
Dynamic Latent Scale GAN

Jeongik Cho

jeongik.jo.01@gmail.com

Abstract

 Generator of generative adversarial networks

(GAN) maps latent random variable into data

random variable. GAN inversion is mapping

data random variable to latent random variable

by inverting the generator of GAN.

 When training the encoder for generator

inversion, using the mean squared error causes

the encoder to not converge because there is

information loss on the latent random variable

in the generator. In other words, it is impossible

to train an encoder that inverts the generator

as it, because the generator may ignore some

information of the latent random variable.

 This paper introduces a dynamic latent scale

GAN, a method for training a generator that

does not lose information from the latent

random variable, and an encoder that inverts

the generator. When the latent random variable

is a normal i.i.d. (independent and identically

distributed) random variable, dynamic latent

scale GAN dynamically scales each element of

the latent random variable during GAN training

to adjust the entropy of the latent random

variable. As training progresses, the entropy of

the latent random variable decreases until there

is no information loss on the latent random

variable in the generator. If there is no

information loss on the latent random variable

in the generator, the encoder can converge to

invert the generator.

 The scale of the latent random variable

depends on the amount of information that the

encoder can recover. It can be calculated from

the element-wise variance of the predicted

latent random variable from the encoder.

 Since the scale of latent random variable

changes dynamically in dynamic latent scale

GAN, the encoder should be trained with a

generator during GAN training. The encoder

can be integrated with the discriminator, and

the loss for the encoder is added to the

generator loss for fast training.

mailto:jeongik.jo.01@gmail.com

1. Introduction and previous works

The generator of a generative adversarial

network (GAN) [2] is trained to map latent

random variable to data random variable.

Generally, simple distribution such as normal or

uniform i.i.d. random variable is used as a latent

random variable.

 Inverting generator is finding an inverse

mapping of a generator of GAN. It can be used

for feature learning or can various useful

applications such as data manipulation.

 There are learning-based methods,

optimization-based methods, or hybrid

methods for GAN inversion. Many methods and

useful applications for GAN inversion are

introduced in the GAN inversion survey paper

[1].

 Among the learning-based methods, [11], [12],

[13] used conditional GAN [14] to train an

encoder that inverts the generator. However,

those methods are difficult to train model, and

the performance of the model is not good.

[15], [16], [17] used mean squared error (MSE)

loss to train encoder to recover latent random

variable. [18], [7] added reconstruction loss to

MSE loss for the better performance. [19], [20],

[6] used model (StyleGAN [5], [9]) specific

methods.

 In this paper, I introduce a dynamic latent scale

GAN (DLSGAN), a learning-based method for

training an encoder that inverts the generator

of GAN. Previous works used MSE loss to train

the encoder when the latent random variable is

a normal i.i.d. random variable. However, simply

using MSE loss causes convergence problem

because information loss on latent random

variable occurs in the generator. If there is

information loss on the latent random variable

in the generator, the encoder cannot be

converged to invert the generator. Dynamic

latent scale GAN dynamically adjusts the scale

of the latent random variable so that there is

no information loss in the generator. It means

the encoder can be converged to invert the

generator.

The scale of the latent random variable

depends on the amount of information that the

encoder can recover. It can be calculated from

the element-wise variance of the predicted

latent random variable from the encoder.

DLSGAN traces the predicted latent random

variable from the encoder during training to

approximate the element-wise variance of the

predicted latent random variable.

 Since the scale of a latent random variable

dynamically changes dynamically in dynamic

latent scale GAN, the encoder should be trained

with a generator during GAN training. The

encoder can be integrated with the

discriminator, and the loss for the encoder is

added to the generator loss for fast training.

