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Abstract

This paper proposes a new method of measuring the distance between con-

flicting order sets, quantifying the similarity between focal elements and their

own size. This method can effectively measure the conflict of belief functions on

an ordered set without saturation due to the non-overlapping focus elements.

It has proven that the method satisfies the property of the distance. Examples

of the engineering budget and sensors show that the distance can effectively

measure the conflict between ordered sets, and prove the distance we propose to

reflect the information of order sets more comprehensively by comparison with

existing methods, and the conflict metric between ordered sets is more robust

and accurate.
Keywords: Orderable sets, Distance metric, Dempster-Shafer theory, Belief

function

1. Introduction

Dempster-Shafer theory, also known as belief function theory, was first pro-

posed by Demster[1] and later improved by Shafer[2] because it can handle

information fusion problem well, and is widely used in decision-making[3, 4, 5,

∗Corresponding author: B. Kang, College of Information Engineering, Northwest A&F
University, Yangling, Shaanxi, 712100, China. Email address: bingyi.kang@nwsuaf.edu.cn;
bingyi.kang@hotmail.com.

Preprint submitted to Pattern Recognition Letters November 14, 2021



6, 7, 8], information fusion[9, 10, 11, 4, 12, 13, 14, 15] and uncertain informa-

tion processing[16, 17, 18, 19, 20, 21]. However, when given that the evidence is

highly conflicting with each other, the results of using the Demster combination

rule are counterintuitive, as in the case of Zadeh[22]. In recent years, a number

of ways have been proposed to solve this problem[23, 24, 25, 26]. One of the

most widely used methods is the distance of evidence[27, 28, 29].

In the Deepster-Shafer domain, which uses traditionally similar functions,

however, the basic assumption of Jousselme distance and other distances is

that the measurement space for building BPA is ”exclusive and exhaustive”[1].

Therefore, the only difference between focus elements is their concurrent or

intersectional cardinality. Based on the defined similarity function, if there is no

overlap between the two focal elements, the distance obtained by the cardinality-

based measure will reach saturation values. In real life, there is a lot of orderly

information, for example, professors with ”excellent, good, medium, pass, fail”

to give students a score[30, 31]. The Dempster-Shafer domain hypothesis does

not apply on an ordered set. In order to effectively measure the conflict of belief

functions on an ordered set, Sunberg et al.[32] proposed a Sunberg distance

based on Hausdorff distance. By calculating the distance between the focal

elements, consider the distance between the two BPAs in the metric space, the

effectiveness is proved by continuous (orderly) measuring spaces. In order to

overcome the shortcomings of Sunberg distance, Cheng et al.[33] proposed a

new ordered sets distance measurement, fully considering a variety of features

of data, and comprehensively reflects the information of order sets.

In this paper, a new measure of the distance of the mass distribution conflict

of ordered set confidence is proposed, which overcomes some shortcomings of

the existing method. Considering not only the distance effect of the two BPA

focus elements in measuring space, but also the influence of the focus element’s

own size on distance, because it considers the multi-faceted characteristics of the

data, it can reflect the data information of the ordered set more comprehensively

and effectively, and is more robust and flexible than the existing method. Nu-

merical examples show that the proposed correlation coefficients overcome the
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shortcomings of existing methods and can more effectively measure the degree

of conflict between belief functions.

The organizational structure of this paper is as follows. The Section 2 briefly

introduces the basic knowledge of D-S theory and the existing method of evi-

dence distance measurement. Section 3 introduces the proposed new distances

and uses a simple example to illustrate the shortcomings of Sunberg distances

and the validity of the distances we propose. In the Section 4, some properties of

the proposed distance and the role of tuning parameters are discussed. Section

5 illustrates the validity of the proposed new distance through some numeri-

cal examples and practical applications. Finally, a brief conclusion is given in

Section 6.

