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Abstract 

 Generator of generative adversarial networks 

(GAN) maps latent random variable into data 

random variable. GAN inversion is mapping 

data random variable to latent random variable 

by inverting the generator of GAN.  

 When training the encoder for generator 

inversion, using the mean squared error causes 

the encoder to not converge because there is 

information loss on the latent random variable 

in the generator. In other words, it is impossible 

to train an encoder that inverts the generator 

as it, because the generator may ignore some 

information of the latent random variable. 

 This paper introduces a dynamic latent scale 

GAN, a method for training a generator that 

does not lose information from the latent 

random variable, and an encoder that inverts 

the generator. When the latent random variable 

is a normal i.i.d. (independent and identically 

distributed) random variable, dynamic latent 

scale GAN dynamically scales each element of 

the latent random variable during GAN training 

to adjust the entropy of the latent random 

variable. As training progresses, the entropy of 

the latent random variable decreases until there 

is no information loss on the latent random 

variable in the generator. If there is no 

information loss on the latent random variable 

in the generator, the encoder can converge to 

invert the generator. 

 The scale of the latent random variable 

depends on the amount of information that the 

encoder can recover. It can be calculated from 

the element-wise variance of the predicted 

latent random variable from the encoder. 

 Since the scale of latent random variable 

changes dynamically in dynamic latent scale 

GAN, the encoder should be trained with a 

generator during GAN training. The encoder 

can be integrated with the discriminator, and 

the loss for the encoder is added to the 

generator loss for fast training. 
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1. Introduction and previous works 

The generator of a generative adversarial 

network (GAN) [2] is trained to map latent 

random variable to data random variable. 

Generally, simple distribution such as normal or 

uniform i.i.d. random variable is used as a latent 

random variable. 

 Inverting generator is finding an inverse 

mapping of a generator of GAN. It can be used 

for feature learning or can various useful 

applications such as data manipulation.  

 There are learning-based methods, 

optimization-based methods, or hybrid 

methods for GAN inversion. Many methods and 

useful applications for GAN inversion are 

introduced in the GAN inversion survey paper 

[1].  

 Among the learning-based methods, [11], [12], 

[13] used conditional GAN [14] to train an 

encoder that inverts the generator. However, 

those methods are difficult to train model, and 

the performance of the model is not good. 

[15], [16], [17] used mean squared error (MSE) 

loss to train encoder to recover latent random 

variable. [18], [7] added reconstruction loss to 

MSE loss for the better performance. [19], [20], 

[6] used model (StyleGAN [5], [9]) specific 

methods. 

 In this paper, I introduce a dynamic latent scale 

GAN (DLSGAN), a learning-based method for 

training an encoder that inverts the generator 

of GAN. Previous works used MSE loss to train 

the encoder when the latent random variable is 

a normal i.i.d. random variable. However, simply 

using MSE loss causes convergence problem 

because information loss on latent random 

variable occurs in the generator. If there is 

information loss on the latent random variable 

in the generator, the encoder cannot be 

converged to invert the generator. Dynamic 

latent scale GAN dynamically adjusts the scale 

of the latent random variable so that there is 

no information loss in the generator. It means 

the encoder can be converged to invert the 

generator. 

The scale of the latent random variable 

depends on the amount of information that the 

encoder can recover. It can be calculated from 

the element-wise variance of the predicted 

latent random variable from the encoder. 

DLSGAN traces the predicted latent random 

variable from the encoder during training to 

approximate the element-wise variance of the 

predicted latent random variable. 

 Since the scale of a latent random variable 

dynamically changes dynamically in dynamic 

latent scale GAN, the encoder should be trained 

with a generator during GAN training. The 

encoder can be integrated with the 

discriminator, and the loss for the encoder is 

added to the generator loss for fast training. 