2. Problem of using MSE

The generator 𝐺 maps the latent random

variable 𝑍 to the data random variable 𝑋 (i.e.,

𝑋 = 𝐺(𝑍)). However, there is no guarantee that

the generator 𝐺 uses all the information of the

latent random variable 𝑍. For example, when

the latent random variable 𝑍 has too many

dimensions, the generator 𝐺 can be trained to

ignore some elements of the latent random

variable 𝑍. Or, the generator 𝐺 can be trained

so that some elements of the latent random

variable 𝑍 have relatively more information

than others. In other words, different latent

codes 𝑧1 and 𝑧2 sampled from latent random

variable 𝑍 can be mapped to the same or

nearly similar generated data points 𝐺(𝑧1) and

𝐺(𝑧2). It means that information loss on the

latent random variable 𝑍 occurs in the

generator 𝐺 , and the encoder 𝐸 cannot

perfectly recover the latent random variable 𝑍

from the generated data random variable 𝐺(𝑍)

and cannot converge.

3. Dynamic latent scale GAN

To prevent information loss on the latent

random variable 𝑍 that occurs in the generator

𝐺 , I introduce a DLSGAN that dynamically

adjusts the scale of each element of the latent

random variable 𝑍 so that no information loss

occurs in generator 𝐺.

Assume the latent random variable 𝑍 is 𝑑𝑧-

dimensional normal i.i.d. random variable (i.e.,

𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(𝜇, 𝜎2)), and encoder 𝐸 is

trained to predict latent random variable 𝑍

from generated data random variable 𝐺(𝑍)

with MSE loss. Each element of the predicted

latent random variable 𝑍′ = 𝐸(𝐺(𝑍)) follows a

normal distribution with mean 𝜇, but variances

less or equal to 𝜎2 because some elements of

latent random variable 𝑍 cannot be fully

recovered.

At this time, the variance of each element of

predicted latent random variable 𝑍′ represents

information on the latent random variable 𝑍

that can be recovered from the generated data

random variable 𝐺(𝑍). If the variance of 𝑛-th

predicted latent random variable 𝑍𝑛
′ is zero, it

means that encoder 𝐸 cannot recover any

information of 𝑛-th latent random variable 𝑍𝑛

from generated data random variable 𝐺(𝑍). On

the other hand, if the variance of 𝑛 -th

predicted latent random variable 𝑍𝑛
′ is 𝜎2 , it

means encoder 𝐸 can recover all information

of 𝑛 -th latent random variable 𝑍𝑛 from

generated data random variable 𝐺(𝑍) .

Therefore, if the element-wise variance of the

predicted latent random variable 𝑍′ and the

element-wise variance of the latent random

variable 𝑍 are the same, it means that there is

no information loss in the generator 𝐺, and the

encoder can converge to predict latent random

variable 𝑍 from generated data random

variable 𝐺(𝑍).

DLSGAN dynamically adjusts the scale of each

element of latent random variable 𝑍 according

to the variance of each element of predicted

latent random variable 𝑍′ so that the variance

of the latent random variable 𝑍 and predicted

latent random variable 𝑍′ are equal. Since the

dynamic latent scale GAN requires both the

encoder 𝐸 and the generator 𝐺 to be trained

together, it is efficient to integrate the encoder

𝐸 into the discriminator 𝐷 . For the same

reason, generator 𝐺 and encoder 𝐸 can be

trained cooperatively. That is, encoder loss 𝐿𝑒𝑛𝑐

(objective function) can be added to generator

loss 𝐿𝑔 (objective function).

 The following algorithm shows the process of

obtaining the loss (objective function) for

training DLSGAN.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐺𝑒𝑡𝐿𝑜𝑠𝑠(𝐷, 𝐺, 𝑥, 𝑣):

1 𝑧 ← 𝑠𝑎𝑚𝑝𝑙𝑒 ((𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0, 12))

2 𝑠 ←
√𝑑𝑧𝑣

‖√𝑣‖
2

3 𝑎𝑔, 𝑧′ ← 𝐷(𝐺(𝑧 ⊙ 𝑠))

4 𝐿𝑒𝑛𝑐 ← 𝑎𝑣𝑔((𝑧 − 𝑧′)2 ⊙ 𝑠2)

5 𝑎𝑟 , _ ← 𝐷(𝑥)

6 𝐿𝑑 ← 𝑓𝑑(𝑎𝑟 , 𝑎𝑔) + 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐

7 𝐿𝑔 ← 𝑓𝑔(𝑎𝑔) + 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐

8 𝑣 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑣, 𝑧′2
)

