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Abstract. Human motion recognition is an important topic in 

computer vision as well as security. It is used in scientific 

research, surveillance cameras industry and robotics 

technology as well. The human interaction with the objects 

creates a complex stance. Multiple artefacts such as clutter, 

occlusions, and backdrop diversity contribute to the 

complexity of this technology. Wi-Fi signals with the usage 

of their features could help solve some of these issues, with 

the help of other wearable sensors, such as: RGB-D camera, 

IR sensor (thermal camera), inertial sensor etc. This paper 

reviews various approaches for Wi-Fi human motion 

recognition systems, their analytical methodologies, 

challenges and proposed techniques along with the aspects to 

this paper: (a) applications; (b) single and multi-modality 

sensing; (c) Wi-Fi-based techniques; d) challenges and future 

works. More research related to Wi-Fi human related activity 

recognition can be encouraged and improved. 

Keywords. Human Motion Recognition, Wi-Fi, Sensors, 

Computer vision, Cybersecurity 

1- INTRODUCTION 

Human motion recognition has been recently been an 

important topic in many fields, including computer vision, 

computer networks, cyber security, surveillance-based 

industry and ubiquitous assistive living [1]. HAR seeks to 

comprehend people's daily habits by observing them and their 

surroundings. Sensors in cellphones, wearables, and home 

settings capture this data. Computer vision uses a digital and 

video-based systems to collect daily human actions and 

identify them automatically [2]. With the evolution of digital 

logic and computer systems, low-power, high-capacity, low- 

cost sensors, as well as wireless networking networks, have 

become increasingly common. This is the main reason 

individuals use technology and technologies for daily 

subsistence. The activity recognition mechanism can be used 

to track daily exercise [3]. 

Identifying static and dynamic tasks with postural shifts can 

also help monitor worker health and productivity. These 

systems can also help people maintain a healthy lifestyle by 

advising little changes in their behavior. Soldiers in strategic 

circumstances require precise information on their activities, 

health, and locations [4]. This data can be quite useful in 

combat and practice settings. Smart houses use external 

sensing to track daily tasks. The use of cameras for 

surveillance and interactive reasons is appropriate. These 

systems use motion history photos and computer vision to 

distinguish action [5]. 

Human activity recognition is important in human-to-human 

interactions. It is tough to extract since it contains information 

about a person's identity, personality, and mental state. The 

ability of humans to detect other people's actions is a major 

research topic in machine learning and artificial intelligence 
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[6]. As an outcome of the study, numerous applications such 

as video surveillance, HCI, and human behavior modelling 

demand a multiple action identification system. In order for a 

computer to identify human activities efficiently, the person's 

kinetic states must be determined. Human behaviors like 

“walking” and “running” come effortlessly and are easily 

recognized. Complex tasks. Complex tasks can be broken 

down into simpler ones that are easier to recognize [7]. 
 

Fig 1.: Examples for wearable sensors with human body for 

motion detection 

Object detection in a scenario can help understand human 

activities and provide relevant information about the current 

occurrence. Problems including backdrop clutter, partial 

occlusion, length, perspective, sunlight, and look make it 

difficult to identify human activities in video or still 

photographs. Many applications, such as video surveillance, 

HCI, and human behavior modelling, require multiple activity 

recognition [8]. We cover recent and current research 

advancements of human activity identification. We categorize 

human activity approaches and examine their benefits and 

drawbacks as well as categorizing human activity 

classification approaches into two broad categories based on 

whether they employ data from several modalities. This is 

followed by sub-categories that represent how they simulate 

human behavior and their interests. 

Many researchers from various fields have sought to 

comprehend human mobility. The issue is unique to each 

discipline. With so many reasons for researchers, many 

methods have been introduced across fields. These 

contributions provide a better knowledge of human mobility. 