2. Preliminaries

2.1. Belief function theory

The belief function theory also called the Dempster-Shafer theory or evidence

theory, which is proposed by Dempster[1] and supplemented by Shafer[2] to form

a framework for data fusion of uncertain or inaccurate data fragments. Let Θ

be a set of N mutually exclusive and exhaustive events. Then, Θ is called the

frame of discernment and is denoted by[1, 2]

Θ = {θ1, θ2, · · · , θN} (1)

The power set 2Θ of Θ contains all possible subsets contained in Θ�is indi-

cated as:

2Θ = {∅, {θ1}, · · · , {θN}, {θ1, θ2}, · · · , {θ1, θ2, · · · , θi}, · · · ,Θ} (2)

Definition 1. A basic probability assignment (BPA) is a mapping m from 2Θ

to [0, 1] defined by[1, 2]:

m : 2Θ → [0, 1] (3)
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which satisfies the following conditions:

m (∅) = 0 and
∑
A∈2Θ

m (A) = 1 (4)

where m(A) represents the belief to A. In addition, when m(A)>0, A is called

a focal element.

2.2. Existing belief function distance

2.2.1. Jousselme’s distance

Jousselme et al.[34] proposed a method to measure the distance of belief

function based on the distance between the intersection and union cardinality

of focal elements.

Definition 2. Let m1 and m2 be two BPAs on the same frame of discernment

Θ, which contains N mutually exclusive and exhaustive hypotheses. The distance

between m1 and m2 is represented as follows:

dJ(m1,m2) =

√
1

2
(−→m1 −−→m2)TDJ(

−→m1 −−→m2) (5)

where, −→m1 and −→m2 represent two BPAs m1 and m2 as vectors respectively, and

DJ is a 2N × 2N matrix used to represent the similarity of focal elements, and

its elements are represented as:

DJ(A,B) =
|A ∩B|
|A ∪B|

(6)

where |A| is the cardinality of A, and A,B ∈ 2Θ are two subsets of Θ.

2.2.2. Sunberg et al.’s distance

Zachary Sunberg et al.[32] proposed a Hausdorff-based measure for orderable

sets. It can accurately measure the conflict between BPAs, and will not be

saturated just because the two BPAs have no common focal elements, which is

defined as follows:
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Definition 3.

dH(m1,m2) =

√
1

2
(−→m1 −−→m2)TDH(−→m1 −−→m2) (7)

where DH is the similarity matrix whose elements are

DH(Ai, Aj) =
1

1 +KH(Ai, Aj)
(8)

where DH(Ai, Aj) ∈ [0, 1], represents similarity between Ai and Aj. K > 0

is the user-defined tuning parameter, used to adjust measure response of the

orderable spatial discretization. H(Ai, Aj) is the Hausdorff distance between Ai

and Aj. It is used to quantify the distance of two focal elements, which is defined

according to

H(Ai, Aj) = max{sup
b∈Ai

inf
c∈Aj

d(b, c), sup
c∈Aj

inf
b∈Ai

d(b, c)} (9)

where d(x, y) is the distance between the two elements of the sets, which is any

valid measure distance defined on the measured space.

2.2.3. Cheng et al.’s distance

Sunberg et al.’s distance is insensitive to the distribution of the set edge,

and Cheng et al.[33] proposed a new distance, which effectively improves the

sensitivity of distance to set edge distribution, and overcomes Sunberg et al.’s

distance is insensitive to the set edge distribution. The method uses the same

structure as Eq.(7),defined as follows:

Definition 4.

dM (m1,m2) =

√
1

2
(−→m1 −−→m2)TDM (−→m1 −−→m2) (10)

where DM is a n × n matrix, n is the cardinality of the union of two focal

elements, and the element Dij in Dα represents the similarity of the ith and jth
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element, defined as follows.

DM ij = Dα(i, j) =
1

1 + αM(A,B)
(11)

where α > 0, its effect is equivalent to K in Eq.(8). M(A,B) measure the

distance between ith element A and ith element B in an ordered set. Suppose all

elements in A and B are {A1, · · · , Ai, B1, · · · , Bj}, then M(A,B)is represented

by:

M(A,B) =
|min(A)−min(B)|+ |max(A)−max(B)|

max((A+
i −A−

i ), (B
+
i −B−

j ))
(12)

Example 1. Suppose you have two groups of BPA, which have only m1’s focal

elements different, as shown below:

Group1 : m1 = {[4, 6], 1},m2 = {[101, 103], 1},m3 = {[201, 203], 1}

Group2 : m′
1 = {[4.5, 5.5], 1},m′

2 = {[101, 103], 1},m′
3 = {[201, 203], 1}

Although m1’s focal element [4, 6] is greater than m′
1’s focal element [4.5, 5.5],

according to Cheng et al.’s method, dM (m1,m2) = dM (m′
1,m

′
2), the result is

unreasonable.