 

2. Problem of using MSE 

The generator 𝐺  maps the latent random 

variable 𝑍 to the data random variable 𝑋 (i.e., 

𝑋 = 𝐺(𝑍)). However, there is no guarantee that 

the generator 𝐺 uses all the information of the 

latent random variable 𝑍. For example, when 



the latent random variable 𝑍  has too many 

dimensions, the generator 𝐺 can be trained to 

ignore some elements of the latent random 

variable 𝑍. Or, the generator 𝐺 can be trained 

so that some elements of the latent random 

variable 𝑍  have relatively more information 

than others. In other words, different latent 

codes 𝑧1 and 𝑧2 sampled from latent random 

variable 𝑍  can be mapped to the same or 

nearly similar generated data points 𝐺(𝑧1) and 

𝐺(𝑧2). It means that information loss on the 

latent random variable 𝑍  occurs in the 

generator 𝐺 , and the encoder 𝐸  cannot 

perfectly recover the latent random variable 𝑍 

from the generated data random variable 𝐺(𝑍) 

and cannot converge.  

 

3. Dynamic latent scale GAN 

To prevent information loss on the latent 

random variable 𝑍 that occurs in the generator 

𝐺 , I introduce a DLSGAN that dynamically 

adjusts the scale of each element of the latent 

random variable 𝑍 so that no information loss 

occurs in generator 𝐺. 

Assume the latent random variable 𝑍 is 𝑑𝑧-

dimensional normal i.i.d. random variable (i.e., 

𝑍 = (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(𝜇, 𝜎2) ), and encoder 𝐸  is 

trained to predict latent random variable 𝑍 

from generated data random variable 𝐺(𝑍) 

with MSE loss. Each element of the predicted 

latent random variable 𝑍′ = 𝐸(𝐺(𝑍)) follows a 

normal distribution with mean 𝜇, but variances 

less or equal to 𝜎2 because some elements of 

latent random variable 𝑍  cannot be fully 

recovered. 

At this time, the variance of each element of 

predicted latent random variable 𝑍′ represents 

information on the latent random variable 𝑍 

that can be recovered from the generated data 

random variable 𝐺(𝑍). If the variance of 𝑛-th 

predicted latent random variable 𝑍𝑛
′  is zero, it 

means that encoder 𝐸  cannot recover any 

information of 𝑛-th latent random variable 𝑍𝑛 

from generated data random variable 𝐺(𝑍). On 

the other hand, if the variance of 𝑛 -th 

predicted latent random variable 𝑍𝑛
′  is 𝜎2 , it 

means encoder 𝐸 can recover all information 

of 𝑛 -th latent random variable 𝑍𝑛  from 

generated data random variable 𝐺(𝑍) . 

Therefore, if the element-wise variance of the 

predicted latent random variable 𝑍′  and the 

element-wise variance of the latent random 

variable 𝑍 are the same, it means that there is 

no information loss in the generator 𝐺, and the 

encoder can converge to predict latent random 

variable 𝑍  from generated data random 

variable 𝐺(𝑍).  

DLSGAN dynamically adjusts the scale of each 

element of latent random variable 𝑍 according 

to the variance of each element of predicted 

latent random variable 𝑍′ so that the variance 

of the latent random variable 𝑍 and predicted 

latent random variable 𝑍′ are equal. Since the 

dynamic latent scale GAN requires both the 

encoder 𝐸 and the generator 𝐺 to be trained 

together, it is efficient to integrate the encoder 

𝐸  into the discriminator 𝐷 . For the same 

reason, generator 𝐺  and encoder 𝐸  can be 

trained cooperatively. That is, encoder loss 𝐿𝑒𝑛𝑐 

(objective function) can be added to generator 

loss 𝐿𝑔 (objective function). 



 The following algorithm shows the process of 

obtaining the loss (objective function) for 

training DLSGAN. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐺𝑒𝑡𝐿𝑜𝑠𝑠(𝐷, 𝐺, 𝑥, 𝑣):  

1   𝑧 ← 𝑠𝑎𝑚𝑝𝑙𝑒 ((𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0, 12)) 

2   𝑠 ←
√𝑑𝑧𝑣

‖√𝑣‖
2

 

 

3   𝑎𝑔, 𝑧′ ← 𝐷(𝐺(𝑧 ⊙ 𝑠)) 

4   𝐿𝑒𝑛𝑐 ← 𝑎𝑣𝑔((𝑧 − 𝑧′)2 ⊙ 𝑠2) 

5   𝑎𝑟 , _ ← 𝐷(𝑥) 

 

6   𝐿𝑑 ← 𝑓𝑑(𝑎𝑟 , 𝑎𝑔) + 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐 

7   𝐿𝑔 ← 𝑓𝑔(𝑎𝑔) + 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐  

 

