, then it is guaranteed that these circles will intersect
at two points S and T, as in Figure 1. Since AB = AB in the z chart, it
is required that X; € AB and X, € AB. Therefore, circles centered on the
endpoints of AB with radii AX, and BX; will intersect at exactly two points.
The chart on the line segment cannot affect the line segment’s
basic geometric properties! It is unquestionable that the points X; and
X5 exist and are well-defined in the 2’ chart, and it is not possible to disrupt
the geometric configuration by introducing a second chart onto AB. A chart
can no more disrupt the geometric configuration than erasing an island from
a map might make the physical island disappear from the sea. X; and X5 do
not cease to exist simply because we define a conformal chart = = tan(z’). If
they ceased to exist, then that would violate Hilbert’s discarded axiom. This
example demonstrates that Theorem 2.3.20 is valid even for the specific case
of the infinite line segment AB = AB.

Theorem 2.3.22 All line segments have one and only one midpoint.

Proof. For proof by contradiction, suppose C' and D are two different midpoints
of a line segment AB. C' and D are midpoints of AB so we may derive from
Definition 2.3.17

AB AB

It follows that AC' = AD. By Axiom 2.3.7, therefore, C' = D, and we invoke
a contradiction having assumed that C' and D are different. &

§3 Fractional Distance

§3.1 Fractional Distance Functions

If there are two circles with equal radii whose centers are separated by an infi-
nite distance, then what numerical radii less than infinity will allow the circles
to intersect at exactly two points? To answer this question, we will introduce
fractional distance functions. We will use these functions to demonstrate the
existence of real numbers in the neighborhood of infinity.

Definition 3.1.1 For any point X on a real line segment AB, the geometric
fractional distance function Dyp is a continuous bijective map

Dip(AX): AB — [0,1] |

10
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which takes AX C AB and returns real numbers. This function returns AX
as a fraction of AB. Emphasizing the geometric construction, the geometric
fractional distance function Dyp is defined as

1 for X =18
AX
Dap(AX) = B for X#A X+#B
0 for X=A

The quotient of two real line segments is defined as a real number.

Remark 3.1.2 The domain of Dyp(AX) is defined as subsets of real line
segments. This allows AX = AA which would be excluded from a domain of
real line segments because AA does not have two different endpoints.

Theorem 3.1.3 For any point X € AB, the bijective geometric fractional
distance function Dap(AX) : AB — R has range R = [0, 1].

Proof. Assume Dyp(AX) < 0. Then one of the lengths in the fraction must be
negative and we invoke a contradiction with the length of a line segment defined
as a positive number (Definition 2.1.2). If Dyp(AX) > 1, then AX > AB, and
we invoke a contradiction by the implication AX ¢ AB. We have excluded
from R all numbers less than zero and greater than one. Since Dyp(AX) is
a continuous function taking the values zero and one at the endpoints of its
domain, the intermediate value theorem requires that the range of Dyp(AX) :
AB — Ris R=[0,1]. &

Corollary 3.1.4 All line segments have at least one midpoint.

Proof. (Reproof of Theorem 2.3.20.) Dap(AX) is a continuous function on the
domain AB taking finite values zero and one at the endpoints of its domain.

By the intermediate value theorem, there exists a point C' in the domain AB
for which Dyp(AC) = 0.5. By Definition 2.3.17, C' is a midpoint of AB. &

Theorem 3.1.5 Every midpoint of a line segment AB is an interior point of
AB.

Proof. If X € AB is not an interior point of AB, then X = Aor X = B. In
each case respectively, the geometric fractional distance function returns

DAB(AA) =0 y or DAB(AB> =1 .
A point C'is a midpoint of AB if and only if
Dap(AC) =05 .

11
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No midpoint can be an endpoint. &

Remark 3.1.6 Given the geometric fractional distance function, it is not clear
how to compute Dap(AX) when X is an arbitrary interior point. By Defini-
tion 3.1.1, we know that the fraction ﬁ—)]; is a real number but we have not
yet developed any tools for finding the numerical value. The quotient nota-
tion required for computing fractional distance calls for an algebraic notion of

distance.

Definition 3.1.7 Dj‘ g is the algebraic fractional distance function. It is an
algebraic expression which totally replicates the behavior of the geometric
fractional distance function Dyp on an arbitrary line segment AB = [a, b], and
it has the added property that its numerical output is easily simplified. The
algebraic fractional distance function D}, is constrained to be such that

Dl L (AX) = Dyp(AX)

for every point X € AB.

Remark 3.1.8 In Definitions 3.1.9 and 3.1.11, we will define two kinds of
algebraic fractional distance functions (FDFs). The purpose in defining two
kinds of FDFs will be so that we may compare their properties, and then choose
the one that exactly replicates the behavior of the geometric FDF Dyp.

Definition 3.1.9 The algebraic FDF of the first kind
Dyp(AX): AB — [0,1] ,

is a map on subsets of real line segments

1 for X =208
AX||
Dy y(Ax) = 14X X#£A X#£B
|AB|
0 for X=A
where
|AX ]| B len[a, z]
|AB]|| ~ lenla, b]

and [a,z] and [a,b] are the line segments AX and AB expressed in interval
notation.

Definition 3.1.10 The norm ||AX || = len[a, ] which appears in D)) 5(AX) is
defined so that
D) p(AX) = Dyp(AX)

12
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Specifically, the length function is defined as the Euclidean distance between
the endpoints of the algebraic representation. Per Definition 2.1.2, we have

len[a,b] = d(a,b) = |b—a| .

Definition 3.1.11 The algebraic fractional distance function of the second
kind
Dip(AX) : [a,b] — [0,1]

is a map on intervals of the form

1 for X =B
1
Dip(AX) = M for X#A X#B
len[a, b]
0 for X=A

Remark 3.1.12 Take note of the main difference between the two algebraic
FDFs. The first kind has a geometric domain

Dyp(AX): AB—-R |,
but the second kind has an algebraic domain
Digp(AX) :[a,b] > R .

As a matter of consistency of notation, we have written D} 5(AX) even when
the notation D’;5([a,z]) might better illustrate that the domain of D}, is
intervals rather than line segments. The reader is so advised.

Axiom 3.1.13 The ordering of R is such that for any z,y € R, if

we[xlaxz]:‘%'EX ) and ye[ylayQ]:@EY )

then
Dap(AX) > Dap(AY) — x>y .

Theorem 3.1.14 The geometric fractional distance function Dap is injective
(one-to-one) on all real line segments.

Proof. By Definition 3.1.1, the geometric FDF is

1 for X =18
AX
Dap(AX) = B for X#A X+#B
0 for X=A

13
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For proof by contradiction, assume Dyp is not always injective. Then there
exists some X; # X, such that

AX, AX,

AB ~ AB

The range of Dyp is [0, 1], and it is known that all such 0 < z < 1 have an
additive inverse element. This allows us to write

AX, AX AXy — AX

0="2 1= L = AX, = AX,

AB AB AB
Axiom 2.3.7 gives AX = AY if and only if X =Y, so the implication X; = X5
contradicts the assumed condition X; # Xs. The geometric fractional distance
function Dap(AX) is injective on all real line segments. &

Remark 3.1.15 In Theorem 3.1.14, we have not considered specifically the
case in which AB is a line segment of infinite length. There are many numbers
x1 and x5 such that zero being equal to their difference divided by infinity does
not imply that x1 = x5, e.g.:

0="—"2 <& 5=3. (3.1)

However, Dap(AX) does not have numbers in its domain. The fraction in
Equation (3.1) can never appear when computing 45 because Dyp(AX) takes
line segments or simply the point A (written as AA in abused line segment
notation.)

To be clear, simplifying the expression Dyp(AX) in the general case re-
quires some supplemental constraint like AB = cAX for some scalar c. In the
Euclidean program, constraints in this form might pertain to ratios of marks
on a measuring stick. With a such a constraint in place, either algebraic or
geometric, and by way of Axiom 2.3.8, we may evaluate the quotient as

AX  cAB

AB  AB
Without such auxiliary constraints, we have no general method for the evalu-
ation of the quotient. Theorem 3.1.14 holds, however, because numbers such
as the oo in the denominator of Equation (3.1) will be used only to compute
D! 5(AX) when we introduce the norm ||AX||. The main feature distinguish-
ing the algebraic FDF Djm from the geometric FDF D,p is that the former

allows us to compute the quotient in the general case with no requisite auxil-
iary constraints. Therefore, we might write D} ,(AX;z) to show that is is a

function of AX and a chart z on AB, or Dl ,([a,z]; z) as mentioned earlier.
However, we will not write that explicitly. In the absence of words to the
contrary, and if AB is a real line segment, then it should be assumed that the
chart is the standard Euclidean coordinate.

14
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Theorem 3.1.16 The geometric fractional distance function Dag is surjective
(onto) on all real line segments.

Proof. Given the range R = [0, 1] proven in Theorem 3.1.3, proof follows from
the notion of geometric fractional distance. &

Remark 3.1.17 Now that we have shown a few of the elementary properties
of the geometric FDF, we will continue to do so and also examine the similar
behaviors of the algebraic FDFs of the first and second kinds.

Conjecture 3.1.18 The algebraic fractional distance function of the first kind

D)5 is injective (one-to-one) on all real line segments. (This is proven in
Theorem 6.1.4.)

Theorem 3.1.19 The algebraic fractional distance function of the second kind
Dl is not injective (one-to-one) on all real line segments.

Proof. Recall that Definition 3.1.11 gives D4y : [a,b] — [0, 1] as

1 for X =B
1
piyax) =4l v L4 x 2
len|a, b]
0 for X=A
Injectivity requires that
Dip(AX) = DiplAY) = [aal=layl <> a=y .

Let n,m € N be such that n # m and also such that n € 4 = N and
m € # = M. We have

len[0, n]

len[0, 0o

1
=0, and DXB(AM):M:O

Dig(AN) =
an(AN) len[0, oo

Therefore, the algebraic FDF of the second kind is not injective on all real line
segments because

Dig(AN) =Diz(AM) <~ n=m . &

Remark 3.1.20 At this point, we can rule out D4, as the definition of D},
because the geometric FDF D4p which constrains DI‘ p 1s one-to-one. If Dyp

is one-to-one on all real line segments, then so is D} .
Carefully note that the domain of the algebraic FDF of the first kind is line
segments rather than algebraic intervals. We have

D,p(AX): AB = [0,1] , and  DIg(AX):[a,0] — [0,1]

15
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Taking for granted that we will prove the injectivity of D)z in Theorem 6.1.4,
this distinction of domain—AB versus [a, b]—will prohibit the breakdown in
the one-to-one property when a point X € AB can have many different num-
bers in its algebraic representation. An assumption that the domain of the
algebraic FDF is an algebraic interval [a,b] is likely a root cause of much
pathology in modern analysis.