3. Proposed distance

We propose a new distance that effectively measures the distance between

ordered sets. It considers not only the physical distance between the focal

elements, but also the size of the focal elements themselves, is proposed as

follows:

Definition 5. Let m1 and m2 be two BPAs on the same ordinal frame of

discernment ΘO, we proposed a new distance defined as follow:

do(m1,m2) =

√
1

2
(−→m1 −−→m2)TD(−→m1 −−→m2) (13)

where, Dij =
1

1 + λO(Ai, Aj)
(14)
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where, λ > 0 and Sunberg et al.’s K, Cheng et al.’s α are similar to user-defined

tuning parameter that adjust the measurement response based on the discrete

adjustment of the orderable space. Ai, Aj are the ith and jth focal elements

on ΘO. O(Ai, Aj) indicates the similarity between Ai and Aj. It is defined as

follows:

Definition 6.

O(Ai, Aj) =
|min(Ai)−min(Aj)|+ |max(Ai)−max(Aj)|
|max(Ai)−min(Ai)|+ |max(Aj)−min(Aj)|

(15)

A special case is that if both Ai and Aj are real values, then O(Ai, Aj) =

|Ai −Aj |.

For the proposed distance to use the Euclidean norm, it can be defined as an

element that is an N-dimensional vector discernment frame. Using the proposed

similarity coefficient describe the similarity between focal elements, taking into

account both the physical distance between the focal elements and the effect of

the size of the focal elements themselves. Moreover, the larger the focal element,

the closer it should be to the other focal elements. To illustrate the effect of the

focal element’s own size, an illustrative example is given:

Example 2. Assume three BPAs m1 = {[4, 6], 1}, m2 = {[101, 103], 1}, m3 =

{[201, 203], 1}, keep m2, m3 unchanged, only change the size of the focus element

of m1, as follows:

Group1 : m1 = {[4.9, 5.1], 1},m2 = {[101, 103], 1},m3 = {[201, 203], 1}

Group2 : m1 = {[4.6, 5.4], 1},m2 = {[101, 103], 1},m3 = {[201, 203], 1}

Group3 : m1 = {[4.3, 5.7], 1},m2 = {[101, 103], 1},m3 = {[201, 203], 1}

Group4 : m1 = {[4, 6], 1},m2 = {[101, 103], 1},m3 = {[201, 203], 1}

Group5 : m1 = {[3, 7], 1},m2 = {[101, 103], 1},m3 = {[201, 203], 1}

Group6 : m1 = {[2, 8], 1},m2 = {[101, 103], 1},m3 = {[201, 203], 1}

Group7 : m1 = {[1, 9], 1},m2 = {[101, 103], 1},m3 = {[201, 203], 1}
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The results of using Cheng et al.’s distance and proposed new distance, the

distance of d(m1,m2), d(m1,m3) and d(m2,m3) are shown in Table 1, Table 2

and Table 3 respectively. As we can see from Fig.1, when the size of the focus

element is less than 2, d(m1,m2) remains the same, and only when it is greater

than 2, it increases as the focus element expands, this result is not reasonable. In

Fig.2, the change trend of d(m1,m3) is the same as that of d(m1,m2). Since the

interval size and distance of m2 and m3 have not changed, d(m2,m2) remains

unchanged.

The main reason for this happens is that only the largest focal elements in

all focal elements are considered in the Cheng et al.’s distance, and the change

in focal elements with small size is not sensitive. The distance we propose

fully considers the size of each focal element and improves the sensitivity of the

distance to focal element size.

Table 1: The distance d(m1,m2) obtained by two different methods, in Example 2

Distance\Group Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Cheng et al.’s 0.7017 0.7017 0.7017 0.7017 0.5715 0.4943 0.4418

Proposed 0.6845 0.6398 0.6027 0.5715 0.4943 0.4418 0.4031

Table 2: The distance d(m1,m3) obtained by two different methods, in Example 2

Distance\Group Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Cheng et al.’s 0.8144 0.8144 0.8144 0.8144 0.7044 0.6296 0.5744

Proposed 0.8011 0.7646 0.7327 0.7044 0.6296 0.5744 0.5316

Table 3: The distance d(m2,m3) obtained by two different methods, in Example 2

Distance\Group Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

Cheng et al.’s 0.7017 0.7017 0.7017 0.7017 0.7017 0.7071 0.7071

Proposed 0.5774 0.5774 0.5774 0.5774 0.5774 0.5774 0.5774
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Figure 1: The distance d(m1,m2) obtained by two different methods