8   𝑣 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑣, 𝑧′2
) 

 

9   𝑟𝑒𝑡𝑢𝑟𝑛 𝐿𝑑 , 𝐿𝑔, 𝑣  

Algorithm 1. Obtaining loss (objective function) for training 

DLSGAN 

 

In the above algorithm, 𝐷 , 𝐺 , and 𝑥 

represent discriminator, generator, and real data 

point, respectively. Real data point 𝑥 is a data 

point sampled from real data random variable 

𝑋 . Since encoder 𝐸  is integrated with 

discriminator 𝐷 , discriminator 𝐷 outputs two 

values: 1-dimensional adversarial value and 𝑑𝑧-

dimensional predicted latent code. 𝑣 

represents the element-wise variance of the 

predicted latent random variable 𝑍′. It is ideal 

to approximate 𝑣 for every training step, but 

for efficiency, 𝑣  is approximated through 

predicted latent codes from the past 𝑘 train 

steps.  

In line 1, (𝑍𝑖)𝑖=1
𝑑𝑧 ~

𝑖.𝑖.𝑑.
𝑁(0, 12)  is a 𝑑𝑧 

dimensional i.i.d. latent random variable 

following normal distribution 𝑁(0,12) . For 

convenience, a mean of 0 and a standard 

deviation of 1 were assumed. 𝑠𝑎𝑚𝑝𝑙𝑒  is a 

function that samples a single value from a 

random variable. 𝑧  is latent code, which is 

sampled from latent random variable 𝑍. 

In line 2, 𝑠 is the latent scale vector. √𝑣𝑒𝑐 

represents the element-wise square root of the 

example vector 𝑣𝑒𝑐 . ‖𝑣𝑒𝑐‖2  represents L2 

norm of example vector 𝑣𝑒𝑐.  

In line 3, ⊙  represents element-wise 

multiplication. 𝐺(𝑧 ⊙ 𝑠) is the generated data 

point with scaled latent code 𝑧 ⊙ 𝑠 . The 

discriminator 𝐷  outputs the adversarial value 

𝑎𝑔 and the predicted latent code 𝑧′. When all 

elements of 𝑣  are the same, i.e., when the 

variance of all elements of predicted latent 

random variable 𝑍′ are the same, the scaled 

latent random variable 𝑍 ⊙ 𝑠 has the largest 

differential entropy. On the other hand, when 

the variance of only one element of the 

predicted latent random variable is not 0, and 

the other elements are 0, the scaled latent 

random variable 𝑍 ⊙ 𝑠  has the least 

differential entropy. √𝑑𝑧  is a constant 

multiplied to make the scaled latent random 

variable 𝑍 ⊙ 𝑠 equal to latent random variable 



𝑍 when the differential entropy of the scaled 

latent random variable 𝑍 ⊙ 𝑠 is the largest. The 

differential entropy of the scaled latent random 

variable 𝑍 ⊙ 𝑠 dynamically changes according 

to the variance of predicted latent random 

variable 𝑍′  during GAN training. As GAN 

training progresses, the scaled latent random 

variable 𝑍 ⊙ 𝑠 converges to have an optimal 

entropy representing the real data random 

variable 𝑋 through generator 𝐺. 

In line 4, 𝑣𝑒𝑐2 means the element-wise square 

of the example vector 𝑣𝑒𝑐. 𝑎𝑣𝑔 is a function 

that calculates the average of a vector. 𝐿𝑒𝑛𝑐 is 

encoder loss. The encoder loss 𝐿𝑒𝑛𝑐 is equal to 

the MSE loss between the scaled latent code 

𝑧 ⊙ 𝑠  and the scaled predicted latent code 

𝑧′ ⊙ 𝑠. 

In line 5, 𝑎𝑟  is the adversarial value of real 

data point 𝑥 . “_” represents not using value. 

Since the latent code of the real data point 𝑥 

is unknown, the predicted latent code for the 

real data point 𝑥  is not used in DLSGAN 

training. 

 In lines 6 and 7, 𝑓𝑑 and 𝑓𝑔 are adversarial loss 

functions for discriminator 𝐷 and generator 𝐺, 

respectively. One can find many adversarial 

losses in [4]. 𝜆𝑒𝑛𝑐 is encoder loss weight. One 

can see encoder loss 𝐿𝑒𝑛𝑐  is added to both 

generator loss 𝐿𝑔  and discriminator loss 𝐿𝑑 . 