However, this article focuses on the computer vision part of 

human motion understanding, namely entire body movement 

[9]. This article attempts to recall some of the most quoted 

and recent evaluations over the last two decades, while 

highlighting the subject's relevance and wide-ranging 

applications. The large range of challenging and promising 

applications for human motion analysis, recognition, and 

understanding has sparked significant research in computer 

vision. Following is a survey of multiple applications in 

several domains: 

 Smart Surveillance: Due to the boring and hypnotizing 

nature of monitoring video scenes, and the increasing number 

of cameras covering vast areas, the human operator becomes 

more costly and unreliable (Such as:, a survey of CCTV 

(Closed Circuit Television) systems). So the demand for 

automated surveillance systems becomes urgent. Smart 

surveillance can be used to detect suspicious behavior and 

unusual events, understand and describe human behavior in 

dynamic situations (Such as:, monitoring activities over a 

large area using a distributed network of active video sensors), 

and control access to sensitive areas like military bases and 

government offices [10]. 

 
 Behavioral Biometrics: Recognition of individuals using 

behavioral signals (Such as: stride, length, facial features) 

does not require subject participation or involvement [11]. 

 
 Human-Computer Interaction: Examples of perception 

user interfaces include gesture-driven control, eye gaze 

monitoring, voice recognition, sign language processing and 

understanding, signaling in noisy environments such as 

factories and airports, and cognitive user interfaces which 

enables people to interact with computers without using a 

keyboard or mouse [12]. 

 
 Virtual Reality: in which an allows the user to interact with 

a virtual computer systems environment, such military 

training or fireman and rescue team training. Games and 

entertainment sectors have various uses for virtual reality 

[13]. 
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 Smart Environments: Extracting and keeping awareness 

of a broad range of activities and human behaviors, Such as:, 

monitoring conference room exchanges [14]. 

 
 Games Industry: Several games feature gesture-based 

interactive technology, which uses motion capture to allow 

non-intrusive body movement involvement. Like the popular 

Microsoft Kinect Xbox [15]. 

 
 Entertainment Industry: Motion-captured characters 

replace actors in science fiction films (digital avatars) [16]. 

 
 Sports Motion Analysis: such as soccer, where referee 

decisions and tactics are analyzed, as well as automatic 

highlight identification and video annotation and browsing 

[17]. 

 
 Robotics Learning to Copy Human Behavior: utilizing 

robots to set up or clean tables, or in dangerous scenarios or 

surroundings like vehicle crash tests, skating during an arctic 

blast, etc. [18]. 

 
 Smart Driver Support Systems: Such as: Monitoring 

Driver Consciousness, Sleep Identification, Airbag Network 

Management, Anticipating Driver Turn purpose ,etc. [19]. 

In order to achieve human motion analysis and recognition, 

these applications demand varying levels of performance 

(Such as: human modelling, real-time processing, video 

resolution) and environmental control (Such as: regulated or 

uncontrolled) [20]. These applications' requirements for body 

motion recognition and classification differ (Such as:, human 

modelling, real-time analysis, video resolution, controlled or 

uncontrolled environments, active or passive sensing, types 

and number of sensors, performance robustness and accuracy) 

[21]. 

1.1 Background 

A wireless signal rebounds off walls, objects, as well as other 

surfaces. The innovative idea is used to save hostages in a 

difficult and dynamic situation. Indoor location uses fine- 

grained Wi-Fi signal information to find people based on 

path-loss characteristics [22]. Activities are recognized by 

limiting the interference from individuals or changes in the 

environment. Motion detection and estimation are attractive 

and demanding research topics. Applications that use Wi-Fi 

signals face new problems and opportunities. Indoor location 

tracking can benefit from mobility information. But it can 

make signal processing more challenging. Recent research 

uses Wi-Fi signal changes reflected by motion to identify 

human movement [23]. Motion has two properties: speed and 

orientation. Some works focus on resolving motion. In a 

dynamic setting, fast motion promotes Wi-Fi signal change 

rate. Motion tracking has grown rapidly in recent years. 

Human movement evaluation and identification has many 

surveys, each with a distinct purpose and taxonomy to 

compare different publications. Earlier research in human 

movement is classified as model-based or non-model-based. 

whether explicit or implicit Model, Modeling human 

movements, Body parts used in motion analysis, Full-body or 

body part motion, Detail required to comprehend human 

behaviors and spatial dimensions [24]. Sensory mode , 

Sensory diversity, Location and mobility, Whether active or 

passive, Marker-based or not, Tracking one or more people, 

Assumptions about motion , Usability, Image representation, 

Segmenting video. 