Figure 2: The distance d(m1,m3) obtained by two different methods

4. New distance properties

4.1. Distance properties

For a ordinal frame of discernment ΘO, the properties of proposed new

distance are described as follows:
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1. Non-negativity: do(m1,m2) ≥ 0;

2. Symmetry: do(m1,m2) = do(m2,m1);

3. Triangle inequality: do(m1,m2) ≤ do(m1,m3) + do(m3,m2).

Non-negativity. do(m1,m2) ≥ 0

Proof. Let m1,m2 are two valid BPAs, according to the Eq.(13), the n× n

similarity matrix D of the focal elements in m1 and m2 is calculated. Where,

Dii = 1 ∀i and 0 < Dij < 1 ∀i, j; i ̸= j. D is defined as

D =



1 D12 · · · D1n

D21 1 · · · D2n

...
... . . . ...

Dij

...
... . . . ...

Dn1 Dn2 · · · 1


Dij measures the distance between the ith and jth focal elements. Assume

that there is any three focal elements ith, kth, jth. If the distance between the

ith and kth elements Dik, and the distance between the kth and jth elements

Dkj , has been determined, then the distance between the ith and jth elements

Dij is fixed within a certain range.

Figure 3: Dij in different Cases

As shown in Fig.3, when j is close to i, Dij is the smallest, is Case1, when j

is far away from i, Dij is the largest, is Case2. This geometric constraint is the
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same as equation (16) in [32].

1−Dij

Dij
∈
[
|Dik −Dkj |
DikDkj

,
Dik +Dkj − 2DikDkj

DikDkj

]
∀k (16)

Therefore, we can conclude that D is positive definite[32], and by Cholesky

decomposition

D = CTC (17)

where C is a n × n lower triangular matrix. Then Eq.(13) can be transformed

as follows:

do(m1,m2) =

√
1

2
(−→m1 −−→m2)TD(−→m1 −−→m2)

=

√
1

2
(−→m1 −−→m2)TCTC(−→m1 −−→m2)

=

√
1

2
(C(−→m1 −−→m2))T (C(−→m1 −−→m2))

=

√
1

2
||(C(−→m1 −−→m2))||

2
2

=

√
2

2
||(C(−→m1 −−→m2))||2

(18)

Because of ||(C(−→m1 −−→m2))||2 ≥ 0, it can be proved do(m1,m2) ≥ 0.

Symmetry. do(m1,m2) = do(m2,m1)

Proof. Because (−→m1 −−→m2) can be expressed as −(−→m2 −−→m1), so we have

do(m1,m2) =

√
1

2
(−→m1 −−→m2)TD(−→m1 −−→m2)

=

√
1

2
[−(−→m2 −−→m1)T ]D [−(−→m2 −−→m1)]

=

√
1

2
(−→m2 −−→m1)TD(−→m2 −−→m1)

= do(m2,m1)

Triangle inequality. do(m1,m2) ≤ do(m1,m3) + do(m3,m2)

Proof. Since m1, m2, m3 is defined on the same discernment frame, the

D = CTC equality in do(m1,m2), do(m1,m3), and do(m2,m3) represents the
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distance between n elements. m1, m2, m3 and C are represented as:

−→m1 = (a1, a2, · · · , an)T ;−→m2 = (e1, e2, · · · , en)T ;−→m3 = (b1, b2, · · · , bn)T ;

C =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

... . . . ...

cn1 cn2 · · · cnn


C(−→m1 −−→m3) = (

n∑
i=1

c1i(ai − bi),

n∑
i=1

c2i(ai − bi), · · · ,
n∑

i=1

cni(ai − bi))
T

= (

n∑
i=1

c1i(ai − ei + ei − bi),

n∑
i=1

c2i(ai − ei + ei − bi), · · · ,
n∑

i=1

cni(ai −−ei + eibi))
T

= (

n∑
i=1

c1i(ai − ei) +

n∑
i=1

c1i(ei − bi),

n∑
i=1

c2i(ai − ei) +

n∑
i=1

c2i(ei − bi), · · · ,

n∑
i=1

cni(ai − ei) +

n∑
i=1

cni(ei − bi))
T

= (

n∑
i=1

c1i(ai − ei),

n∑
i=1

c2i(ai − ei), · · · ,
n∑

i=1

cni(ai − ei))
T

+ (

n∑
i=1

c1i(ei − bi),

n∑
i=1

c2i(ei − bi), · · · ,
n∑

i=1

cni(ei − bi))
T

= C(−→m1 −−→m2) + C(−→m2 −−→m3)