Theorem 3.1.21 The geometric fractional distance function Dapg is continu-
ous everywhere on the domain AB.

Proof. To prove that D4 is continuous on AB = [0, oo}, it will suffice to show
that Dag is continuous at the endpoints and an interior point.

e (Interior point) A function f(z) is continuous at an interior point x of its
domain [a, 0] if and only if

lim f(z) = f(zo)

T—TQ

In terms of the geometric FDF, the statement that Dag is continuous at an
interior point Xy € AB becomes

lim DAB(AX) = DAB(AX()) .

X—)Xo

Obviously, Dag satisfies the definition of continuity on the interior of AB.

e (Endpoint A) A function f(x) is continuous at the endpoint a of its domain
la, b] if and only if

lim f(z) = f(a) .

r—a

We conform to this definition of continuity with

XILITAIJF DAB (AX) XILH,}Jr E AB = DAB (AA) .

e (Endpoint B) A function f(z) is continuous at the endpoint b of its domain
la, b] if and only if
lin f(z) = 1(0) -

r—b~

We conform to this definition with

AX AB
lim Dap(AX lim — = Das(AB) .
Py An(AX) = X OB AB AB an(AB)
The geometric FDF is continuous everywhere on its domain. &

Theorem 3.1.22 The algebraic fractional distance function of the first kind
D)5 is not continuous everywhere on the domain AB.

16
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Proof. A function f(x) with domain x € [a, b] is continuous at b if

lim f(z) = f(b) -

r—b—

In terms of D)z, the statement that Dy g is continuous at B becomes

lim Dyg(AX) =Dys(AB) =1 .

X—B
Evaluation yields
len[0 1
lim Dy (AX) = tim ~20% 2 b i 021 = Dl (4B)
X—B T—00 len[(), oo] T—=00 OO T—00

The algebraic FDF of the first kind is not continuous everywhere on all real
line segments. &

Remark 3.1.23 In Theorem 3.1.22, we have shown that the limit approaches
zero rather than the unit value required for D} 5 (AB) to agree with Dag(AB).
However, we may also write this limit as

. . . 1 00
lim —z = lgn — = lim co— = — = undefined .
X (oo}
T—00 00 y—oo Yy Yy—oo Yy o0

Perhaps, then, it would be better to write simply

r o0
lim — = — = undefined # 1 .
r—00 OO x0
In any case, we have shown that an elementary evaluation does not produce
the correct limit at infinity. Therefore, we should also examine the Cauchy

definition of the limit relying on the -9 formalism.

Theorem 3.1.24 The algebraic fractional distance function of the first kind
D) does not converge to a Cauchy limit at infinity.

Proof. According to the Cauchy definition of the limit of f : D — R at infinity,
we say that
lim f(x)=1 |,

T—r00
if and only if
Ve>0 30>0 st. VeeD |,

we have
0<|z—oc|<d = |[fla)-1I]<e .

Since ¢ and § are implicitly real-valued, there is no 6 > oo. Thus, D)z(AX)
fails the Cauchy criterion for convergence to a limit at infinity. &

17
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Remark 3.1.25 In general, the above Cauchy definition of a limit fails for any
limit at infinity because there is never a ¢ greater than infinity. Usually, this
issue is worked around with the metric space definition of a limit at infinity,
but it is a main result of this analysis that we will develop a technique
for taking a limit at infinity with the normal Cauchy prescription. This result
appears in Section 6.1.

Remark 3.1.26 The algebraic FDF DIL p exists by definition. It is a function
which has every behavior of the geometric FDF D,p and also adds the ability
to compute numerical ratios between the lengths of any two real line segments.
Numbers being generally within the domain of algebra, the geometric FDF
returns a fraction that we have no general way to simplify. Since it is hard
to conceive of an irreducible analytical form for the algebraic FDF other than
D)5 and D) g, it is somewhat paradoxical that neither of them replicate the
global behavior of the algebraic FDF Dj‘B. However, after developing some
more material, we will show in Section 6.1 that D}, is D} after all. We will
prevent an unwarranted assumption about infinity from sneakily propagating
into the present analysis. Then we will fix the discontinuity of D)z which we
have demonstrated in Theorems 3.1.22 and 3.1.24.

Theorem 3.1.27 If x is a real number in the algebraic representations of both
X eAB andY € AB, then X =Y.

Proof. If X # Y, then
Dip(AX) # Dlp(AY)

If x € X and x € Y, then it is possible to make cuts at X and Y such that

len[a, x|
Dip(AX) = — = = Dj5(AY)
len[a, b]
This contradiction requires X =Y. &

§3.2 Comparison of Real and Natural Numbers

The main result of this section is to prove via analysis of FDF's that there exist
real numbers greater than any natural number. Consequently, R,, = R\ Ry
cannot be the empty set.

Definition 3.2.1 Every interval has a number at its center. The number at
the center of an interval [a, b] is defined as the average of a and b if an average
can be computed. Likewise, the number in the center is the unique number ¢
such that

la,b] = [a,c] U (c,b] , and len[a, ¢] = len|c, b]
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Theorem 3.2.2 There exists a unique real number halfway between zero and
nfinity.

Proof. By Theorem 2.3.22 and Definition 2.3.17, there exists one midpoint C'
of every line segment AB such that
Dap(AC) =05 .

Recalling that we have defined Dyp(AX) = Di,(AX) for all X € AB, and
recalling that AB = [0, o¢], it follows that

Dip(AC) =05 .
Using C' = € = [¢1, ¢2], Axiom 2.3.11 and Definition 2.3.14 require
AB=AC+CB <= [0,00]=][0,¢1)U% U (cq,0]

It follows that
% CR .

Every possible number that can be in the algebraic representation of the point
C' is a real number. If ¢; = ¢; = ¢, then ¢ € R is the unique real number
halfway between zero and infinity. If ¢; # ¢, then, by Definition 3.2.1, the
number at the center of [c, ¢z] is the unique real number halfway between zero
and infinity. &

Remark 3.2.3 How can D} 5(AC) = 0.5 when Definition 3.1.9 gives

len|0, (]
00

Dyp(AC) = ?

The prevailing assumption about infinity is

reR = —=0. (3.2)
00
If Equation (3.2) is true, then either (i) there exists a line segment without a
midpoint, or (i) the geometric and algebraic fractional distance functions do
not agree for every X in an arbitrary AB.

Every line segment does have a midpoint (Theorem 2.3.22), and our frac-
tional distance functions are defined to always agree (Definition 3.1.7). There-
fore, Equation (3.2), which is a statement dependent on the assumed properties
of oo, must be reformulated. In Section 4.1, we will define notation for subsets
of R consisting of all numbers having fractional distance X with respect to
AB, meaning that == = X'. The sets will be labeled Ry most generally with
0 < X < 1, but it will follow that RY is the set of all real numbers having
zero fractional distance with respect to AB. We know that Ry C R, but it
shall remain to be determined whether or not there are real numbers greater
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than any natural number yet still having zero fractional distance with respect
to AB. In Section 7.4, we will closely examine whether or not such numbers
ought to exist.

While we will postpone the definition of R{ to Section 4.1, and while the
formal construction of Ry by equivalence classes of Cauchy sequences will not
appear until Section 4.2, here we will go ahead and answer the question, “How
can D} 5(AC) = 0.5 when Definition 3.1.9 gives

len[0, ¢|

DAB (AO) = o

?77

The answer is that Equation (3.2) must be reformulated as

rER) = =0,
00
if we are to avoid harsh contradictions in the definitions of our FDFs. Regard-
ing Theorem 3.2.2 and the present question which follows, the real numbers
in the algebraic representation of the geometric midpoint of AB shall be

reRY <= = =05
00
In addition to motivating the soon-to-be-defined R{ notation, the present
remark illustrates the reasoning behind allowing geometric points to be rep-
resented as entire intervals X = 2. The reason is that many real numbers
divided by infinity give zero but only the geometric left endpoint of AB will
have vanishing fractional distance. For instance, if x € R}® and n is a natural
number having zero fractional magnitude with respect to infinity, then
r+n T

Y _0540=05 .
o0 (0.¢} (0.8}

Obviously, x € R%® is not a unique number though the midpoint C' is a unique
point.

Definition 3.2.4 If RY is the set of all numbers whose fractional distance
with respect to AB is X, and if 0 < X < 1, then Ry is the number in the
center of the interval representation of Ry .

Remark 3.2.5 The reader is invited to recall that Euler often employed the
letter ¢ to refer to an infinitely large integer, and that Euler made use of the
number % for proofs in his most seminal works [5-7]. Therefore, we introduce
nothing new with the Ny notation because % ~ Ny 5.

Main Theorem 3.2.6 Some elements of R are greater than every element of
N.
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Proof. Let AB have a midpoint C' so that Dag(AC) = 0.5. Then every real
number ¢ € [c1,c] = C is greater than any n € N because = = 0 implies
n € o = A through the definition Dag(AA) = 0. Dap is one-to-one, so, by

Axiom 3.1.13 giving for x € X and y € YV
Dap(AX) > Dyp(AY) = 1>y ,

we find that every ¢ € ¥ C R is greater than every n € N. Generally, every
r € RY is greater than any natural number whenever X > 0. &

Corollary 3.2.7 R, =R\ Rq is not the empty set.

Proof. Definition 2.1.9 defines R as the subset of R whose elements are less
than some element of N. We have proven in Main Theorem 3.2.6 that some
elements of R are not in Ry. It follows that R, # @. &

§3.3 Comparison of Cuts in Lines and Points in Line Segments

In this section, we will make clarifications regarding the cases in which an
interior point of a line segment can or cannot be uniquely identified with a
single real number. Namely, we distinguish cases in which X = x and those
in which X = 2" =[xy, 25| with 21 # 5.

Theorem 3.3.1 If AB is a real line segment of finite length L € Ry, then
every point X € AB has a unique algebraic representation as one and only
one real number.

Proof. Let a,b € Ry and AB = [a,b]. The algebraic FDF D}, is defined to
behave exactly as the geometric FDF Dyp, so, therefore, D{Z 5 must be one-to-
one (injective). By Definition 2.3.14, every point in a real line segment has an
algebraic representation

X=2 = [ZEl,l’Q]

Therefore, the present theorem will be proven if we show that x; = x5 for all
X € AB with L € Ry. To initiate proof by contradiction, assume 1, x5 € Rq
and 1 # xo. (The validity of this condition follows from L € Ry.) Then

: len[a,z1] 21 —a
Dl (AX)] = ak TR ,
min[Dls(AX)] = Th G = G
and len| |
Dt (axy - enla,z2] _ 22 -a
max[Dlp(AX)] = T = T

The one-to-one property of Djl p requires that
Iy —a . To — Q

b—a b—a

S Tl = Ty .
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This contradicts the assumption x; # 5. The theorem is proven. &

Theorem 3.3.2 If AB is a real line segment of infinite length L = oo, then
no point X € AB has a unique algebraic representation as one and only one
real number.