9 𝑟𝑒𝑡𝑢𝑟𝑛 𝐿𝑑 , 𝐿𝑔, 𝑣

Algorithm 1. Obtaining loss (objective function) for training

DLSGAN

In the above algorithm, 𝐷 , 𝐺 , and 𝑥

represent discriminator, generator, and real data

point, respectively. Real data point 𝑥 is a data

point sampled from real data random variable

𝑋 . Since encoder 𝐸 is integrated with

discriminator 𝐷 , discriminator 𝐷 outputs two

values: 1-dimensional adversarial value and 𝑑𝑧-

dimensional predicted latent code. 𝑣

represents the element-wise variance of the

predicted latent random variable 𝑍′. It is ideal

to approximate 𝑣 for every training step, but

for efficiency, 𝑣 is approximated through

predicted latent codes from the past 𝑘 train

steps.

In line 1, (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0, 12) is a 𝑑𝑧

dimensional i.i.d. latent random variable

following normal distribution 𝑁(0,12) . For

convenience, a mean of 0 and a standard

deviation of 1 were assumed. 𝑠𝑎𝑚𝑝𝑙𝑒 is a

function that samples a single value from a

random variable. 𝑧 is latent code, which is

sampled from latent random variable 𝑍.

In line 2, 𝑠 is the latent scale vector. √𝑣𝑒𝑐

represents the element-wise square root of the

example vector 𝑣𝑒𝑐 . ‖𝑣𝑒𝑐‖2 represents L2

norm of example vector 𝑣𝑒𝑐.

In line 3, ⊙ represents element-wise

multiplication. 𝐺(𝑧 ⊙ 𝑠) is the generated data

point with scaled latent code 𝑧 ⊙ 𝑠 . The

discriminator 𝐷 outputs the adversarial value

𝑎𝑔 and the predicted latent code 𝑧′. When all

elements of 𝑣 are the same, i.e., when the

variance of all elements of predicted latent

random variable 𝑍′ are the same, the scaled

latent random variable 𝑍 ⊙ 𝑠 has the largest

differential entropy. On the other hand, when

the variance of only one element of the

predicted latent random variable is not 0, and

the other elements are 0, the scaled latent

random variable 𝑍 ⊙ 𝑠 has the least

differential entropy. √𝑑𝑧 is a constant

multiplied to make the scaled latent random

variable 𝑍 ⊙ 𝑠 equal to latent random variable

𝑍 when the differential entropy of the scaled

latent random variable 𝑍 ⊙ 𝑠 is the largest. The

differential entropy of the scaled latent random

variable 𝑍 ⊙ 𝑠 dynamically changes according

to the variance of predicted latent random

variable 𝑍′ during GAN training. As GAN

training progresses, the scaled latent random

variable 𝑍 ⊙ 𝑠 converges to have an optimal

entropy representing the real data random

variable 𝑋 through generator 𝐺.

In line 4, 𝑣𝑒𝑐2 means the element-wise square

of the example vector 𝑣𝑒𝑐. 𝑎𝑣𝑔 is a function

that calculates the average of a vector. 𝐿𝑒𝑛𝑐 is

encoder loss. The encoder loss 𝐿𝑒𝑛𝑐 is equal to

the MSE loss between the scaled latent code

𝑧 ⊙ 𝑠 and the scaled predicted latent code

𝑧′ ⊙ 𝑠.

In line 5, 𝑎𝑟 is the adversarial value of real

data point 𝑥 . “_” represents not using value.

Since the latent code of the real data point 𝑥

is unknown, the predicted latent code for the

real data point 𝑥 is not used in DLSGAN

training.

 In lines 6 and 7, 𝑓𝑑 and 𝑓𝑔 are adversarial loss

functions for discriminator 𝐷 and generator 𝐺,

respectively. One can find many adversarial

losses in [4]. 𝜆𝑒𝑛𝑐 is encoder loss weight. One

can see encoder loss 𝐿𝑒𝑛𝑐 is added to both

generator loss 𝐿𝑔 and discriminator loss 𝐿𝑑 .