1.2 Challenges 

This study analyses motion detection algorithms and 

evaluates motion impact on Wi-Fi based applications. 

Overall, estimating the impact of motion behavior poses the 

following issues. This problem stems from two aspects: target 

proximity to non-target and device-free motion detection. 

• Create a framework for estimating motion behavior. 

Work already done on dealing with unusual motion behavior 

in experiments cannot be applied to a new context. 

• Estimate the link between motion and Wi-Fi signal 

variations in a random interior environment. 

As a result of this relationship, it is possible to determine the 

performance of data sets from various experimental 

situations. The recognition difficulties in the domain of 

sensor-based motion identification can indeed be examined. 

The difficulty of the activities varies depending on their 

quantity, kind, sensor selection, power usage, obtrusiveness, 

and information gathering procedures. 

As illustrated in the figure 2 below, ambulation activities are 

grouped as static, dynamic, either with postural changes. It is 

easier to identify static actions (sleeping, sitting, etc.) than 

monitoring compliance (running, training, etc.). Due to 

significant overlap in feature space, extremely comparable 

poses (sleeping, standing, etc.) cause tremendous complexity 

in separation. Additionally, dynamic activities (going upstairs 

and downwards) are difficult to distinguish due to comparable 

movement patterns. 
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Fig. 2. The classification different common activities 

techniques for human. 

In most situations, the correlation between completed tasks is 

inconsistent during the duration of the activity, making 

identification even more difficult. For example, whereas 

sitting and standing are closely linked, they are quite distinct 

from walking. Transitional activities may be classified into 

four categories [25]: 

1- Static to Static Postural Transitions. 

2- Static to Dynamic Postural Transitions 

3-Dynamic to Static Postural Transitions. 

4-Dynamic to Dynamic Postural Transitions. 

 
a- Sensors: The amount of sensors, kind of sensors, and position 

of the handset while collecting information from people can 

greatly enhance the sophistication of the identification 

algorithm [26]. 

 
b-Chosen Sensors Numbers: In addition to the usual Wi-Fi and 

Bluetooth sensors on a mobile are sensors for temperature and 

relative humidity as well as light conditions and proximity. 

However, an identification system with a limited number of 

sensors makes the procedure quicker and easier in real-life 

applications. The quantity of wearable sensors is crucial for 

convenience. Users cannot carry several sensors. The balance 

between sensor count and efficiency should be handled with 

attention [27]. 

 
c- Wearable Sensors Location: Typically, people carry their 

cellphones in the coat pocket, trouser wallet, or hand. Because 

trackers detect motion along an axis and the accelerometer 

identifies direction, the posture of the device must be 

evaluated when gathering information, as data might vary 

depending on the sensor placement on a person's body, even 

within the same activity. However, owing to the placement of 

phones and wireless sensors, incorrect detection of a certain 

activity might impair recognition rate. Further issue is that 

some users may forget the device at home, making it hard to 

follow their behavior. In this situation, a wearable sensor may 

be a viable alternative, however several consumers may find 

it uncomfortable to keep it every day while doing tasks [28]. 

The paper is organized as following: 

Section 

 

 
2. WIFI SIGNALS AND MOTION TYPES 

2.1 Wi-Fi Signals 

Path loss, middle-scale shadowing, with narrow multi-path 

fading could all be used to mimic wireless transmission in a 

complicated environment. Earlier investigations focused on 

receiving signal strength (RSS), easily obtained in wireless 

environments. It's only that RSS is prone to multi-path effects. 

Then, instead of RSS, some works use channel state 

information (CSI). It proposes super-resolution methods that 

reliably compute multi-path component AoAs with a median 

precision of 40cm. A 65cm precision Chronos could calculate 

sub-nanosecond moment using cheap Wi-Fi devices. Table 1 

shows Wi-Fi signal properties exploited in various Wi-Fi 

applications. 