Proof. By Definition 2.3.14, every point in a line segment has an algebraic
representation

X = %2 = [11, 2]

It follows that

_ len[0,z1] =
Dl (AX)] = — 1 =L
min[Dy g (AX)] len[0,00] 0

Y

Now suppose that xo € Rd where the superscript “+” indicates the positive-
definite subset. Further suppose z = 1 4+ xg so that z > x1. Then

len|0
en[ 7Z] _ i _ M — 1 = min[DAB(AX)]
len[0,00] o0 o0 o0

Invoking the single-valuedness of bijective functions, we find that

min[D} 5 (AX)] = max[D} 5 (AX)] = 2o 11 <z<x9 .
00
Therefore, x1 # x9, and the theorem is proven. &

Example 3.3.3 This example illustrates some of the underlying machinations
associated with the many-to-one relationship between numbers and points in
an infinitely long line segment. If we separate an endpoint from a closed
interval of numbers, we may write

[a,b] = {a} U (a,b)
To separate an endpoint from a line segment, we write
AB=A+ AB .

If A has an algebraic representation 27 such that len(.2?) > 0, then the only
way that we can leave the length of AB unchanged after removing A is for
AB to have infinite length. Given len(.2/) > 0, observe that

|AB| ~len(s) = |AB| = [ AB|=oco .

Remark 3.3.4 Theorems 3.3.1 and 3.3.2 do not cover all cases of len(AB) =
L. For instance, four coarse bins of L are

o L €Ry
e L € R} \ Ry (L larger than any n € N yet not so large that £ > 0.)
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o L € R\ R} (This is also written L € {RY} URY when {R{} is the set
of all RY such that 0 < X < 1, as in Section 4.1.)

o L=

We have not considered the two intermediate cases of finite L, the lesser of
which is finite L € RY \ Ry. Since we have not yet introduced any numbers
with which to describe this case, and since we will not decide R} \ Ry = @
until Section 7.4, we cannot at this time prove the result regarding the multi-
valuedness of points in line segments having L € R} \ Ry. The limit of the
third case as L € {RY } UR} is proven to be many-to-one in Theorem 6.2.1.

§4 The Neighborhood of Infinity

§4.1 Intermediate Neighborhoods of Infinity

In this section, we will develop notation useful for describing real numbers
whose fractional magnitude with respect to infinity is greater than zero.

Definition 4.1.1 The number Ry is defined to have the property

My
00

Equivalently, if Ny € 2" = X € AB, then
Dap(AX) =X .

Remark 4.1.2 We have shown in Theorem 3.3.2 that there are many real
numbers in the algebraic representation of X € AB. When X is not an
endpoint of AB, Ny can be thought of the as the number in the center of
the interval (z1,29) = 2 = X. Definition 3.2.1 defines the number in the
center of 2" as the average of x; and x5 if the average is computable, but,
as yet, we have no way to determine the numbers that bound the algebraic
representation of X. This also makes it impossible to compute the length
function. However, we will determine and analyze the bounds of the algebraic
representation of X € AB in Section 7.5. For the special cases of Ny and Ny,
we should not think of them as being in the centers of the intervals o/ = A
and # = B. Instead, N; is the least number in & = A € AB, and ¥, is the
greatest number in 4 = B € AB.

Definition 4.1.3 For 0 < X < 1, RY is a subset of positive real numbers R™
such that

Ry = {Nx+0b|[b] € A€ AB, Dap(4A) =0} .

The set Ry is called the whole neighborhood of Ry. The set {R{} of all
Ry, meaning the union of R{ for every 0 < X < 1, is called the set of
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all intermediate whole neighborhoods of R. We will also call Ry the whole
neighborhood of numbers that are 100 x X% of the way down the real number
line. (These conventions ignore the negative branch of R.)

Definition 4.1.4 Given 0 < X < 1, it will also be useful to define a set
RY C Ry such that
Ry = {Rx+b|beRy} .

The set Ry is called the natural neighborhood of Ry because we have con-
strained b to be less than some n € N. {RY} is the union of Ry for every
0<X <1

Definition 4.1.5 Every number of the form z = Ny + b has a big part Ny
and a little part b. It is understood that b < Ny for any A > 0. We define
notations

Big(Ry +0) =Ry , and  Lit(Ry +b) =10 .

Remark 4.1.6 We have omitted from Definitions 4.1.3 and 4.1.4 the cases of
X =0and X = 1, though they do follow more or less directly. The main issue
is that we must restrict the sign of b to keep the elements of the set within the
totally real interval [0,00) C R. The little part b is non-negative for X = 0,
and it is negative-definite for X = 1.

The difference between the natural neighborhoods Ry and the whole neigh-
borhoods Ry is that b is not restricted to Ry in the latter. In Definition 4.1.4,
we did not give the condition on b in terms of the absolute value, as in Defini-
tion 4.1.3, because Ry contains negative numbers while b € A € AB = [0, ]
is strictly non-negative. The main purpose in defining distinct sets {Ry } and
{R{Y} is this: we know that there exist numbers larger than any b € Ry (Main
Theorem 3.2.6), but we do not know if all such numbers have greater than zero
fractional magnitude with respect to AB. We will revisit this issue in Section
7.4. In the meantime, we will be careful to treat RY and Ry as distinct sets
which may or may not be equal.

Definition 4.1.7 The whole neighborhood of the origin is
Ry={z|zecoa=AcAB} ,
and the natural neighborhood of the origin is

Ry ={z |z €Ry, >0} ,

Remark 4.1.8 Note that Ry € R) C RY} because Ry contains positive and
negative numbers, as per Definition 2.1.9.
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Definition 4.1.9 A real number z is said to be in the neighborhood of the
origin if and only if

reX , and Dap(AX) =0 .

All such numbers are said to be z € RY. Every real number not in the
neighborhood of the origin is said to in the neighborhood of infinity. A positive
real number x is said to be in the neighborhood of infinity if and only if

reX , and  Dap(AX)#0 .

Remark 4.1.10 Definition 2.1.10 states that R,, = R\ Ry. Therefore, if
R{\RY # @, meaning that there do exist real numbers greater than any natural
number yet not great enough to have non-zero fractional distance with respect
to AB, then the set R, will contain numbers in the neighborhood of the origin
and numbers in the neighborhood of infinity. To avoid ambiguity, we will not
use the symbol R,,. Instead, we will mostly use the detailed Ry and Ry set
enumerations given in the present section. With this scheme of distinct whole
and natural neighborhoods, we have left room judiciously for numbers in the
neighborhood of the origin that are still larger than any natural number. In
other work [8,9], we have used the semantic convention that every number
in the neighborhood of the origin is less than some natural number, and that
meant that Ry was the set of all real numbers in the neighborhood of the
origin. The present convention, however, is better suited to the fuller analysis
given here. The reader should carefully note that the present neighborhood of
the origin RY includes all numbers which have zero fractional distance along
the real number line, even if some of those numbers are larger than any n € N.

Definition 4.1.11 The ¢-neighborhood of a number x € R is an interval
(x—0,x+6) or some closed or half-open permutation thereof. While there is no
inherent constraint on the magnitude of §, here we will take “d-neighborhood”
to imply 0 € Ry. We will use the convention that the Ball function defines an
open d-neighborhood as

Ball(z,d) = (x — 0,2 +0) .
Definition 4.1.12 The d-neighborhood of an interior point X € AB is a line
segment Y Z where
|DaB(AX) — Dap(AY)| = |Dap(AX) — Dap(AZ)| =6 .
Remark 4.1.13 Without regard to the §-neighborhood of any point or num-
ber, we have defined neighborhoods of fractional distance with the geometric

FDF, as in Definition 4.1.9. If Dag(AX) = 0, then the numbers in the al-
gebraic representation of X are said to be in the neighborhood of the origin.
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They are said to be in the neighborhood of infinity otherwise. Neither of
these neighborhoods, neither that of the origin nor that of infinity, are de-
fined formally as d-neighborhoods, though such a definition may be inferred.
In advance of the following definition for RY (Definition 4.1.14), recall that
Definition 3.2.4 gave Ry as the number in the center of the interval RY = (a, ).

Definition 4.1.14 An alternative definition for RY valid in the neighborhood
of infinity, specifically for 0 < X < 1, is

Ry ={Nx£b|beRY} .

This definition is totally equivalent to Definition 4.1.3.

§4.2 Equivalence Classes for Intermediate Natural Neighborhoods
of Infinity

Euclid’s definition of R is inherently a geometric one based on the measurement
of quantity. The purpose of Cantor’s definition by Cauchy equivalence classes
[2,10-12] is to give an algebraic definition based on rationals. In this section, we
will append the algebraic Cauchy definition to the Euclidean definition given
in Section 2.1. This totally algebraic hybrid construction will not unduly
exclude the neighborhood of infinity from R. We have shown that if every
number in the interval (—oo,00) is to be a real number, then there must
exist numbers such as Ny5 which are greater than any natural number. In
its ordinary incarnation, however, the Cauchy definition of R contradicts the
axiom that R = (—o00, 00) because it precludes the existence of numbers larger
than any natural number. In this section, therefore, we will modify the Cauchy
definition so that it will support the underlying geometric construction and
facilitate the algebraic construction of numbers in the neighborhood of infinity.
We will only construct the natural neighborhoods here because the equality
or inequality of RY and Ry is not treated until Section 7.4.

Definition 4.2.1 The rational numbers Q are an Archimedean number field
satisfying all of the well-known field axioms given in Section 5.4.

Definition 4.2.2 A sequence {z,} is a Cauchy sequence if and only if

Voe@Q dm,n,NeN st. mn>N — ‘wn—xm|<5.

Definition 4.2.3 We say a relation is an equivalence relation if and only if
(i) Sis a set, (i1) every x € S is related to x, meaning the relation is reflexive,
(#ii) for every z,y € S, the relation of x to y implies the relation of y to z,
meaning the relation is symmetric, and (iv) for every x,y, z € S, the relation
of x to y and the relation of y to z together imply the relation of x to z,
meaning the relation is transitive. The equivalence class of x € S, namely the
set of all objects which are related to x by an equivalence relation, is denoted
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[z]. At times we will write [z] = [{z,}] or [z] = [(x,)] to emphasize that the
equivalence relation is among Cauchy sequences where {z,,} and (z,,) have the
same meaning.

Definition 4.2.4 Cj is the set of all Cauchy sequences of rational numbers.