According to Cauchy-Schwarz inequality, we have

||C(−→m1 −−→m3)||2 = ||C(−→m1 −−→m2) + C(−→m2 −−→m3)||2 ≤ ||C(−→m1 −−→m2)||+||C(−→m2 −−→m3)||2

According to Eq.(18) can be drawn:

√
2

2
||C(−→m1 −−→m3)||2 ≤

√
2

2
||C(−→m1 −−→m2)||2 +

√
2

2
||C(−→m2 −−→m3)||2

do(m1,m3) ≤ do(m1,m2) + do(m2,m3)

It has been proved that the proposed distance do satisfies the triangle inequality.
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4.2. Special case analysis

There is a special case where the belief function is completely focused on a

single focal element, such as m1(A) = 1 m2(B) = 1.

 do(m1,m2) = 0 A = B

do(m1,m2) =
√

λO(A,B)
1+λO(A,B) Otherwise

Only when the structure of the two BPAs is equal, the distance do(m1,m2)

is equal to 0.

When the two BPA are infinitely far apart, do(m1,m2) is approaching 1.

4.3. Influence of tuning parameters

Figure 4: Different tuning parameters affect the same BPAS

The tuning parameters λ is defined by the user to adjust the distance to

obtain an output within a specific range, as shown in Fig.(4), which describes the

change in the distance between two BPAs including only a single focal element.

It is clear that if the distance between elements is small, then λ = 100 is more
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appropriate, and if the distance between elements is larger, then λ = 0.01 is

more appropriate. In general, the greater the λ, the less the similarity between

focal elements affects distance.

5. Numerical examples

5.1. A case study: project budget

This section discusses the effectiveness of the proposed distance in focal

elements through the project budget issues proposed by Cheng et al.[33].

Suppose a construction project is about to start, and six experts are invited

to evaluate the budget on E1, E2, E3, E4, E5 and E6. If the budget given by

the experts is not consistent with the budget given by most experts, it can be

considered unreliable. Similarly, consider two different cases of the interval-value

and real number.

5.1.1. Case 1: the budget given by interval-value sets

In this case, interval-value set is used to represent the budget given by ex-

perts. The budget given by the six experts is as shown in Table 4. It can be

seen that the average budget of six experts is equal to 530.

The distance between the six experts was measured using different methods,

and the results were as shown in Table 5(Tuning parameters for each method

are 3).

Table 4: The project budget given by six different experts

Cost(1000$)\Expert E1 E2 E3 E4 E5 E6

[500, 520] 0.0 0.0 0.0 0.2 0.5 0.5
[510, 530] 0.0 0.5 0.0 0.3 0.0 0.0
[500, 530] 0.5 0.0 0.4 0.0 0.0 0.0
[530, 550] 0.0 0.5 0.6 0.3 0.0 0.0
[540, 560] 0.0 0.0 0.0 0.2 0.5 0.0
[530, 560] 0.5 0.0 0.0 0.0 0.0 0.0
[545, 555] 0.0 0.0 0.0 0.0 0.0 0.5
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Table 5: The distance between the six experts was measured using different methods
Distance\Method Jousselme et al. Sunberg et al. Cheng et al. Proposed

d(E1, E2) 0.40825 0.69658 0.48795 0.43301

d(E1, E3) 0.33166 0.54792 0.39641 0.34641

d(E1, E4) 0.29439 0.60718 0.38555 0.33848

d(E1, E5) 0.40825 0.69610 0.49239 0.43539

d(E1, E6) 0.50000 0.69798 0.53302 0.49593

d(E2, E3) 0.27689 0.45074 0.33094 0.28723

d(E2, E4) 0.23094 0.27844 0.24656 0.22174

d(E2, E5) 0.57735 0.69609 0.61640 0.55435

d(E2, E6) 0.60553 0.69809 0.61640 0.57077

d(E3, E4) 0.27689 0.45062 0.33199 0.28780

d(E3, E5) 0.52599 0.70258 0.58244 0.51740

d(E3, E6) 0.56273 0.70479 0.58244 0.53501

d(E4, E5) 0.34641 0.41765 0.36984 0.33261

d(E4, E6) 0.43589 0.51948 0.44360 0.41438

d(E5, E6) 0.35355 0.48412 0.38730 0.35355

It can be seen from Fig.5, d(E1, E2) and d(E1, E5) are equal according to

the distance of Julesselme et al., indicating that the distance cannot reflect the