This means that the generator 𝐺  and 

discriminator 𝐷  are trained cooperatively to 

reduce the encoder loss 𝐿𝑒𝑛𝑐 . 

 In line 8, 𝑢𝑝𝑑𝑎𝑡𝑒  function update the 

predicted latent random variable variance 𝑣 

with the new predicted latent code 𝑧′. Since the 

mean of the predicted latent random variable 

𝑍′  become automatically zero, 𝑧′2
 (element-

wise square of predicted latent code 𝑧′) can be 

considered as the sample variance of predicted 

latent random variable 𝑍′. A moving average or 

an exponential moving average can be used for 

the 𝑢𝑝𝑑𝑎𝑡𝑒 function. 

 Note that the latent code input to the 

generator should always be scaled by the scale 

vector 𝑠. Therefore, the generated data point is 

𝐺(𝑧 ⊙ 𝑠), and the recovered data point of 𝑥 is 

𝐺(𝑧𝑥 ⊙ 𝑠) , where 𝑧𝑥  is the predicted latent 

code of the real data point 𝑥. 

 

4. Experimental results and discussion 

4.1 Experiment settings 

 I trained GAN to generate the celeb A dataset 

[8] resized to 128x128 resolution. As the model 

architecture, a partially reduced version of 

StyleGAN2 [9] was used. Batch operations 

(minibatch stddev layer) in StyleGAN2 

discriminator are removed so that the encoder 

encodes one data point as one latent vector. As 

an adversarial loss, NSGAN with R1 loss [3] was 

used as StyleGAN2. I used encoder loss weight 

𝜆𝑒𝑛𝑐 = 1.0. 

 I compared the performance of DLS and MSE. 

I also compared the effect of the encoder loss 

𝐿𝑒𝑛𝑐 on generator loss 𝐿𝑔. For 𝑢𝑝𝑑𝑎𝑡𝑒 function 

for DLSGAN, I used a moving average using the 

past 512 × 16 samples. 

 

 



4.2 Experiment results 

 The following figures show the performance of 

DLS and MSE, with and without encoder loss 

𝐿𝑒𝑛𝑐 on generator loss 𝐿𝑔. 

 

 

Figure 1. FID according to the encoder loss 𝐿𝑒𝑛𝑐 

 

 Figure 1 shows the FID [10] according to the 

encoder loss 𝐿𝑒𝑛𝑐 for each epoch. In figure 1, 

DLS and MSE represent DLS (dynamic latent 

scale) and MSE (mean squared error), 

respectively. D means weighted encoder loss 

𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐 was added to only discriminator loss 

𝐿𝑑 . DG means weighted encoder loss 𝜆𝑒𝑛𝑐𝐿𝑒𝑛𝑐 

was added to both discriminator loss 𝐿𝑑 and 

generator loss 𝐿𝑔. 

 One can see that there is little difference in the 

generative performance of GAN according to 

the type of encoder loss 𝐿𝑒𝑛𝑐 . 

 

 

Figure 2. Average 𝐿𝑒𝑛𝑐  according to the 

encoder loss 𝐿𝑒𝑛𝑐 

 

 Figure 2 shows the average encoder loss 𝐿𝑒𝑛𝑐 

according to the encoder loss 𝐿𝑒𝑛𝑐  for each 

epoch. One can see that with MSE loss, encoder 

loss 𝐿𝑒𝑛𝑐  hardly changes from 1. This shows 

that the encoder 𝐸 trained with MSE loss fails 

to converge due to the information loss on the 

latent random variable in the generator 𝐺. On 

the other hand, one can see that the encoder 

loss 𝐿𝑒𝑛𝑐  continuously decreases as training 

progresses with DLS. This shows that the model 

converges with DLS. Also, one can see that the 

encoder loss 𝐿𝑒𝑛𝑐 is much lower when encoder 

loss 𝐿𝑒𝑛𝑐 is added to the generator loss 𝐿𝑔. 