Remark 4.2.5 Usually the Cauchy construction of R is formulated as, “Every
x € R is some Cauchy equivalence class [z] C Cg,” but here we will take a
slightly different approach.

Axiom 4.2.6 Every x € R may be constructed algebraically as (¢) the value
of a function f([X], [b]) where [X], [b] € Cq, or (ii) a partition of that function’s
range.

Axiom 4.2.7 Every x € Ry C R is a Cauchy equivalence class of rationals
x = [z] C Cp and also a Dedekind partition of Q in canonical form = = (L, R).
(Dedekind cuts are defined in Section 7.5.)

Remark 4.2.8 Axiom 4.2.7 grants that the reals are constructed by Cauchy
equivalence classes or Dedekind partitions (cuts) in the most canonical sense &f
one takes the complementary axriom that every real number is less
than some natural number. We do not take that axiom, so we specify
x € Ry as the object of relevance.

Remark 4.2.9 Cantor’s Cauchy construction of R, like the Dedekind con-
struction, is said to be “rigorous” because it begins with the rationals Q.
However, before one may assume the existence of Q, one must define zero be-
cause 0 € Q, but 0 ¢ N. Therefore, to be rigorous, one simply may not assume
Q as a consequence of N. To introduce zero, we will introduce a line segment
AB and define zero as the least number in the algebraic representation of
the geometric point A. It is true that this present approach can be criticized
as being “not rigorous” because we have assumed AB in the same way that
others assume Q, but the present construction is “more rigorous” because it
bumps that which is assumed down to a more primitive level, i.e.: Euclid’s
principles of geometry [1]. Once Q is anchored to A, we may use Cq to in-
fer the existence of AB from the limit definition of infinity (Definition 2.2.2).
With 0 as the least number in the interval [0, X;], the identity 0 = R, follows
from the symmetry of AB under permutations of the labels of its endpoints:
AB = [X,N;]. No small part is required to describe the greatest number in
the algebraic representation of B € AB, so no small part can be required for
the least number in the algebraic representation of A € AB.

Definition 4.2.10 The symbol 0 is an instance of the number zero with the
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instruction not to do any of zero’s absorptive operations. The absorptive
operations of zero are

O+z=2x , and 0-x=0 .

Expressions containing 0 are not to be simplified by either of these operations.

Axiom 4.2.11 For every Cauchy sequence {z,} in the equivalence class [z] C
Cl, there exists another Cauchy sequence {0 + z,,} = {z,}. This is to say

{z,} e[z] = {@+xn} € [z] ,

or that, equivalently, there exists an additive identity element for every x € Q.

Example 4.2.12 With Axiom 4.2.11, we have associated every element of Cgy
with the endpoint A of the real line segment AB. This is done because every
x € Q has zero fractional magnitude with respect to infinity. Now we may
mingle the geometric and algebraic notations to write

{mn}:{6+xn}E{A+mn}€ [A + x]

By extending the line segment in consideration from AB = [0,00] to ZB =
[—00, 0], the number zero is now in the center of A which is an interior point of
Z B. Therefore, we may give an algebraic construction by Cauchy equivalence
classes for all
Ry = {Rx+b|beRy} |

by changing the interior point attached to the sequences in the equivalence
classes. For any interior point X € AB, there is an equivalence class [X + z]
such that

In this notation, the comma is a logical “and” (A), so the implication follows if
both conditions on the left are true. Note well, the number X indicating that
Ny has 100 x X% fractional distance with respect to AB is an equivalence class
X = [X] C Cgy with no requisite geometric part because 0 < X < 1 implies
X € Ry. Note that the symmetry of ZB about the number at the center of the
algebraic representation of its midpoint gives a further requirement for 0 = N,.

Definition 4.2.13 In the following definitions, the sign of x is restricted ap-
propriately for the neighborhood of the origin and the maximal neighborhood
of infinity. C’(SB is the sum of Cy with the set of all X € AB. Specifically,

COP ={X}+Co={X+[]| X €AB, [t CCqy} .

Since it is considered desirable to give a totally algebraic construction, we may
give an equivalent definition as the range of a function f([X], [z]) = N} + []
where [X], [x] € Cg:

CEP = N+ [2] | [X],[2] € Cq, 0 [X] <1} .
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In this second convention, x > 0if X = 0, and z < 0if X = 1. This is required
for the elements of C3® to be in [0, c0).

Definition 4.2.14 Every Ry € RY C R is a Cauchy equivalence class Ny =
[Rx] = Ry € CEP, where Ry € R implies 0 < X < 1 so that X = [X] C Cq.

Remark 4.2.15 The X + [b] notation in Definition 4.2.13 is not inherently
well-defined because the summed quantities usually appear on opposite sides
of the = relation. Thus, the equality of the hybrid definition for C’(SB and its
algebraic definition must be formalized.

Definition 4.2.16 The sum of a geometric point with an element of Cg shall
be defined as the sum of two equivalence classes. The equivalence class of an
interior geometric point X € AB is the equivalence class of the number in
the center of its algebraic representation 2 = X. For an interior point or an
endpoint, we have

According to the usual algebra of equivalence classes, we have

[X]+[0] = [X + 0]

Axiom 4.2.17 Every x € {R{} is a Cauchy equivalence class x = R+ [b] =
[z] € C4P. Big(x) is defined by [X] € Cyg, and Lit(z) is defined by [b] € Cg.
As in Definition 4.1.5, x is defined as the sum of its big and little parts.
In other words, without inventing the object C@B, we have the equivalent
condition that every z € {R{ } is an ordered pair of Cauchy equivalence classes
of rationals

o= ([X),0]) € Co x Cq .

where Cg x Cy is the Cartesian product. In this case, we take
([X], [b]) =Ny +0 .

Every element of C(SB has a representation as an ordered pair (X, b).

Remark 4.2.18 Axiom 4.2.17 is totally compliant with the requirement of
Axiom 4.2.6 that all real numbers can be constructed as the values of a function
or partitions of the function’s range. Any partition of the range is equally a
partition of the ordered pairs in the Cartesian product (Section 7.5).

Example 4.2.19 This example gives a Cauchy equivalence class definition of
Ny, as in Definition 4.2.14. Suppose 0 < z < 1 and that

r=|x]= [{xn}} = [{x1,$2,x3, o }]
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It follows that

where we have moved the iterator n into the superscript position at one of the
intermediate steps.

Theorem 4.2.20 If X and Y are two interior points of AB, then two Cauchy
equivalence classes (X + x| and [Y + y] are equivalent if and only if X =Y
and r =y.

Proof. By Definition 4.2.16, we have [X + z],[Y +y] C C4B. Axiom 4.2.17
grants that every element of CQ‘?‘B can be expressed as an ordered pair

Ny +b=([X],[b]) € Cyp xCqy .
By the definition of the equivalence class, every element of Cy is such that
z]=f] = =z=y,
so the same must be true for the ordered pairs:

(A=) = (VL) <= Rez) = (Ry,y)

The equivalence class of X is uniquely determined by the equivalence class of
Ny (Definition 4.2.16), so it follows that X =Y if and only if [X]| = [Y]. The
theorem is proven. &

§4.3 The Maximal Neighborhood of Infinity

The main purpose of this section is to treat the properties of real numbers
r € RY for the special case of X = 1. Again, the reader must note that for-
mally R} ¢ {R%} due to the restriction 0 < X < 1 given by Definition 4.1.3.
Whenever Ry or Ry is taken to mean X = 0 or X = 1, referring the neigh-
borhood of the origin and the maximal neighborhood of infinity respectively,
we will always make an explicit statement indicating 0 < X < 1.

Definition 4.3.1 The whole maximal neighborhood of infinity is
Ry={N—b|beRy} .

Remark 4.3.2 We have defined N; as the greatest number in the algebraic
representation Z of B € AB = [0,00]. Therefore, X is an infinite element
not in the real numbers. As the arithmetic of co is usually defined, if we set
N; = oo, then it would follow that co — b = co and Ry N R = &. This is
not the desired behavior, so we will make special notation custom tailored to
deliver what is desired.
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Definition 4.3.3 oo is called geometric infinity or simply infinity.

Definition 4.3.4 o0 is called algebraic infinity. It shall be called infinity hat
as well.

Definition 4.3.5 Additive absorption is a property of oo such that all x € R
are additive identities of co. The additive absorptive property is

0otz =00

Multiplicative absorption is a property of +o0o such that all non-zero z € R
are multiplicative identities of +c0. The multiplicative absorptive property is

oo for >0
00T =
—o0o for <0

Remark 4.3.6 Note that infinity and zero are both multiplicative absorbers,
while zero’s additive absorptive property is such that zero gets absorbed. In-
deed, the contradiction inherent to mutual multiplicative absorption may be
identified as a reason contributing to the canonical non-definition of the 0 - co
operation.

Definition 4.3.7 The symbol o0 refers to an infinite element

1 Y
j:‘oo|:wli>%1iz, and ‘OO}:JI_EEO;]{’

together with an instruction not to perform the additive or multiplicative
operations usually imbued to infinite elements.

Remark 4.3.8 What we have done in Definition 4.3.7 is exactly what we
have done with 0 in Definition 4.2.10. In the case of 0, it was not in any way
strange to entertain the notion that one might simply choose not to do the
absorptive operations of zero, and neither should the present convention for
o0 be considered in any way strange or ill-defined. In Section 4.4, we will
construct an infinite element—what might be called an instance of infinity—
stripped of its absorptive operations by considering the invariance of AB under
the permutations of the labels of its endpoints. As between Sections 4.1 and
4.2, we will define some objects in the present section to facilitate a formal
construction in Section 4.4.

Theorem 4.3.9 The two open intervals (—oo,00) and (—00,0) are identi-
cally equal. In other words, the real number line may be expressed identically
as R = (—00,00) or R = (—o00, 00).
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Proof. For a,b € R", it may be taken for granted that
(—(l,b) - (—|CL|, |b‘) :
It follows, therefore, that this is true for a,b € R Then, per Definition 4.3.7,

|| =+t0 = R=(-0,X) . &

Example 4.3.10 This example demonstrates the arithmetic constraints that
would have to be placed on the limit definition of infinity if it was said to define
oo rather than |30], as in Definition 4.3.7. This example also demonstrates the
general motivation for such notation by demonstrating the large burden that
would be imposed if the absolute value bars were absent in Definition 4.3.7. In
its limit incarnation, the additive absorptive property of oo is demonstrated

as
1 ar+1

a+o0o=a+ lim— = lim

z—0 z—0 T

= diverges = oo

Therefore, if the limit were said to define o0, then the hat’s arithmetic con-
straint “don’t simplify this expression by absorption” would mean to keep a
out of the limited expression. Similarly, multiplicative absorption is demon-
strated as

. .. a .
a-00 =a-lim— = lim — = diverges = oo
z—0 z—0 T

In either absorptive case, the limit expression diverges in R, and no contradic-
tion is obtained by keeping a out of the expression to avoid it being “absorbed.”
The utility in adding the hat to infinity is that it supports the notion that a

number lying x units of Euclidean distance away from the least number 0 = X,
in the algebraic representation of A € AB should, under permutation of the
labels of the endpoints of AB, be mapped to another number 2’ lying = units
of distance away from the greatest number X, in the algebraic representation
of B € AB. By suppressing the additive absorption, we let 2/ = X; — z =
00 — x # 00. Per Definition 4.3.1, this number is 2’ € Ry. By suppressing the
multiplicative absorption of 50, we introduce notation by which it is possible
to complement Definition 4.1.1 with the statement

Ry =X <<= Ny=X -0 .