Table 1: Most used Wi-Fi Signals Approaches with their 

properties 
 

Approach Properties 

AoA A well-known approach for analyzing 

multiple activities in a project, particularly 

the time necessary to accomplish each 

activity. 

RSS Average, Range, and Signal Variance 

ToF The time delay between the signal 

ransmission and its arrival to the sensor after 

becoming returned by an element. 

CSI Intensity, Phase, Variance, Complexity of 

Signals, Change in Signal Speed and 

Correlation Value 

 

2.2 Motion Patterns Types 

Figure 3 below divides motion patterns into three types. First, 

target motions have a massive effect on Wi-Fi signals in 
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everyday life. Second, non-target motions modify Wi-Fi 

signals, affecting the motion target detection accuracy. 
 

Fig.3.: The intersection between Motion Pattern along with 

Target/non-target Motion along with Smart Phones. 

It is the main obstacle for current Wi-Fi-based applications. 

Finally, wireless device latency effects motion pattern. 

a- Target Motion: 

Target motion depicts an object's activity in an indoor setting. 

The target's motion and direction are crucial factors in 

assessing the influence of motion on Wi-Fi transmissions. A 

moving target can alter the range between the object and the 

transmitter, enhancing the multi-path impact. Wi-Fi signal 

effects caused by object movements can anticipate target 

traces and behavior [29]. 

b- Non-target Motion: 

Non-target objects are persons who do not engage in the 

experiment but effect Wi-Fi transmissions. Non-target 

activities modify Wi-Fi signals faster than static targets. In 

this case, distinguishing non-target activities with static 

objects is critical for Wi-Fi based applications. DeMan uses 

chest motion signal model to identify object activity from 

non-target activity [30]. 

c- Wireless Device Jitter: 

In mobile situations, it is difficult to maintain constant state. 

The target's arm movement causes a slight shift in Wi-Fi 

signals. If it simply uses Wi-Fi signals, it's hard to tell the 

difference. As example, word recognition algorithms 

establish a relationship model among keywords and Wi-Fi 

signal variations represented by keyboards by imposing 

environmental constraints [31]. 

3. TECHNIQUES AND PERFORMANCE 

3.1 Techniques 

3.1.1 Signal processing of Wi-Fi sensing 

Signal processing for Wi-Fi sensing includes noise reduction, 

signal transformation, and signal extraction [32]. 

3.1.1.1 Noise Reduction 

Raw CSI data contains noise and outliers that might degrade 

Wi-Fi sensing capability [33]. 

3.1.1.2 Phase Off-sets Removal 

Raw CSI readings in Wi-Fi systems include phase offsets 

owing to equipment / software issues. The Sampling Time 

Offsets (STO) occur when the receiver and transmitter's 

sampling clocks/frequencies are not synced. Some 

identification and classification algorithm aren't phase 

sensitive. Get CSI changing patterns. Use CSI phase 

discrepancies of neighboring time samples or sub channels. It 

cancels CSI phases offsets assuming they are constant across 

packages and carrier frequency. However, it can recover 

phase transition patterns for use in classification algorithms 

[34]. Many estimate tasks demand precise phase shifts. AoA 

and ToF estimation mistakes caused by phase offsets are 

utilized to track and locate people and objects. SpotFi 

reduces STO/SFO by regression analysis, however ignores 

CSD- induced phase changes between transmit antennas. 

Multiple linear regression is introduced in SignFi [35]. 
 

 

Φi,j,k represents the CSI phase, which is brought upon by 

multi-path effects. 

τi, ρ, η, and ζi,j represent, correspondingly, the phase offsets 

generated by CSD, STO, SFO, as well as beam-forming. 

fδ: is the difference in frequency between two successive 

subcarriers. Phase offsets are estimated, by minimizing fitting 

errors over: 

K, represents Subcarriers 

N, represents Antennas Transmission 

M, represents Antennas receivers 
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Eliminating phase offsets enhances productivity for single- 

and multi classification purpose as well. It reconstructs CSI 

step patterns above a range of sub-carriers and recording time 

intervals. Raw CSI phase measurements provide redundant 

data on how CSI stages vary. Unwrapping CSI phases and 

recovering lost data is accomplished by removing phase 

offsets [39]. 