distribution difference between ordered sets. Based on the distance of Sunberg

et al., the distance between E3 and E6 is considered to be the largest, which

is different from the results of other methods because Sunberg et al.’s method

does not take into account the intersection of the distribution intervals of the

focal elements of the ordered set. d(E2, E5) and d(E2, E6) are equal based

on the distance of Cheng et al., because Cheng et al.’s method does not take

into account the size of the interval of the focal element of the ordered set. The

proposed method, not only considers the intersection of the distribution interval

of the focal element, but also takes into account the size of the focal element

interval itself, which can fully reflect the distribution difference between the

ordered sets.

15



Figure 5: The distance between the six experts was measured using different methods

5.1.2. Case 2: the budget given by real number sets

Based on the results in Table5 and the symmetry of the proposed distance,

the total distance from each expert to all other experts can be calculated.

dt(E1) = d(E1, E2) + d(E1, E3) + d(E1, E4) + d(E1, E5) + d(E1, E6) = 2.04923

dt(E2) = d(E1, E2) + d(E2, E3) + d(E2, E4) + d(E2, E5) + d(E2, E6) = 2.06710

dt(E3) = d(E1, E3) + d(E2, E3) + d(E3, E4) + d(E3, E5) + d(E3, E6) = 1.97385

dt(E4) = d(E1, E4) + d(E2, E4) + d(E3, E4) + d(E4, E5) + d(E4, E6) = 1.59502

dt(E5) = d(E1, E5) + d(E2, E5) + d(E3, E5) + d(E4, E5) + d(E5, E6) = 2.19330

dt(E6) = d(E1, E6) + d(E2, E6) + d(E3, E6) + d(E4, E6) + d(E5, E6) = 2.36964

According to the above results, due to the maximum dt(E6), expert E6 was

eliminated. The other five experts further made a more precise budget, with

budget values given in real number and allows more than one value. Experts’

precise budgets are shown as follows:

E1 = {(530), 1}, E2 = {(520, 540), 1}, E3 = {(540, 550), 1},
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E4 = {(510, 560), 1}, E5 = {(510, 550), 1}

The results obtained through different methods, as shown in Table 6, (Tuning

parameters for each method are 3) Jousselme et al. argue that in this case, the

belief function is completely conflicting, ignoring the physical distance between

elements on an ordered set. In this case, our method is the same as the method

of Cheng et al., which both consider the biggest difference between E1 and E4.

However, the distance of Sunberg et al. is considered to be the largest distance of

E1E3, E2E4, E3E4, E3E5, because this method only cares about the maximum

distance between elements, so the sensitivity is reduced.

Table 6: The distance between the five experts was measured using different methods
Distance\Method Jousselme et al. Sunberg et al. Cheng et al. Proposed

d(E1, E2) 1 0.70711 0.81650 0.81650

d(E1, E3) 1 0.81650 0.86603 0.86603

d(E1, E4) 1 0.86603 0.91287 0.91287

d(E1, E5) 1 0.81650 0.89443 0.89443

d(E2, E3) 0.81650 0.81650 0.86603 0.86603

d(E2, E4) 1 0.86603 0.86603 0.86603

d(E2, E5) 1 0.70711 0.81650 0.81650

d(E3, E4) 1 0.86603 0.89443 0.89443

d(E3, E5) 0.81650 0.86603 0.86603 0.86603

d(E4, E5) 0.81650 0.70711 0.70711 0.70711

5.2. Fixed masses of varied BPAs

In this section, we show examples of sensors with different but fixed values

through a typical application of an ordered set[32]. Sensor 1 remains stationary,

Sensor 2 moves to the right along a solid line, the distance between the two

sensors increases, and the two sensors are equivalent to two BPAs:

17



Sensor 1 is represented as:

m1(2) = 0.1

m1(2, 2.3) = 0.2

m1(2, 2.3, 2.5) = 0.4

m1(2, 2.3, 2.5, 2.7) = 0.2

m1(2, 2.3, 2.5, 2.7, 3) = 0.1

Sensor 2 is represented as:

m2(i) =
1

3

m2(i, 0.5 + i) =
1

3

m2(i, 0.5 + i, 1 + i) =
1

3

Where i is an integer from 2 to 12, indicating the distance between the sensor

1 and the sensor 2.