00
In the former part this treatise, we have demonstrated a requirement for num-
bers such as 2’ and Ry, and o0 is a notation for an infinite element tailored
to this requirement. Indeed, where algebra is called the study of math-
ematical symbols and the rules for manipulating them, algebraic
infinity o0 is a perfectly ordinary algebraic object, and well defined.

Definition 4.3.11 For any X, ) € R, the symbol Ny has the properties

NX:X@ y and NX'Ny:N(XNy):NN(Xy)
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Definition 4.3.12 In terms of o0, the whole maximal neighborhood of infinity
is defined as
Ry={0—-b|beRy, b#0} .

Definition 4.3.13 The maximal natural neighborhood of infinity is defined
as
Ry={c—-b|beR{} .

§4.4 Equivalence Classes for the Maximal Natural Neighborhood
of Infinity

We could easily construct R} following the prescription in Section 4.2. There,
we introduced zero as the least number in the algebraic representation of A €
AB = [0, 00|, and then we made the extension to an arbitrary interior point
by considering A as the midpoint of ZB = [—o00,00|. However, we could
have left A as an endpoint and then extended the construction to the other
endpoint B to define the maximal neighborhood of infinity via a symmetry
argument. For breadth, here we will use a similar symmetry argument to
take a slightly different approach to the Cauchy construction of the maximal
neighborhood infinity. The material in the present section will constitute an
independent motivation for the intermediate neighborhoods, separate from the
main fractional distance approach. We will generate a non-absorbing infinite
element o0, and then we will define the Ny as its fractional parts.

In Section 4.2, we defined a real number as an ordered pair of Cauchy
equivalence classes of rationals: one for the big part and one for the small
part. This approach required that we assume the N notation before we can
define an equivalence class [Ny| = Ny = Ny. We were very well motivated
to assume numbers in this form, particularly by Main Theorem 3.2.6 proving
that some real numbers are larger than any real number, and by Theorem
3.2.2 proving that there exists at least one real number having 50% fractional
magnitude with respect to AB. However, it remains that Ny is inherently
foreign to what is called real analysis. Therefore, in the present section, we
will give an alternative construction for R} based on the geometric invariance
of line segments under the permutations of the labels of their endpoints. The
numbers in the maximal neighborhood of infinity are defined according to oo:
a number not at all foreign to real analysis. Then, with [0] = oo defined
as in the previous section, and with a formal construction given here for the
maximal neighborhood of infinity, we will use o0 as an independent constructor
for Ny and the intermediate neighborhoods.

Axiom 4.4.1 A Euclidean line segment AB [1] is invariant under permuta-
tions of the labels of its endpoints, e.g.:. AB = BA.

Definition 4.4.2 Define a geometric permutation operator P such that

~

P(AB) = BA .
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Remark 4.4.3 In this section, we will construct R} from the operation of
P on Cauchy equivalence classes of rational numbers, e.g.: P([z]). To do
so, we must develop the induced operation of P on the algebraic interval
representation [a,b] = AB. (It is a pleasant coincidence that the equivalence
class bracket notation is exactly consistent with the abused notion for a closed
one-point interval [z, z] = [z].) As in Section 4.2, our departure from the usual
Cauchy construction of R begins with an acknowledgment that 0 € Q does not
follow from N. Again, we introduce zero as the least number in the algebraic
representation of A € AB, and then we infer the existence of AB from the
limit definition of infinity. Next, we assume zero is an additive identity element
of every n € N to obtain

m m
—— =04 —
n n n n

m
—EQ — _
n n

Finally, we will put the hat on 0 to remind us not to simplify the expression.
The elements of Cy now have an explicit interpretation as Euclidean mag-
m

nitudes measured relative to the origin of R. Specifically, ™ is an abstract

element of Q, but 0+ ™ is the rational length of a real line segment whose left
endpoint has zero as the least number in its algebraic representation. Though
this may be inferred directly, it follows from Definition 4.2.16 giving [A] = [Ry]
and the symmetry requirement for 8y = 0.

Definition 4.4.4 The Euclidean chart x on AB is such that min(z € A) =0
and max(z € B) = Ry, regardless of the permutation of the labels of the
endpoints. In other words, the ordering of real numbers is such that numbers
nearer to B are always greater than those nearer to A.

Definition 4.4.5 Define an operator Py([z];0) which formalizes the notion
of P([z]). Per Definition 4.4.2, the domain of P is not Cgp, so we introduce

a special algebraic permutation operator Py([z];0) dual to P which formally
operates on equivalence classes. The definition is

750:04—0@—)65—0@ ,
where

0+Cq = {0+][x] |[z] c Cqo} , and —Cop={0—[a]][z] C Cq} .

Example 4.4.6 This example demonstrates the working of P and P, to give
a formal construction of R} by Cauchy sequences of rational numbers. Suppose
b € Ry is a well-defined equivalence class of rationals lying within the algebraic
representation &7 of A € AB. Now operate on AB with P so that

A

P(AB) = BA .

34



JONATHAN W. TOOKER

The permutation of the labels of the endpoints has not changed the geometric
position of b along the line segment. Definition 4.4.4 requires that the orien-
tation of the Euclidean coordinate along the line segment has been reversed,
so, therefore, we no longer have the property b = [z] C Cq for the following
reason. Every rational number is less than some natural number, and all such
numbers have zero fractional distance with respect to AB. Before operating
with P, b was in the algebraic representation of the point A, but, by operat-
ing with the geometric permutation operator P, b becomes a number in the
algebraic representation of B. The FDFs are defined such that

Das(AB) = D 4(AB) =1

so now b must have unit fractional magnitude with respect to AB. Every
[z] C Cg has zero fractional magnitude, so, if [b] ¢ Cgp, what number has b
become? That number is given by

Po(0, [0]) =55 — [b]

Under permutation of the labels of the endpoints of a line segment, a num-
ber having Euclidean distance [b] C Cg from one endpoint becomes another
number having the same distance relative to the other endpoint.

Remark 4.4.7 We take it for granted that if there exists a real number z
separated by distance L from the least number in the algebraic representation
of the endpoint A of an arbitrary real line segment AB = [a, b|—with z inte-
rior in the sense that = € (a, b)—then it is guaranteed by the geometric mirror
symmetry of all line segments that there must exist another real number sepa-
rated from the endpoint B by the same distance L. If we bestowed o0 with the
property of additive absorption, then there would be no such number because
0+ — x, but 50 — & — 0. Similarly, if there exists a real number lying one
third of the way from A to B, then there must exist another real number lying
one third of the way from B to A. This follows from the cut-in-a-line definition
of R given by Definition 2.1.5. For the case of AB, it will be impossible to
express these third fraction numbers if 50 has the property of multiplicative
absorption. Since the third numbers must exist, Ny does exist. Therefore, the
existence of an instance of infinity devoid of any absorptive properties is abso-
lutely granted and required if the mirror symmetry of a geometric line segment
is to be preserved in its interpretation as an algebraic interval of numbers.
Our thesis is that we should preserve the underlying geometric construction
of R without invoking a contradictory algebraic construction. Under this the-
sis, 00 is forced into existence. Often times, the position is taken that infinity
is absolutely absorptive due to the limit definition of infinity and the attendant
absorptive properties of limits (Example 4.3.10). As an indirect consequence
of such reasoning, the mirror symmetry of line segments must be rejected in
the algebraic realm of mathematics. But why should it be preferred that the
algebraic construction overrides the geometric construction? Is it not equally
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valid to override the algebraic construction with the geometric one? Consid-
ering the history of mathematics, it is, in the opinion of this writer, far more
appropriate to preserve the geometric construction at all costs. It is very easy
to do so when the symbol 0 is given by the limit definition of infinity as

lim = = +[z|

rx—0% T
without o0 itself being interchangeably equal with the limit expression. Fur-
thermore, this scheme is such that the algebraic and geometric concepts
are complementary without requiring that one override the other.

In Definition 4.2.17, we gave the definition of z € {Rg} in terms of ordered
pairs of elements of Cjy. The purpose of the present alternative treatment for
the maximal neighborhood R} is not to replace that definition but to comple-
ment it with a different equivalence class construction for the maximal neigh-
borhood: one from which the constructions of the intermediate neighborhoods
may be extracted. In this present section, we have used the permutation oper-
ator P which is quite similar to the implicit translation operator by which we
were able to attach elements of Cg to different interior points of AB in Section
4.2. The main utility in developing the idea of a number in the neighborhood
of infinity as the operation of Py on an equivalence class of rationals is that
it independently generates the requirement for an infinite element lacking the
usual absorptive properties of infinity. With o0 granted, it gives a separate
means by which we may construct the x € {Ry} without invoking the di-
rect ordered pair definition: the Ry in such numbers are the fractions of the
non-absorbing infinite element o0.

Axiom 4.4.8 Every x € R} is defined as the output of Py operating on an ele-
ment of Cp. This is the Cauchy equivalence class construction of real numbers
in the maximal natural neighborhood of infinity.

Remark 4.4.9 If we wish to construct AB = [0,00] from AB = [0, 7], as we
constructed AB = [0, 0] in Example 2.3.21, then we need to make rigorous
the relationship between [0, oo] and [0, 50]. This was accomplished in Theorem
4.3.9 proving that (—oo,00) = (—00,50). The absolute value, or the magni-
tude, of o0 is the same as that of oo, so the algebraic intervals [z, 00| and
[,50] must be the same. Though we cannot directly construct [0,50] from
[0, ], we may indirectly construct it by using the limit definition of infinity
(Definition 2.2.2) to write

(0 N
lim tan(f) = lim sin(0) = lim ¥_ |oo‘
61~ -z~ cos() 53(13 T

Now we may infer the existence of conformal AB = [0,d] from the assumed

interval [0, Z] as a corollary of Theorem 4.3.9.