 

 
 

Fig. 4: Raw CSI observations might not represent the mechanism CSI processes; as it vary with both time and sub-channels 
 

As seen in figure 4 above, unprocessed CSI stages vary 

regularly between and, but pre-processed CSI stages vary 

almost linearly throughout a broader range. Additionally, 

time-dependent CSI phase variations are rectified. As seen in 

the figure above, the raw CSI stages of the first and second 

frequency channels vary identically, but their shapes after pre- 

processing are indeed different [36]. 

3.1.1.3 Outliers Removal 

Moving Average and Median Filters are both straightforward 

and commonly used techniques for filtering out high 

frequency noise [37]. Every data point is changed by the 

median of the datasets immediately adjacent to it. Typically, 

a sliding window and multiplication factors are employed to 

generate various weights, for examples: 

 Weighted Moving Average (WMA) 

 Exponentially Weighted Moving Average (EWMA). 

 Low Pass Filters (LPF) 

They can also be used to eliminate high frequency noise when 

signal transform techniques such as the Discrete Fourier 

Transform are used (FFT). Wavelet Filters are identical to 

LPFs; the primary distinction is that they employ the Discrete 

Wavelet Transform (DWT) rather than the Fourier Transform 

(FFT) [38]. 

Where: 

σi   represents Standard Deviation 

The Hampel Filter calculates the mean score and standard 

deviation of such a region of closely spaced data points [40]. 

If it exceeds a certain threshold, the existing point is 

considered an outlier and is substituted with the median. 

Occasionally, outliers are eliminated instead of being 

substituted by medians. 

The Local Outlier Factor (LOF) is a frequently used technique 

for detecting anomalies [41]. It quantifies a data point's local 

density in relation to its neighbors. The local density is 

determined by the Wi-Fi tethering distance between two 

points. Outliers are number of observations with a 

considerably lower density distribution than their neighbors. 

Signal Nulling is a specialized approach for removing outliers 

from Wi-Fi sensing. Wi-Fi devices may employ both 

hardware, such as antenna arrays, and software, such as 

transmit beam shaping and noise cancellation algorithms [42]. 

3.2 Signal Transformation 

Time-frequency analysis of CSI readings uses signal 

transform techniques. In this perspective, the signal convert 

output shows CSI change pattern frequency instead of carrier 

frequency [43]. Table 2 below summarizes signal conversion 

techniques. 

 

mi represent the median, 
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Table 2: Approaches for Wi-Fi Sensing Signal Transformation 
 

Technique Equation 

 

Fast Fourier 
 

 

 

Discrete Wavelet 

 

 

 

Short Time Fourier 
 

 

 

Discrete Hilbert 
 

 

 

With an LPF, FFT can eliminate high frequency sounds. It can 

also acquire target signals with Band Pass Filters (BPF). 

Examples of this include when a person is stationary or 

moving nearby. The Short-Time Fourier Transform (STFT) 

splits the input into equal-length segments and computes the 

FFT coefficients independently for each segment, as shown in 

The acquired data is used to train a probability model. 

Nevertheless, probability model-based methods are not 

universal. Horus displays model invalidation whenever the 

environment changes. We illustrate two flaws in probability- 

based techniques [48]. 

the table above [44]. By displaying data from both time and Time-dependent environment: The same device gathers 

frequency, STFT may detect changes in dominating 

frequencies over time. As seen in the Table above, DHT adds 

a /2 phase shift to the lower frequency range of FFT. It 

transforms a time series of legitimate data into a complicated 

helical   sequence.   DHT    can   analyze   the   immediate

information from a certain environment at various times. 

Also, the probability pattern of every training differs 

somewhat, causing a huge inaccuracy to applications reliant 

on Wi-Fi signals [49]. 

characteristics of a CSI measurement series. STFT does not Instability: The probability theory depends on the training 

ensure good frequency and temporal resolution [45]. 