This means that the generator 𝐺 and

discriminator 𝐷 are trained cooperatively to

reduce the encoder loss 𝐿𝑒𝑛𝑐 .

 In line 8, 𝑢𝑝𝑑𝑎𝑡𝑒 function update the

predicted latent random variable variance 𝑣

with the new predicted latent code 𝑧′. Since the

mean of the predicted latent random variable

𝑍′ become automatically zero, 𝑧′2
 (element-

wise square of predicted latent code 𝑧′) can be

considered as the sample variance of predicted

latent random variable 𝑍′. A moving average or

an exponential moving average can be used for

the 𝑢𝑝𝑑𝑎𝑡𝑒 function.

 Note that the latent code input to the

generator should always be scaled by the scale

vector 𝑠. Therefore, the generated data point is

𝐺(𝑧 ⊙ 𝑠), and the recovered data point of 𝑥 is

𝐺(𝑧𝑥 ⊙ 𝑠) , where 𝑧𝑥 is the predicted latent

code of the real data point 𝑥.

4. Experimental results and discussion

4.1 Experiment settings

 I trained GAN to generate the celeb A dataset

[8] resized to 128x128 resolution. As the model

architecture, a partially reduced version of

StyleGAN2 [9] was used. Batch operations

(minibatch stddev layer) in StyleGAN2

discriminator are removed so that the encoder

encodes one data point as one latent vector. As

an adversarial loss, NSGAN with R1 loss [3] was

used as StyleGAN2. I used encoder loss weight

𝜆𝑒𝑛𝑐 = 1.0.

 I compared the performance of DLS and MSE.

I also compared the effect of the encoder loss

𝐿𝑒𝑛𝑐 on generator loss 𝐿𝑔. For 𝑢𝑝𝑑𝑎𝑡𝑒 function

for DLSGAN, I used a moving average using the

past 512 × 16 samples.

4.2 Experiment results

 The following figures show the performance of

DLS and MSE, with and without encoder loss

𝐿𝑒𝑛𝑐 on generator loss 𝐿𝑔.

Figure 1. FID according to the encoder loss 𝐿𝑒𝑛𝑐

 Figure 1 shows the FID [10] according to the

encoder loss 𝐿𝑒𝑛𝑐 for each epoch. In figure 1,

DLS and MSE represent DLS (dynamic latent

scale) and MSE (mean squared error),

respectively. D means weighted encoder loss

𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐 was added to only discriminator loss

𝐿𝑑 . DG means weighted encoder loss 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐

was added to both discriminator loss 𝐿𝑑 and

generator loss 𝐿𝑔.

 One can see that there is little difference in the

generative performance of GAN according to

the type of encoder loss 𝐿𝑒𝑛𝑐 .

Figure 2. Average 𝐿𝑒𝑛𝑐 according to the

encoder loss 𝐿𝑒𝑛𝑐

 Figure 2 shows the average encoder loss 𝐿𝑒𝑛𝑐

according to the encoder loss 𝐿𝑒𝑛𝑐 for each

epoch. One can see that with MSE loss, encoder

loss 𝐿𝑒𝑛𝑐 hardly changes from 1. This shows

that the encoder 𝐸 trained with MSE loss fails

to converge due to the information loss on the

latent random variable in the generator 𝐺. On

the other hand, one can see that the encoder

loss 𝐿𝑒𝑛𝑐 continuously decreases as training

progresses with DLS. This shows that the model

converges with DLS. Also, one can see that the

encoder loss 𝐿𝑒𝑛𝑐 is much lower when encoder

loss 𝐿𝑒𝑛𝑐 is added to the generator loss 𝐿𝑔.

Figure 3. Differential latent entropy of DLSGAN

Figure 3 shows differential entropy of latent

random variable of DLSGAN for each epoch. As

encoder loss 𝐿𝑒𝑛𝑐 , one can see that the

differential entropy of the latent random

variable 𝑍 decreases faster when encoder loss

𝐿𝑒𝑛𝑐 is added to the generator loss 𝐿𝑔.