The distance between m1 and m2 calculated using different methods is shown

in Fig.(6). This example shows that the distance between Jousselme et al. does

not effectively reflect the change in the distance between the two sensors (BPA),

the distance between Sunberg et al., the distance between Cheng et al., and the

distance we propose can effectively reflect the distance change between the two

sensors.

18



Figure 6: The distance between m1 and m2 calculated using different methods

6. Conclusion

This paper proposes a method for measuring the distance between BPAs

defined on an ordered set. Measure conflicts between BPAs by measuring the

physical distance between focal elements and their own size. Several numerical

examples of the ordered measurement space indicate that the proposed method

is superior to the distance of the Jousselme et al., and the appearance of satura-

tion can be avoided. In addition, the new distance is more robust and effective,

overcoming the shortcomings of the existing method of measuring the distance

between ordered sets, and effectively reducing the appearance of violation of

intuition.

19



Acknowledgment

The work is partially supported by the Fund of the National Natural Science

Foundation of China (Grant No.61903307), China Postdoctoral Science Founda-

tion (Grant No. 2020M683575), Chinese Universities Scientific Fund (Grant No.

2452018066), and the National College Students Innovation and Entrepreneur-

ship Training Program (Grant No. 202110712143, No.202110712146).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] A. P. Dempster, Upper and lower probabilities induced by a multivalued

mapping, in: Classic works of the Dempster-Shafer theory of belief func-

tions, Springer, 2008, pp. 57–72.

[2] G. Shafer, A mathematical theory of evidence, Princeton university press,

1976.

[3] R. R. Yager, N. Alajlan, Evaluating belief structure satisfaction to uncer-

tain target values, IEEE transactions on cybernetics 46 (4) (2015) 869–877.

[4] W. Jiang, J. Zhan, A modified combination rule in generalized evidence

theory, Applied Intelligence 46 (3) (2017) 630–640.

[5] J. Ma, W. Liu, P. Miller, H. Zhou, An evidential fusion approach for gender

profiling, Information Sciences 333 (2016) 10–20.

[6] R. R. Yager, N. Alajlan, Decision making with ordinal payoffs under

dempster–shafer type uncertainty, International Journal of Intelligent Sys-

tems 28 (11) (2013) 1039–1053.

20



[7] C. Lian, S. Ruan, T. Denoeux, An evidential classifier based on feature

selection and two-step classification strategy, Pattern Recognition 48 (7)

(2015) 2318–2327.

[8] C. Huang, X. Mi, B. Kang, Basic probability assignment to probability

distribution function based on the shapley value approach, International

Journal of Intelligent Systems (2021).

[9] Z. Liu, Q. Pan, J. Dezert, J.-W. Han, Y. He, Classifier fusion with contex-

tual reliability evaluation, IEEE transactions on cybernetics 48 (5) (2017)

1605–1618.

[10] M. S. Islam, R. Sadiq, M. J. Rodriguez, H. Najjaran, M. Hoorfar, Integrated

decision support system for prognostic and diagnostic analyses of water

distribution system failures, Water resources management 30 (8) (2016)

2831–2850.

[11] U. Mönks, H. Dörksen, V. Lohweg, M. Hübner, Information fusion of con-

flicting input data, Sensors 16 (11) (2016) 1798.

[12] W. Jiang, A correlation coefficient for belief functions, International Jour-

nal of Approximate Reasoning 103 (2018) 94–106.

[13] D. Xinyang, C. Yebi, W. JIANG, An ecr-pcr rule for fusion of evidences

defined on a non-exclusive framework of discernment, Chinese Journal of

Aeronautics (2021).

[14] L. Zhou, H. Cui, C. Huang, B. Kang, J. Zhang, Counter deception in belief

functions using shapley value methodology, International Journal of Fuzzy

Systems (2021) 1–15.

[15] X. Mi, B. Kang, On the belief universal gravitation (bug), Computers &

Industrial Engineering 148 (2020) 106685.