Time resolution is improved with a large window length. The 

frequency components are easily identifiable, but not the 

frequency variations. A limited window length enables for 

detection of signal changes but not exact frequency 

identification. The Wavelet Transform provides good time 

and frequency accuracy for low-frequency signals. The DWT 

output can be wavelet-filtered to eliminate noise. DWT is 

much more robust then Doppler phase shift in preserving 

mobility data [46]. 

3.3 Signal Extraction 

Signal extraction is used to extract goal frequencies from CSI 

data. Unidentified or repetitive signals may need 

thresholding, filtration, or signal encoding [47]. To acquire 

additional information, various signal sources are combined 

and data is interpolated. These approaches are shown in the 

table below. 

Probability Model: 

dataset and training methodology. The probability model may 

modify if the training set or training technique changes [50]. 

 

3.4 Fingerprint-based: 

 
The fingerprint-based solution incorporates two phases: 

gathering RSS from each place inside a building and matching 

it with the fingerprint database. These works can achieve 

meter-level precision without a site survey [51]. High 

implementation costs and lack of adaptability to changing 

environments limit its usefulness. We illustrate three flaws in 

fingerprinting approaches [52]. 

 
Expensive: Building a fingerprint database requires a lot of 

labor and hardware. The more location data collected, the 

more accurate indoor location becomes. A fingerprint 

database must be updated in real-time when the indoor 

environment changes. This constraint increases system 

burden in practice [53]. 

 
Best Location Choice: Various works choose some places of 

interior maps to save money and preserve high accuracy. That 

is, only a few places may depict indoor maps coarsely [54]. 
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The difficulty is to select several areas to accurately portray 

indoor maps. 

 

Crowdsourcing Model 

Crowdsourcing-based systems collect data from a large 

number of mobile devices located across an indoor space, 

saving time and money. However, as illustrated below, actual 

crowdsourcing applications face some problems [55]. 

Device Diversity: Device diversity is a problem in wireless 

environments. Wi-Fi transmissions are sensitive to both 

indoor and outdoor environments, as well as device kinds. The 

impact of device diversity on data collection is often 

overlooked [56]. 

Destabilization of Data Source: Smart phones used in 

crowdsourcing are unknown and cannot ensure data 

authenticity [57]. 

Time Synchronization: Due to the nature of Wi-Fi 

transmissions, crowdsourcing requires time synchronization 

of the devices collecting data. Nevertheless, numerous mobile 

devices do not have synchronization capabilities [58]. 

Performance: Existing works aim for higher performance at 

affordable cost. The effectiveness of existing approaches is 

shown below. 

Accuracy: Because RSS is easily accessed by commodity 

Wi-Fi infrastructure, existing works still use RSS information 

to identify motion. These devices use Wi-Fi signals and 

human movement to attain excellent accuracy. 

a. WiSee uses doppler shifts in radio waves to detect human 

activity with 97 percent accuracy and E-eyes with 92 percent. 

b. Smokey uses CSI to recognize smoking activities in NLOS 

and through-wall situations. 

c. The system uses foreground detection to retrieve useful 

information from numerous noisy sub-carriers, even when 

posture changes. 

2) Cost: Earlier, experts believed that the more APs deployed, 

the better the accuracy. APs are typically used in early works 

to achieve precision. Horus has an average inaccuracy of 

0.6m by 4-6 APs. In recent years, single APs like Chronos, 

with a median inaccuracy of 65cm, have achieved the same 

degree of precision as multi-Aps [59]. 

3) Robustness: In a dynamic indoor environment, resiliency 

is a significant measure of system quality. Several works offer 

methods with great LOS precision but poor NLOS accuracy 

[60]. 

These days researches can supply different methods. Smokey 

[61] can detect smoking in LOS, NLOS, and through walls. 

 

 
4. MOTION INFLUENCE 

4.1 Advantage 

Previous works were made to avoid motion because it affects 

the changing of Wi-Fi signals. We studied mobility detection 

strategies and their influence in recent years. Three points are 

summarized below. 