72
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Example 4.4.10 In this example, we complement the separate definitions for
oo and o0 heretofore given. We will show, for example, how they might be
more fully conceptually distinguished as two mutually distinct kinds of infi-
nite elements with markedly different qualia beyond their separate technical
definitions. We will offer these qualia as an example only; we will not alter
the technical definitions with the supplemental considerations proposed here.
To that end, it is sometimes claimed, without proof, that one cannot include
endpoints at the ends of R = (—o00,00) because the notion of an endpoint
contradicts the notion of the infinite geometric extent of a line extending in-
finitely far in both directions. Infinite geometric extent is the main principle
that we will look at in this example.

Suppose geometric infinity oo is a number which cannot be written as the in-
cluded or unincluded endpoint of an interval without contradicting the notion
of the infinite geometric extent of a number line. An unincluded endpoint may
always be included via compactification, contrary to the claim cited above, so
we might distinguish geometric infinity from algebraic by letting the former
be non-compactifiable. Consider Definition 2.1.2 which defines a number line
as a 1D metric space in the Euclidean metric

d(z,y) = |y—x} .

If we included geometric infinity as an endpoint, then we could invoke the
invariance of line segments under permutations of the labels their endpoints
to demonstrate a contradiction. Given

(x,y) = ($0>y0) , and (750(330),750@0)) = (OO — 19,00 — o)

not only do the points lose their unique identity when attached to B instead
of A, but if we put (Py(zo), Po(yo)) into the Euclidean metric, then we get

d(Po(w0), Po(yo)) = |00 — yo — (00 — o) | = |00 — co| = undefined .

Clearly, this does not gel well with our intention to define a number line as
a line equipped with a metric. The line is supposed to have some metrical
distance between any two numbers, but, now, under the permutation of the
labels A and B, we find two numbers that don’t even have vanishing distance
between them. The distance has become undefined, though this does not follow
from the invariance of Euclidean line segments under such permutations.

Algebraic infinity is a number which avoids all of these problems. Under
permutation, we have

(z,y) = (x0,%) , and (750(350),750@0)) = (65 — 2,00 — Yo)

Jumping ahead to the arithmetic of such numbers axiomatized in Section 5.2,
we find exactly what is expected:

A ~

d(Po(z0), Po(yo)) = ‘65 — Yo — (55 - $0)| = ‘ﬁo - yo} = d(zo, %) ,
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The only issue which remains is to revisit is the construction for AB = [0, 0o]
that we have given by a conformal chart x = tan(z’) on the line segment
AB = [0, 5] whose endpoints unquestioningly exist in any frame of standard
analysis. For this, we might propose a semantic convention to distinguish the
geometric infinite element oo from the algebraic one o0. Let algebraic infinity
be such that it can be embedded in a larger space, but let geometric infinity
be such that it is totally maximal and cannot be embedded in something
larger than itself. For example, the interval [0,%] C [, 7] is such that
the conformal chart which sends 7 to an infinite element implicitly places
that element within the parent interval [—m, w]. The convention proposed here
would require that the infinite element to which 7 is conformally mapped must
be algebraic infinity o0. If we take the convention that geometric infinity oo is
always totally geometrically maximal, then that would forbid its existence on
the interior of the interval [—, 7] which contains points to the right of 7. In a
formal adoption of the distinctions made here, one would examine the merits

of a supplemental transfinite ordering relation oo < oo.
Remark 4.4.11 Definition 4.3.7 gives

|65‘:oo:hml =~ 00 = lim—
z—=0 I z—=0 T
Due to the transitivity of the equivalence relation, we must be careful about
whether N; is equal to geometric infinity or algebraic. If we take the convention
that geometric infinity oo is imbued with the notion of infinite geometric extent
such that an infinite line cannot have an endpoint there, as in Example 4.4.10,
then we should not let X; be defined by oo when it is said to be the greatest
number in the algebraic representation of the endpoint B € AB. Due to
the possibility of constructing AB from any other line segment by one chart
transformation or another, AB ought to be taken as [0,50] = [0,8] in the
absence of explicit words to the contrary.

Definition 4.4.12 The symbol R; is an alternative notation for algebraic in-
finity. We have
Ny =00 , and Ny # 00

Theorem 4.4.13 The whole mazimal neighborhood of infinity Ry is a subset
of the real numbers.

Proof. Taking for granted that € R}, does not have any infinitesimal part,
which is obvious, it suffices to show the compliance with Definition 2.1.5: a
real number x € R is a cut in the real number line. Compliance follows directly
from Definition 4.3.12 giving

Ry={0—-b|beRy b#0} ,
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because we clearly have
(—00,00) = (—00,00 — b U (¢ — b, 00)

Even though we do not yet have an equivalence class construction for b €
RS \ Ry, it is obvious that 50 — b is a cut in the real number line because
b, whatever its algebraic construction, is such that it is positive and has zero
fractional magnitude with respect to AB. (The intuitive ordering assumed in
this theorem is formalized in Axiom 5.2.18.) &

Corollary 4.4.14 All numbers x € {R3 } are real numbers.

Proof. The ordering of R given by Axiom 3.1.13 is such that 0 < X < 1
guarantees
(0,00) = (0, Ny £ 0] U (Ry £b,00)

Definition 2.1.5 is satisfied trivially. The theorem is proven. &

Remark 4.4.15 As a final aside in this section, note the curious condition un-
der which algebraic infinity N; has its foundation in the geometric properties
of a line segment, while geometric infinity oo has its foundation in the limit
of an algebraic expression. The reciprocity among these two constructions
of an infinite element might indicate some deeply fundamental issues extend-
ing beyond the semantic convention of our having chosen to call one infinite
element geometric and the other algebraic. We will not proceed along that
analytical direction, but the reciprocity of the cross-sampling of the concepts
is interesting and tantalizing.

§5 Arithmetic

§5.1 Operations for Infinite Elements

Here we give arithmetic operations for oco,00 € R to support the axioms for
real numbers x € R with non-zero big parts to appear in Section 5.2.

Remark 5.1.1 All of the contradictions which forbid additive and multiplica-
tive inverses for oo stem from its limit definition. Should we bestow, then,
these inverses on 00 = N;7 To the extent that the notion of fractional distance
requires that 100% — 100% = 0% and 100%/100% = 1, the answer is yes.
We should not expect any contradictions related to inverses for o0 because
o0 # oo. The limit definition is out of scope. Similarly, all of the contradic-
tions which disallow a definition for the operation 0-co are rooted in the limit
definition of infinity, but 0-00 = Ry = 0 follows as a special case of RNy = X-o0.

39



FRACTIONAL DISTANCE: THE TOPOLOGY OF THE REAL NUMBER LINE

Axiom 5.1.2 XN, is such that
Ny
Ny

N, —N; =0, and =1 .

Axiom 5.1.3 The operations for co # N; with b € R} are

0o+ b=00
ooj:(—b):oo
—(j:oo):$oo
00-b=00

00
— =00

b
L

00

The addition and multiplication operations are commutative here.

Axiom 5.1.4 We give the following supplemental operations for zero and oco:

00+0=0+00=00
00 -0 =000 = undefined

e undefined

0
0
00

Axiom 5.1.5 The operations for 50 = R, with b € R are
0+b=+b+00
X+ (—b)=c0Fb
—(+) =Fx
0-b=b-00=0N,
% = Rp)
by
00
Axiom 5.1.6 We give the following supplemental axioms for zero and oo:
X+0=0+00=020

X-0=0-30=0

2o

o~

o
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> _ undefined .

0

Remark 5.1.7 The most important facet of Axiom 5.1.6 is the 0-00 operation
contrary to the undefined 0 - co operation (Axiom 5.1.4). This is required to
preserve the notion of fractional distance: zero times 100% is 0%. To facilitate
this definition, it will be required that we define division as a separate operation
distinct from multiplication by an inverse. This will be one of the major
distinctions of the axioms in Section 5.2 from the well-known field axioms. We
demonstrate the principle in Example 5.1.8.

Example 5.1.8 This example gives a common argument in favor of the non-
definition of a product between an infinite element and zero. Then we will show
how the contradiction is avoided if we do not grant an assumed associativity
among multiplication and division. The 0 - 50 = 0 operation given by Axiom
5.1.6 requires that we avoid such contradictions.

Suppose ¢ € R so that

— =0 .
00

Now suppose 0 - o0 is a defined operation so that
z2=0-00 .

Substitute £ = 0 and use the % = 1 property of Axiom 5.1.2 to obtain by
association of multiplication and division the expression

. 00
ZZOOO::OO:C/—\

0 o

=C .

This shows that 0 - o0 is not a well-defined operation because z = ¢ is not a
unique output. When we define division as a third operation beyond multipli-
cation and addition, however, we should not assume associativity among the
distinct divisive and multiplicative operations, and neither will we axiomatize
it in Section 5.2. Without assumed associativity among the terms, we cannot
show that z fails to be a well-defined output of the product 0-50. In that case,
we will assume there is no problem with the definition 0 - o0 = 0.

Axiom 5.1.9 For any non-negative z € R, we have

00 for = >1
X =<1 for z=1
0 for 0<x<1

The product of an infinite number of finite numbers greater than one is abso-
lutely absorptive.
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Remark 5.1.10 By choosing the 2% = oo convention in Axiom 5.1.9 rather
than the alternative ™ = 30, we sidestep the notion that two different num-
bers x and y raised to the same power might both land precisely at N;. For
xr # y, we would not expect, in general, that 2™ = y™ = R, = 55. In the
remainder of this section, we will further motivate the £ = oo operation.

Theorem 5.1.11 For k # 1, we have o0* # 0.

Proof. To prove this theorem, it will suffice to prove that
507 =30-00 = N - Ny # ),y
Definition 4.3.11 requires that for any x € R, the symbol X, is such that
Ny=X-o0 , and Ny - Ry = Niany) = Ry,

Choose = Ny such that 0 < X < 1. Then

Ny, =Ry - 0=X-0-0=X 0"
If 502 = 50, however, then we could write

Ny =X -0=X-0° = Nyp=2y,

Since Ny € R, it cannot be equal to the number Xy, ¢ R which has much
greater than unit fractional distance with respect to infinity. This contradic-
tion proves the theorem. &

Theorem 5.1.12 The operation x> = 30 is not well-defined.

Proof. Assume 0 < X < 1 and consider two expressions
& —_~
PNaFb N b ($X) 2 =St

and

—

X —_—~
Ratb — pRapb — (:coo) 2’ =350%zb .