[16] T. Denoeux, S. Sriboonchitta, O. Kanjanatarakul, Evidential clustering of

large dissimilarity data, Knowledge-Based Systems 106 (2016) 179–195.

21



[17] L. G. Polpitiya, K. Premaratne, M. N. Murthi, D. Sarkar, A framework

for efficient computation of belief theoretic operations, in: 2016 19th In-

ternational Conference on Information Fusion (FUSION), IEEE, 2016, pp.

1570–1577.

[18] J. Yang, H.-Z. Huang, L.-P. He, S.-P. Zhu, D. Wen, Risk evaluation in

failure mode and effects analysis of aircraft turbine rotor blades using

dempster–shafer evidence theory under uncertainty, Engineering Failure

Analysis 18 (8) (2011) 2084–2092.

[19] Z.-G. Liu, Q. Pan, J. Dezert, A. Martin, Combination of classifiers with

optimal weight based on evidential reasoning, IEEE Transactions on Fuzzy

Systems 26 (3) (2017) 1217–1230.

[20] J. N. Heendeni, K. Premaratne, M. N. Murthi, J. Uscinski, M. Scheutz, A

generalization of bayesian inference in the dempster-shafer belief theoretic

framework, in: 2016 19th International Conference on Information Fusion

(FUSION), IEEE, 2016, pp. 798–804.

[21] X. Deng, Y. Cui, An improved belief structure satisfaction to uncertain

target values by considering the overlapping degree between events, Infor-

mation Sciences 580 (2021) 398–407.

[22] L. A. Zadeh, A simple view of the dempster-shafer theory of evidence and

its implication for the rule of combination, AI magazine 7 (2) (1986) 85–85.

[23] A. Roquel, S. Le Hégarat-Mascle, I. Bloch, B. Vincke, Decomposition of

conflict as a distribution on hypotheses in the framework on belief functions,

International journal of approximate reasoning 55 (5) (2014) 1129–1146.

[24] K.-S. Chin, C. Fu, Weighted cautious conjunctive rule for belief functions

combination, Information Sciences 325 (2015) 70–86.

[25] J.-B. Yang, D.-L. Xu, Evidential reasoning rule for evidence combination,

Artificial Intelligence 205 (2013) 1–29.

22



[26] X. Deng, D. Han, J. Dezert, Y. Deng, Y. Shyr, Evidence combination from

an evolutionary game theory perspective, IEEE transactions on cybernetics

46 (9) (2015) 2070–2082.

[27] A.-L. Jousselme, P. Maupin, Distances in evidence theory: Comprehensive

survey and generalizations, International Journal of Approximate Reason-

ing 53 (2) (2012) 118–145.

[28] M. Loudahi, J. Klein, J.-M. Vannobel, O. Colot, Evidential matrix met-

rics as distances between meta-data dependent bodies of evidence, IEEE

transactions on cybernetics 46 (1) (2015) 109–122.

[29] F. Xiao, Ced: A distance for complex mass functions, IEEE transactions

on neural networks and learning systems 32 (4) (2020) 1525–1535.

[30] H. Zhang, Y. Deng, Entropy measure for orderable sets, Information Sci-

ences 561 (2021) 141–151.

[31] Y. Li, Y. Deng, Generalized ordered propositions fusion based on belief

entropy, International Journal of Computers Communications & Control

13 (5) (2018) 792–807.

[32] Z. Sunberg, J. Rogers, A belief function distance metric for orderable sets,

Information Fusion 14 (4) (2013) 361–373.

[33] C. Cheng, F. Xiao, A distance for belief functions of orderable set, Pattern

Recognition Letters 145 (2021) 165–170.

[34] A.-L. Jousselme, D. Grenier, É. Bossé, A new distance between two bodies

of evidence, Information fusion 2 (2) (2001) 91–101.

23


	Introduction
	Preliminaries
	Belief function theory
	Existing belief function distance
	Jousselme's distance
	Sunberg et al.'s distance
	Cheng et al.'s distance


	Proposed distance
	New distance properties
	Distance properties
	Special case analysis
	Influence of tuning parameters

	Numerical examples
	A case study: project budget 
	Case 1: the budget given by interval-value sets
	Case 2: the budget given by real number sets

	Fixed masses of varied BPAs

	Conclusion