1) Enrich Multi-Path Data: The interior setting, multi-path 

effect is common. Indoors, there are usually 6-8 paths. 

Understanding people circulation patterns can assist discover 

energy hotspots and corridors that can help commercial site 

selection. Human mobility can reset an indoor environment's 

floor plan, and multi-paths respond. Li-Fi detects LOS by 

skewed CSI distribution. PhaseU also completes real-time 

LOS identification indoors. Others use multi-paths to achieve 

internal localization or human motion detection. [62]. 

2) Lowering Device Cost: Wi-Fi offered a moving target to 

replicate the antenna array (Fig. It can lower device costs and 

improve applications including indoor localization, people 

tracking, and access management. A moving target is focused 

on by using MIMO disturbance nulling to reduce static object 

reflections. We can consider people in a closed space if they 

don't move [63]. 

 

 

 

 
Fig.5.: The detection of moving objects through Single 

Antenna and Antenna Array 
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3) Reducing the Requirement of Indoor Environment: The 

indoor environment affects wireless transmissions. Wi-Fi 

signal signatures do change with time and environment. 

However, this feature complicates Wi-Fi based applications. 

Indoor fingerprinting is not feasible since the signature varies 

with the environment. Authors often seek to suggest an 

ubiquitous plan for dealing with dynamic tests [60]. 

 

Table 3: Common proposed approaches along with highest accuracy results 
 

Proposed Methods Approach Accuracy 

ArrayTrack [61] AoA 35cm 

SAIL [62] ToF 2.2m 

SpotFi [63] AoA 39cm 

CUPID [64] Human Mobility 4.2m and 1.5-4 APs: 3.6m 

Chronos [65] ToF 63cm & NLOS: 96cm 

 

4.2 Disadvantage 

 
1) Infected Wi-Fi signal datasets: In general, Wi-Fi signal 

data packages allow RSS and CSI acquired by receivers 

indoors. Motion has a greater impact on Wi-Fi signals 

compared static. We gather dataset, measurements, and other 

background data. Without particular approaches, it is hard to 

identify targets' data from collected data sets. Researchers 

offer a few approaches to resolve other noisy data [66]. 

 
2) Difficult Pre-processing: Due to the complexity of motion 

characteristics, the preprocess phase becomes more difficult. 

Static behaviors modify Wi-Fi signals slightly, but motion 

behaviors produce considerable changes. Meanwhile, 

gathering data from the receiver is difficult to identify outlier 

from motion behavior [67]. 

 
3) Hardware Consumption Increment: Motion lowers the 

stability of mobile device data sets and the effectiveness of 

Wi-Fi based technologies. It acquires more APs (5-6) as well 

as other detectors for great accuracy. Currently, some studies 

integrate Signal strength with sensor information to obtain the 

same purpose as Wi-Fi signals alone. 

 

 
5- DISCUSSION 

In this part, we compare prior classification techniques for 

several of the baseline methods. Using a waist-mounted 

accelerator, they devised a method for collecting data from 6 

participants on 12 everyday tasks. This paper presented a way 

to maximize signal processing within the wearable unit's PCB 

[68]. Their concept uses embedded cognition and actual 

categorization systems. Their total accuracy was 90.8 percent, 

while postural orientation identification was 94.1 percent and 

potential fall detection was 95.6 percent. 

In contrast, the study [69] proposes 1D Haar-like filtering 

approaches, which are not only novel feature extraction 

techniques but also need less computing. Their technique 

improved recognition accuracy by 93.91 percent while 

lowering computation costs by 21.22 percent. 

To make features more robust, [70] used both (1- Kernel 

Component Analysis & 2- Linear Discriminant Analysis) 

following extraction. Finally, they utilized a DBN to train the 

features. They found 89.61 percent accuracy, beating out 

multi-class SVM (82.02 percent) and Artificial Neural 

Networks (65.31 percent ). 

In recent years, deep learning and generic classification 

algorithms have been used to recognize sensor-based activity. 