By Theorem 5.1.11, we have 2° 50 # 2° 50" when 0 < X < 1. This proves the
theorem. &

X

Remark 5.1.13 Note that the contradiction derived in Theorem 5.1.12 is
avoided in the convention of Axiom 5.1.9:

Rt = (xx)gaa:b =oor’ =00 , and ™= (xaa)xxb =oo¥ab =0 .
Here, we have relied on the usual understanding that the multiplicative ab-
sorptive property of oo is such all powers of oo are identically equal to co.
This exceeds the definition of absorption given in Definition 4.3.5 such that oo
absorbs x € R, but it is standard to set all powers of co equal to oco.
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§5.2 Arithmetic Axioms for Real Numbers in Natural
Neighborhoods

When one defines R such that the set R = {R, +, x, <} conforms the field ax-
ioms (Section 5.4), it is a natural progression to prove that Cauchy equivalence
classes satisfy those axioms. We do not presently presume that R is such that
R obeys the field axioms, so we will not make any such proofs. Instead, we
will list the axiomatized arithmetic operations obeyed by real numbers whose
little parts are less than some natural number. For disambiguation with the
well-known “field axioms,” the axioms given in this section are called “the
arithmetic axioms.” In Section 5.3, we will make proofs of certain operations
given in the arithmetic axioms, and we will give examples. In Section 5.5,
we will define the operations in terms of the numbers” underlying equivalence
classes. All of the axioms given here pertain only to the natural neighbor-
hoods Ry. When we give the treatment leading to Ry \ RY = @ (conjectured
in Section 7.4), these axioms will be fairly comprehensive. However, when we
impose connectedness on R in Section 7.5, we will find that these axioms are
not totally comprehensive.

The equivalence class constructions given in Section 4 were only for nat-
ural neighborhoods, and here we will follow with the axiomatized arithmetic
for the elements of those neighborhoods. Almost everything about the field
axioms shall be preserved in the natural neighborhoods. The major excep-
tion is that we will not enforce the global closure of R under its operations.
Among the other departures from the field axioms will be the identification
of division as an operation separate from its usual definition in
terms of multiplication by an inverse. Closure is nice for group theoret-
ical applications, but it is not needed for most applications in arithmetic. For
example, the set of integers {3,4,5} is not closed under integer addition, and
yet it remains a perfectly sound algebraic structure with which one may do
summation mathematics in the usual way. If one were to claim, “Non-closure
doesn’t break arithmetic because {3,4,5; +} is a subset of {R; +}, which is an
algebraic group as defined by the field axioms,” then we could make an easy
rebuttal by defining a set T D R as

T={z|—Ne<z<Ny} .

Then the present convention for non-closed {R; +} defined with the Euclidean
magnitude and supplemental arithmetic axioms is such that {R;+} is a subset
of the closed additive group of 1D transfinitely continued real numbers {T; +}.

Axiom 5.2.1 All Ry numbers obey the well-known axioms of a complete or-

dered field: Axioms 5.4.3, 5.4.5, and 5.4.8.

Remark 5.2.2 To make a distinction between the intermediate neighbor-
hoods of infinity and the maximal neighborhood, in this section we will use the
symbol o0 rather than the symbol R, associated with {Ry} as Ny. However,
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the reader should note that the arithmetic of the maximal neighborhood fol-

lows from the arithmetic of the intermediate neighborhoods as a special case
of Ny with X = 1.

Axiom 5.2.3 Addition is commutative and associative. There exists an ad-
ditive identity element 0 and an additive inverse 271 for every x € R. The
operations for + are given as follows when a, b, z,y € Ry and 0 < min(X,)) <
max(X,)) < L.

+ 0 y € Ry Ry +a) € RY (0 —la]) e RfUBS
0 0 Yy Ry +a 0 — |al
x x T+y Ny + (a + z) 0 — (Ja] — )

(R +0) || R +b | Re+(b+y) | Rpyy+ (0+a) | Ry + (0 lal)

(S —1bl) =l | 5= (bl =y) | Rasry) = (Ib] - a) Ry — (bl + lal)

Remark 5.2.4 The most important property given by Axiom 5.2.3 is
Ny + Ny = Rxyy)

This equality follows from the geometric notion of addition. If, for instance, Ny
is a number with 10% fractional distance along AB, and Ry, is a number with
20% fractional distance, then it follows that their sum is a number with 30%
fractional distance along AB. Axiom 5.2.3 makes clear that R does not satisfy
the usual understanding that the reals are closed under their operations. Any
number Ny + b with X > 1 is not a real number, e.g.: the sum of two positive
numbers with 99% fractional magnitude is not a real number. No z with big
part ¥y gg can be z € R.

Theorem 5.2.5 All real numbers x € {Ry } have an additive inverse.

Proof. The number z~! is the additive inverse of z if and only if

r4+axt=xtl42=0 .

The statement of the theorem requires that (i) z = Ry + b, (17) 0 < X < 1,
and (iii) b € Ry. Assume that z™! has the form Ny-1) +b~'. The definition
of the additive inverse requires

1=Ry+b)+ Ry +b7") =Naga-1)+ (b+b7")

44



JONATHAN W. TOOKER

Equating the big and little parts of this expression, we obtain two requirements

Npir-1y=8 <<= X+X'=0 = Xx'=-X,
and
b+b =0 <= bl=-b.
For every [X],[b] C Cg, there exists a [-X],[—b] C Cg, so, therefore, every
r € {RY} has an additive inverse. &

Axiom 5.2.6 Multiplication is commutative and associative, and it is dis-
tributive over addition. Among Ry numbers, it is associative with division
(which shall not be defined as multiplication by an inverse), but multipli-
cation is mot associative with division in general. There exists a
multiplicative identity 1 # 0 for every z € R. There exists a multiplicative
inverse for every x € Rg, but there does not exist a multiplicative in-
verse for all real numbers. The operations for {-} = {x} are given as
follows when a,b € Ry, 7,y € RS, and 0 < min(X,Y) < max(X,)) < 1.

X F1 y € RY (Ry +a) € RY (50— |a|) eR§ U
0 0 0 0 0
+1 -1 +y Ry £a +350 F |al
T T Ty N(zy) +ax R, — |a|z
(Nx +b) Rizx) FO | Ray) +0y | Nnaytarxtsy) +0a | Rny—jajx+s) — blal
(55 — o) Foo bl | Ny —1[bly | Ryra—jpy) — bla | Nsjaj—ppp + [bal

Remark 5.2.7 The most important property given in Axiom 5.2.6 is
Ny = N1y
This operation follows from
Ny =X-0 = :I:NX::I:(X~65):(:I:X)-65:N&X)
This shows that multiplication is axiomatically associative.

Theorem 5.2.8 Real numbers in the intermediate natural neighborhoods of
infinity x € {RY} do not have a multiplicative inverse.

1

Proof. A number x7" is the multiplicative inverse of z € R if and only if
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The statement of the theorem requires that (i) z = Ry + b, (i7) 0 < X < 1,
and (iii) b € Rg. Axiom 5.2.6 grants that multiplication is distributive over
addition, so the definition of the multiplicative inverse requires

(NX + b)x_1 = Nyz-1) + brt=1
Equating the big and little parts of this expression, we obtain two requirements
Rz =8 <= Xz'l=0 <<= a2'=0,

and
brl=1 «— gzl==

This contradicts the requirement b € Ry, so, therefore, z € {Ry} does not
have a multiplicative inverse.

Remark 5.2.9 Certain of the products in Axiom 5.2.6 rely on Axiom 5.2.3.
For instance, the value in the lower right corner of the multiplication table is
computed as

(50— [0]) (3¢ — |al) = 35 - 0 — [b[6S — |al5S + |bal
=N - Ny — |a|X; — |b|Ry + |bal
= Rewy) — Vo) — Ry + [bal
= Rexy) = (Rjof + Rpp) + [bal
= R + R(_ja|—pp)) + [bal
= Riss—ja-p)) T bal .

Furthermore, it follows from Axioms 5.2.3 and 5.2.6 that
(c—b)—(c—a)=a—b .

This difference is the primary operation behind the original ideation for a non-
absorptive infinite element. If ¢ and b are two numbers at distances a and b
respectively from the endpoint 0 of the interval [0, 00|, then their difference
a — b must be equal (up to a sign) to the difference of two numbers lying at
distances a and b from the endpoint oo of the same interval.

Example 5.2.10 The purpose of this example is to demonstrate that even
while numbers greater than o0 do not exist in real analysis, expressions im-
plying the existence of such are numbers are generally not considered contra-
dictory. Consider the quadratic equation

_ —b=x vV b? — dac
- 2a ’

ar’ +br+c=0 , where T

For every case in which 4ac > b%, the number z does not exist in real analysis,
and yet it is never claimed that the quadratic formula is contradictory. Instead,
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we claim that there must exist an imaginary number ¢ ¢ R with the property
i = v/—1. Therefore, the principle of fractional distance should support a
conclusion that there exist transfinite numbers 2 ¢ R with the property x > 0.

We have seen the existence of such numbers implied previously when ex-
amining algebraic infinity as the endpoint of a line segment embedded in a
line extending infinitely far in both directions. If we use x = tan(z’) to define
AB = [0,0] on AB = [0,%], and if a number is a cut in a line as per Def-
inition 2.1.5, then there should exist non-real, transfinite numbers which are
cuts in an infinite line to the right of z = o0 in the algebraic representation of
the point B.

Remark 5.2.11 When the field axioms give the arithmetic operations of R,
the difference operations follow from the sum operations as the addition of
a product with —1. The =+ operations usually follow from the x operations
as multiplication by an inverse. Presently, we may define the difference op-
erations accordingly, but we may not do so for the quotient operations. As
demonstrated in Example 5.1.8, the preservation of the respective geometric
notions of the algebraic operations requires that {4, x, =} is a set of three dis-
tinct arithmetic operations among which there is not universal associativity.
Obviously, this is a major distinction of the present axioms from the field ax-
ioms. However, Axiom 5.2.1 grants that all x € Ry obey the usual field axioms,
so there is an implicit axiom regarding a limited associativity of {x,+} in the
neighborhood of the origin. We will make the explicit with Axiom 5.2.12.

Axiom 5.2.12 Division and multiplication are mutually associative for any
x € Ry. That is, all factors which are elements of Ry may be moved into or
out of quotients and products in the usual way, even if those quotients and
products contain z &€ Ry.

Axiom 5.2.13 The operations for +— are given as follows when a,b € Ry and
0 < min(X,)Y) < max(X,)) < 1. There exists a divisive identity 1 # 0 for
every x € R. It is the same as the multiplicative identity. There exists at least
one divisive inverse for every non-zero x € R. In this table, the row value is
the numerator, and the column value is the denominator.