Figure 4. Average PSNR for generated images

according to the encoder loss 𝐿𝑒𝑛𝑐

Figure 5. Average SSIM for generated images

according to the encoder loss 𝐿𝑒𝑛𝑐

 Figures 4 and 5 show the average PSNR and

SSIM for each epoch when reconstruction is

performed on the generated images. One can

see that the performance of reconstruction on

generated images is much better with DLS DG.

Also, both DLS and MSE perform better when

the encoder loss 𝐿𝑒𝑛𝑐 is added to the

generator loss 𝐿𝑔.

Figure 6. MSE DG generated images

reconstruction example

Figure 7. DLS DG generated images

reconstruction examples

 Figures 6 and 7 show examples of generated

images reconstruction with MSE DG and DLS

DG. Big size images of all figures for generated

images are in the appendix.

Figure 8. Average PSNR for test images

according to the encoder loss 𝐿𝑒𝑛𝑐

Figure 9. Average SSIM for test images

according to the encoder loss 𝐿𝑒𝑛𝑐

 Figures 8 and 9 show the average PSNR and

SSIM for each epoch when reconstruction is

performed on the test images (real images). As

reconstruction on the generated images, one

can see that the performance of reconstruction

on test images is much better with DLS DG.

Figure 10. MSE DG Test images reconstruction

examples

Figure 11. DLS DG Test images reconstruction

examples

 Figures 10 and 11 show examples of

generated images reconstruction with MSE and

DLS.

4.3 Additional results of DLSGAN

 The following figures show some additional

results of DLS DG.

Figure 12. Latent interpolation on most

important element

Figure 13. Latent interpolation on second most

important element

Figure 14. Latent interpolation on third most

important element

Figures 12-14 show interpolating one

important element of the latent random

variable 𝑍 from -2 to 2 in DLSGAN. The larger

the elements of the scale vector 𝑠, the more

important (more informative) elements. That is,

figures 12-14 are the results of interpolating the

index of the first, second, and third-largest

element of scale vector 𝑠, respectively.

Figure 15. Stochastic noise on recovered latent

codes

Figure 15 shows the result of adding stochastic

noise to the predicted latent code for the test

images. The first column of figure 15 shows the

input images (test images), and the second

column shows the reconstructed images

through predicted latent codes. Based on the

thick white line, the images on the right side

show the images generated by adding normal

noise with mean 0 and variance 0.3 for each

element of the predicted latent code. Each

column has the same noise.

5. Conclusion

 In this paper, I proposed a DLSGAN, a method

for training a generator without information

loss on the latent random variable, and an

encoder that inverts the generator. Dynamic

latent scale GAN dynamically adjusts the scale

of the normal i.i.d. latent random variable to

have the optimal entropy to express the data

random variable. This ensures that there is no

information loss on the latent random variable

in the generator so that the encoder can

converge to invert the generator. The encoder

of DLSGAN showed much better performance

than simply using MSE loss.

6. References

[1] GAN Inversion: A Survey

https://arxiv.org/abs/2101.05278

[2] Generative Adversarial Networks

https://arxiv.org/abs/1406.2661

[3] Which Training Methods for GANs do

actually Converge?