 

 



 

Figure 3. Differential latent entropy of DLSGAN 

 

Figure 3 shows differential entropy of latent 

random variable of DLSGAN for each epoch. As 

encoder loss 𝐿𝑒𝑛𝑐 , one can see that the 

differential entropy of the latent random 

variable 𝑍 decreases faster when encoder loss 

𝐿𝑒𝑛𝑐 is added to the generator loss 𝐿𝑔. 

 

 

Figure 4. Average PSNR for generated images 

according to the encoder loss 𝐿𝑒𝑛𝑐 

 

 

Figure 5. Average SSIM for generated images 

according to the encoder loss 𝐿𝑒𝑛𝑐  

 

 Figures 4 and 5 show the average PSNR and 

SSIM for each epoch when reconstruction is 

performed on the generated images. One can 

see that the performance of reconstruction on 

generated images is much better with DLS DG. 

Also, both DLS and MSE perform better when 

the encoder loss 𝐿𝑒𝑛𝑐  is added to the 

generator loss 𝐿𝑔. 

 

 

Figure 6. MSE DG generated images 

reconstruction example 



 

Figure 7. DLS DG generated images 

reconstruction examples 

 

 Figures 6 and 7 show examples of generated 

images reconstruction with MSE DG and DLS 

DG. Big size images of all figures for generated 

images are in the appendix. 

 

 

Figure 8. Average PSNR for test images 

according to the encoder loss 𝐿𝑒𝑛𝑐 

 

Figure 9. Average SSIM for test images 

according to the encoder loss 𝐿𝑒𝑛𝑐  

 

 Figures 8 and 9 show the average PSNR and 

SSIM for each epoch when reconstruction is 

performed on the test images (real images). As 

reconstruction on the generated images, one 

can see that the performance of reconstruction 

on test images is much better with DLS DG. 

 

 

Figure 10. MSE DG Test images reconstruction 

examples 



 

Figure 11. DLS DG Test images reconstruction 

examples 

 

 Figures 10 and 11 show examples of 

generated images reconstruction with MSE and 

DLS. 

 

4.3 Additional results of DLSGAN 

 The following figures show some additional 

results of DLS DG. 

 

 

Figure 12. Latent interpolation on most 

important element 

 

 

Figure 13. Latent interpolation on second most 

important element  



 

Figure 14. Latent interpolation on third most 

important element  

 

Figures 12-14 show interpolating one 

important element of the latent random 

variable 𝑍 from -2 to 2 in DLSGAN. The larger 

the elements of the scale vector 𝑠, the more 

important (more informative) elements. That is, 

figures 12-14 are the results of interpolating the 

index of the first, second, and third-largest 

element of scale vector 𝑠, respectively. 

 

 

 

 

Figure 15. Stochastic noise on recovered latent 

codes 

 

Figure 15 shows the result of adding stochastic 

noise to the predicted latent code for the test 

images. The first column of figure 15 shows the 

input images (test images), and the second 

column shows the reconstructed images 

through predicted latent codes. Based on the 

thick white line, the images on the right side 

show the images generated by adding normal 

noise with mean 0 and variance 0.3 for each 

element of the predicted latent code. Each 

column has the same noise. 

 

5. Conclusion 

 In this paper, I proposed a DLSGAN, a method 

for training a generator without information 

loss on the latent random variable, and an 

encoder that inverts the generator. Dynamic 

latent scale GAN dynamically adjusts the scale 

of the normal i.i.d. latent random variable to 

have the optimal entropy to express the data 

random variable. This ensures that there is no 



information loss on the latent random variable 

in the generator so that the encoder can 

converge to invert the generator. The encoder 

of DLSGAN showed much better performance 

than simply using MSE loss.  
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Appendix 

 

Big size image of figure 6. MSE DG generated images reconstruction example 

 

 

 

 

 

 

 



 

Big size image of figure 7. DLS DG generated images reconstruction examples 

 

 



 

Big size image of figure 10. MSE DG Test images reconstruction examples 

 

 

 

 

 

 

 

 



 

Big size image of figure 11. DLS DG Test images reconstruction examples 

 

 

 

 

 

 

 

 



 

Big size image of figure 12. Latent interpolation on most important element  

 



 

Big size image of figure 13. Latent interpolation on second most important element  

 

 



 

Big size image of figure 14. Latent interpolation on third most important element  

 

 

 

 

 

 

 



 

Big size image of figure 15. Stochastic noise on recovered latent codes 

 