+ 0 y € Ro Ry +a) eRY | (5¢—a]) e R U
0 nan 0 0 0
x nan % 0 0

(NX + b) nan | Ney,-1) + % % X

(35— 1[b]) || nan | Rg-1) — % ¥ 1
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Example 5.2.14 This example demonstrates that the quotient operations
given by Axiom 5.2.13 are well-defined. (This is proven rigorously in Main
Theorem 5.5.12.) An operation is well-defined if it generates a unique out-
put. It is obvious in Axiom 5.2.13 that each operation has one and only one
output, but it is foreign to the usual understanding of the arithmetic of real
numbers that the operands giving the unique resultants are not themselves

unique. Consider
Ny +b X

Ny +a y
If multiplication was associative with division, and vice versa, then we could
multiply both sides by Ry, 4 a to obtain a contradiction in the form

Ny +0 X
Ny +a)=—=-(Ny+a
Sy a) = S G+
Ny—FG X
Ny +b- =N + —a
R NI ¢ Y
Xa

Ny +b =Ny +
X X y

This is false whenever b # %, but it is not possible to show this contradiction
without assuming associativity among {x,=+}.

Example 5.2.15 This example demonstrates another immediate contradic-
tion should we assume associativity among multiplication and division. Axiom
5.2.13 gives

Ny Y 1

=~ , and — =0 .
Ny X Ny
If we bestow the associativity, then
N 1
—y:Ny-—:Ny-ozo;AX .
Ny Ny X

Definition 5.2.16 A divisive identity is a number e satisfying x —~e = x. The
divisive identity element of R is 1 € R.

Theorem 5.2.17 All real numbers x € {RY } have a non-unique divisive in-
verse.

Proof. If 71 is the divisive inverse of x, then z - 27! = 1. By Axiom 5.2.13,
any two z € {R{'} having equal big parts are mutual divisive inverses. &

Axiom 5.2.18 The ordering of R is given as follows when a,b,c,d,z,y € Ry
and 0 < min(&X,Y) < max(X,)) < 1. For the table, it is granted that

a>b , ¢c>d>0, z>y , and x>y .
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the column identity is on the right.

< yERy | Ry+b) €RY | Rx+b) eRY | (50— |d|) €R}
x > < < <

(Rx +a) > > > <

(50— 1c|) > > > <

§5.3 Limit Considerations Regarding the Arithmetic Axioms

We have not directly defined infinity hat with the limit definition of infinity.
Instead, we have defined o0 to have the same absolute value as co. They are
both the unincluded endpoint of the interval [0,7) where Z ¢ R is such that
Z = sup(R). Although we began fractional distance analysis with the notion of
AB = [0, 00] and then proved [0, 00) = [0,50) (Theorem 4.3.9), the proposed
introduction of an auxiliary convention (Example 4.4.10) relating geometric
infinity oo to infinite geometric extent rather than the divergence of a limit in
R would allow us to say, informally, and as a matter tangential, hypothetical
ideation only, that [0,00) # [0,00) and [0,50] # [0,00]. In the convention
of Example 4.4.10, co as an endpoint, either included or unincluded, will
contradict the notion of infinite geometric extent. In general, we have only
introduced this convention as a thinking device, and there is no reason to
directly forbid the usual extended real interval R = [—00,00]. Rather, we
have only shown that it is better to write R = [~50, 0] because it doesn’t
suggest the non-existence of the neighborhood of infinity. An interval is a set
of numbers equipped with an order relation but not necessarily any operations,
and infinity only differs from infinity hat in its operations, so the two intervals
[0, 00] and [0,50] must be the same in the present conventions. Although we
have not defined o0 directly with the limit definition of oo (Definition 2.2.2),
having instead deduced its existence independently from (i) the bijectivity of
the tangent function on an appropriate neighborhood of the origin and (i7) the
geometric invariance of line segments under permutations of the labels of their
endpoints, it remains that the magnitude of o0 is given by the limit definition:
|o0| = oo. Since the identity of real numbers is identically their magnitude,
and since it is only two alternative sets of arithmetic axioms which separate co
and o0, in this section we will study the compliance of the arithmetic axioms
with the limit definition of infinity.

Example 5.3.1 Although the limit definition of oo is said to be its identical
definition (Definition 2.2.2), we cannot always substitute the limit definition of
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infinity to directly compute all expressions involving geometric infinity. Con-
sider the use of the limit definition to write

1 o1 . Y-z
oo—o0co=(lim—)]—(lim—- ) =lm
z—0 y—=0y z—0 Ty

y—0

Generally, this limit does not exist because, for example, we obtain different
results on the lines y = x and y = 2x. Presently, however, there is only one
possible line: the real number line. Along the line x = y, we find

00 — 00 = (liml) — <liml) = lim <l—l) =1lim0=0 .
z—0 z—0 z—0 \ T €T z—0

This contradicts Axiom 2.2.3 which gives
00 — 0o = undefined .

To the contrary, if we examine o0 — o0 under the ansatz that this expression
may be computed with the limit definition along the line z = y, then we find

—~ — . 1 . 1 . 1 ]_ .
00 — 00 = <hm—) — <11m—) = lim <———> =lim0=0 .
z—0 z—0 z—0 \ x z—0

This is exactly what is given in Axiom 5.1.2, so the ansatz is borne out. At
least sometimes, we can use the limit definition of infinity to compute o0’s
operations.

Remark 5.3.2 Example 5.3.1 has demonstrated that although oo is directly
defined with the limit definition of infinity, we cannot always use that definition
to simplify co’s expressions. Although limxﬁoi — limyﬁoi does not exist in
the general case, we exclude z # y because for any y = f(x) we have

ZE—>N1 — y-)f(Nl) ,

and we want a bijective f : R — R. When x = y, the limit definition does
not agree with the axiomatized operation co — co. Still, other identities for co
such as Axiom 5.1.3 giving é =0 for b € Ry do follow directly from the limit
definition of geometric infinity. We have for b € R

b b . .
—=—>F=lm;=limazb=0 .
o0 lim = z—0 = z—0

z—0 T x

In the present section, as in Example 4.3.10, we will take the hat on o0 as
a constraint on the freedom of algebraic manipulations involving the limit
expression. Particularly, the non-absorptivity of o allows us to combine limit
expressions but forbids us moving any scalars into these limit expressions. The
main purpose of the present section is to demonstrate cases of the validity of the
ansatz that sometimes we can correctly compute expressions involving o0 by
making the direct substitution with the limit definition. Distinctions between
the cases in which we can and cannot do so may be analytically significant.
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Theorem 5.3.3 The property of Azioms 5.2.3 and 5.2.6 giving for a,b € R{

(0—b)—(c—a)=a—b ,

follows from the limit definition of infinity.

Proof. Proof follows from direct substitution of the limit definition of infinity
(Definition 2.2.2). We have

N CHRR (DR

= lim <l—b—l+a)
z—0 \ & X
:lim(—b+a)

z—0

=a—">b . &
Theorem 5.3.4 The property of Axioms 5.2.3 and 5.2.6 giving for a,b € Ry
and 0 < min(X,Y) < max(X,)) <1
(Ra +0) = Ry +a) =Ry —a+b,

follows from the limit definition of infinity.

Proof. Proof follows from direct substitution of the limit definition of infinity
(Definition 2.2.2). We have

(Rx +b) — (Ry +a) = (X +b) — (Vo3 +a)
[rfent) - )
= (X - y)(i%%)—ﬁb
= (X -Y)xo—a+b

N;{y—a—l—b. ég

Remark 5.3.5 Theorem 5.3.4 requires clarification because we might have
written

Ry +b) —(Ry +a) = (X5 +b) — (Y5 +a)

() [(2)

= (limX_y)—a—H)
x—0 x
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=c0—a+b .

Since o0 = Ny, this would necessarily entail a contradiction because the con-
dition 0 < min(X,)) < max(X,)) < 1 forbids X — ) = 1. In the above
algebraic manipulation, we have given at the second step
Ny = X0 =lim—
x—0 I

but this contradicts Definition 4.3.7 requiring that oo does not have absorp-
tive properties. Such a property is explicitly bestowed to the limit definition of
infinity when we move the scalar X into the limit expression. Therefore, it is
implicit in the axioms that scalar multipliers of 50 must not be transferred by
multiplicative association into the limit expression when substituting the limit
definition of algebraic infinity o0. In practice, this has little to no relevance
because arithmetic follows from the arithmetic axioms rather than the limit
definition of infinity. The purpose of the present section, rather, is to show
that at least many of the axioms may be derived from the limit definition, and
that the present axiomatic framework is very strong because many of
its axioms are directly provable when we assume the usual associativities, com-
mutativities, and distributivities constrained by the rules of non-absorptivity.

Theorem 5.3.6 The property of Azioms 5.2.3 and 5.2.6 giving for a,b € RS
and 0 < min(X,Y) < max(X,)) <1

(NX—H)) ca=Nxq +ba ,
follows from the limit definition of infinity.

Proof. Proof follows from direct substitution of the limit definition of infinity.

We have
(N;(—i-b)-a:(X@—i-b)-a

1
= {X (hm—) +b] -a
x—0
1
= Xa (hm —) + ba
x—0
= Xaoo + ba
= N(Xa) + ba . ég
Theorem 5.3.7 The property of Aziom 5.2.6 (reliant on Axiom 5.2.3) giving
for a,b € Ry and 0 < min(X,)) < max(X,)) <1
(NX + b) : (Ny + a) = N(N(Xy)JraXery) +ba

follows from the limit definition of infinity.
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Proof. Proof of the present theorem follows from direct substitution of the
limit definition of infinity. We have

Ry +0)(Ry +a) = (XY +b) (Y +a)

[ (hm ) + b} {y (lim 1) + a}
=0 z—0
1 1 .1
=Xy (hm ) +aX (11m —) + b)Y (hm —) + ba .
x—0 x—0 x—0

If we wrote here

then that would not exactly violate Definition 4.3.7 because it shows infinity
absorbing itself while Definition 4.3.5 gives the multiplicative absorptive prop-
erty in terms of a composition between oo and x € R. However, moving the
exponent into the limit violates Definition 4.3.11 requiring that

0000 =00 N =Nz #N; =00

Therefore, we finish the proof as

z—0

Ry +0)(Ry +a) = XY (hm 1) Ny + aly + Ry + ba
= N(Xy(lim l)) +Nax+be—|—ba
= Nxys) + Nax4sy) + ba

= N( Rxy) +aX+bY) +ba . g

Theorem 5.3.8 The property of Aziom 5.2.13 giving for a,b € Ry and 0 <
min(X,Y) < max(X,)) < 1

Nx/j—b:)( ’

0,9)

follows from the limit definition of infinity.

Proof. We will use the property that X € Ry to allow us move it out of the
quotient, as per Axiom 5.2.12. We have

x (1im l) lim L
N b < b z
X0 _ om0 — X2 L limab = Xliml =X . &
00 lim lim 1 limt z—0 z—0
z—0~T z—0 7T z—0 7T
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