https://arxiv.org/abs/1801.04406v4

[4] Are GANs Created Equal? A Large-Scale

Study

https://papers.nips.cc/paper/2018/file/e46de7e

1bcaaced9a54f1e9d0d2f800d-Paper.pdf

[5] A Style-Based Generator Architecture for

Generative Adversarial Networks

https://arxiv.org/abs/1812.04948

[6] Encoding in Style: a StyleGAN Encoder for

Image-to-Image Translation

https://openaccess.thecvf.com/content/CVPR20

21/papers/Richardson_Encoding_in_Style_A_Styl

eGAN_Encoder_for_Image-to-

Image_Translation_CVPR_2021_paper.pdf

[7] It Takes (Only) Two: Adversarial Generator-

Encoder Networks

https://ojs.aaai.org/index.php/AAAI/article/view

/11449

[8] Celeb A dataset

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.h

tml

[9] Analyzing and Improving the Image Quality

of StyleGAN

https://arxiv.org/abs/1912.04958

[10] GANs Trained by a Two Time-Scale Update

Rule Converge to a Local Nash Equilibrium

https://arxiv.org/abs/1706.08500

[11] Adversarial learned inference

https://openreview.net/forum?id=B1ElR4cgg

[12] Adversarial feature learning

https://openeview.net/forum?id=BJtNZAFgg

https://arxiv.org/abs/2101.05278
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1801.04406v4
https://papers.nips.cc/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf
https://papers.nips.cc/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf
https://arxiv.org/abs/1812.04948
https://openaccess.thecvf.com/content/CVPR2021/papers/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Richardson_Encoding_in_Style_A_StyleGAN_Encoder_for_Image-to-Image_Translation_CVPR_2021_paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/11449
https://ojs.aaai.org/index.php/AAAI/article/view/11449
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/1706.08500
https://openreview.net/forum?id=B1ElR4cgg
https://openeview.net/forum?id=BJtNZAFgg

[13] Large scale adversarial representation

learning

https://papers.nips.cc/paper/2019/hash/18cdf4

9ea54eec029238fcc95f76ce41-Abstract.html

[14] Conditional GAN

https://arxiv.org/abs/1411.1784

[15] InfoGAN: Interpretable Representation

Learning by Information Maximizing Generative

Adversarial Nets

https://papers.nips.cc/paper/2016/hash/7c9d0b

1f96aebd7b5eca8c3edaa19ebb-Abstract.html

[16] Invertible Conditional GANs for image

editing

https://arxiv.org/abs/1611.06355

[17] ENJOY YOUR EDITING: CONTROLLABLE

GANS FOR IMAGE EDITING VIA LATENT SPACE

NAVIGATION

https://openreview.net/forum?id=HOFxeCutxZR

[18] In-Domain GAN Inversion for Real Image

Editing

https://www.ecva.net/papers/eccv_2020/papers

_ECCV/papers/123620579.pdf

[19] Exploiting Spatial Dimensions of Latent in

GAN for Real-time Image Editing

https://openaccess.thecvf.com/content/CVPR20

21/papers/Kim_Exploiting_Spatial_Dimensions_

of_Latent_in_GAN_for_Real-

Time_Image_CVPR_2021_paper.pdf

[20] Collaborative Learning for Faster StyleGAN

Embedding

https://arxiv.org/abs/2007.01758

https://papers.nips.cc/paper/2019/hash/18cdf49ea54eec029238fcc95f76ce41-Abstract.html
https://papers.nips.cc/paper/2019/hash/18cdf49ea54eec029238fcc95f76ce41-Abstract.html
https://arxiv.org/abs/1411.1784
https://papers.nips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://papers.nips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://arxiv.org/abs/1611.06355
https://openreview.net/forum?id=HOFxeCutxZR
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123620579.pdf
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123620579.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Kim_Exploiting_Spatial_Dimensions_of_Latent_in_GAN_for_Real-Time_Image_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Kim_Exploiting_Spatial_Dimensions_of_Latent_in_GAN_for_Real-Time_Image_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Kim_Exploiting_Spatial_Dimensions_of_Latent_in_GAN_for_Real-Time_Image_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Kim_Exploiting_Spatial_Dimensions_of_Latent_in_GAN_for_Real-Time_Image_CVPR_2021_paper.pdf
https://arxiv.org/abs/2007.01758

Appendix

Big size image of figure 6. MSE DG generated images reconstruction example

Big size image of figure 7. DLS DG generated images reconstruction examples

Big size image of figure 10. MSE DG Test images reconstruction examples

Big size image of figure 11. DLS DG Test images reconstruction examples

Big size image of figure 12. Latent interpolation on most important element

Big size image of figure 13. Latent interpolation on second most important element

Big size image of figure 14. Latent interpolation on third most important element

Big size image of figure 15. Stochastic noise on recovered latent codes