Semi-supervised ML based motion detection approach for a 

little quantity of labelled training data to solve the problem of 

incorrect labelling. [71] utilized an unsupervised machine 

learning approach based on KMeans clustering to detect 

human activity. However, these approaches perform poorly 

when the datasets contain both static and dynamic activity. 

While [72] began fresh research on estimating a user's path 

using sensor data. This could enhance context-aware services, 

and location-aware services, they claim. In order to enhance 

mobile detection and recognition with erroneous time stamps, 

[73] in their research used EM+Sparse and EM+Dense 

techniques for the HASC and UCI HAR datasets. 

Using a deep recurrent neural network, Inoue et al. [74] 

presented a technique with high throughput using raw 

accelerator data. other simplistic techniques. The Multi-Class 
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Hardware-friendly SVM Classifier technique employs fixed- 

point arithmetic for the classification of actions rather than the 

conventional. In their research [75] introduced the Mod 

method using Random Forest classifiers to classifying 

mobility and distribution and transportation. A weighted 

mixture of multiple classifiers is utilized in earlier work [76] 

to recognize activity data from body sensors. 

6. FUTURE WORKS 

Future study should analyze resource use, including memory, 

CPU, sensor count, and most significantly, battery usage. The 

most prevalent trade-off between identification accuracy, 

precision, and resource use should be investigated further. A 

collection of classifiers could be used to correctly identify 

comparable behaviors like sitting and standing, walking 

upstairs and downstairs. Most current efforts have failed to 

differentiate comparable actions precisely using one 

classifier. Future plans should also include working with 

incorrectly classified manual training data, including walking 

activity being mislabeled as running owing to human error. 

Video data fusion with sensor data is an important topic to 

investigate. 

Using machine learning algorithms, fine-grained Wi-Fi signal 

information accurately represents micro-mobility behavior, 

perceives the environment, and anticipates unknown 

behavior. Several research groups focus on device-free 

motion detection utilizing Wi-Fi signals. 

 Human Detection: Researchers are focusing on 

noninvasive human detection. Noninvasive means no 

attachment required, and passive participant in detection. 

Non-invasive applications can increase people's freedom 

(convenience) and lower hardware costs. For now, it poses 

severe obstacles such as reliance on environment and good 

quality data. 

 
 Identifying Motions: The wireless channel between both 

the application and the AP is supposed to change. The fine- 

grained multi-path topology may vary as the surroundings or 

device shifts. RSS cannot capture small variations in the 

wireless channel since it collects an average indicator of all 

multi-path variables. So, in the complexity environment, we 

use CSI or AoA to identify between motions. 

 
 Tracking User Activity: Monitoring user behavior uses 

Wi-Fi signals to monitor human behavior and forecast 

unknown behavior. Wi-Fi connections can track shoppers at 

the entryway. We use fine-grained Wi-Fi signal information 

to follow and evaluate human behavior. 

 

7. CONCLUSION 

Activity identification is the next wave of context-aware 

customized applications in several developing computer 

domains. However, being a new area of study, sensor-based 

activity identification has little survey works. Most 

researchers struggle to locate benchmark datasets, which 

hampers their work. This study reviews the state-of-the-art 

human motion detection utilizing Wi-Fi and sensors. These 

dataset’s features, activity classifications, sensor types, and 

devices are described in detail. We've also compiled a list of 

all possible sensing and application technologies for creating 

new datasets. Several noise filtering approaches, filter 

selection, segmentation methods, and window length 

selection parameters have been detailed. Previous activity 

recognition approaches have also been summarized and 

analyzed. 

There are also several suggestions for further study into more 

realistic and widespread circumstances. An overview of 

motion detection techniques is presented in this paper, as 

motion has a significant impact on Wi-Fi transmissions. To 

begin, we'll go over some basic knowledge about Wireless 

signals and activity types. Following that, we will discuss 

various methods of detecting mobility, including probability 

model-based, fingerprint-based, and crowdsourcing-based 

methods. Furthermore, we demonstrate how to explore the 

effects of motion in applications that take place in an indoor 

environment. Finally, in the future, we will release additional 

applications that will be dependent on Wi-Fi signals. 
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