
Dynamic Latent Scale GAN
Jeongik Cho

jeongik.jo.01@gmail.com

Abstract

 Generators in generative adversarial networks

map latent distributions into data distributions.

GAN inversion is mapping data distribution to

latent distribution by inverting the generator of

GAN.

 When training the encoder for generator

inversion, simply using the mean squared error

causes the encoder to not converge due to

information loss on the latent distribution from

the generator. In other words, it is impossible

to invert the generator as it is due to the

information loss on the latent distribution.

 This paper introduces a dynamic latent scale

GAN, a method for training a generator without

information loss on latent distribution, and an

encoder that inverts the generator. Dynamic

latent scale GAN dynamically scales each

element of the normal i.i.d. (independent and

identically distributed) latent distribution during

GAN training to adjust the entropy of the latent

distribution so that information loss on the

latent distribution does not occur in the

generator. The amount of information that can

be recovered from the generated data

distribution can be obtained through the

variance of the predicted latent distribution

(encoder output distribution). By dynamically

adjusting the scale of the latent distribution

through the variance of each element of the

predicted latent distribution, it is possible to

train a generator that does not have

information loss on latent distribution. This

means that mutual information between the

latent distribution and predicted latent

distribution can be maximized, and the encoder

can converge.

 Since the latent distribution scale of the

dynamic latent scale GAN changes dynamically,

the encoder should be trained together during

GAN training. The encoder can be integrated

with the discriminator, and the loss for the

encoder can be added to the generator loss

because the encoder converges.

1. Introduction

It is very useful to learn the inverse transform

of the generator of GAN. It can perform the role

of feature learning or can be used for various

useful applications such as data manipulation.

Many useful applications and methods for GAN

inversion are introduced in the GAN inversion

survey paper [1].

2. Problem analyze

The generator maps the latent distribution to

the data distribution. However, there is no

guarantee that the generator uses all the

information of the latent distribution. For

example, when the latent distribution has too

many dimensions, the generator can be trained

to ignore some elements of latent distribution.

Or, the generator can be trained so that some

elements of latent distribution have relatively

more information than others. In other words,

different latent vectors can be mapped to the

same or nearly similar data points by the

generator. It means that information loss on the

latent distribution occurs in the generator.

Due to information loss by the generator, the

encoder cannot perfectly recover the latent

distribution from the generated data

distribution. Therefore, training the encoder

with mean squared error to recover

unrecoverable latent distribution [6], [7] causes

a convergence problem. When the encoder

encodes the generated data distribution into a

𝑑௭ -dimensional predicted latent distribution,

this encoder can be considered as an

integration of 𝑑௭ encoders, each encoder

encoding each dimension. Since all encoders

share all layers except the output layer, if some

encoders are trained to recover elements of

latent distribution that are impossible to recover,

it also prevents other encoders from

convergence. This degrades the performance of

the entire encoder. Likewise, when an encoder

is integrated into a discriminator, it also

degrades the performance of the discriminator.

3. Dynamic latent scale GAN

To prevent information loss on the latent

distribution that occurs in the generator, I

introduce a dynamic latent scale GAN that

dynamically adjusts the scale of each element

of the latent distribution.

Assume that the latent distribution 𝑍 follows

𝑑௭ -dimensional i.i.d. normal random variable

𝑁(𝜇, 𝜎ଶ)ௗ೥ . Suppose 𝑑௭ number of

independent one-dimensional encoders

(𝐸ଵ, 𝐸ଶ, … , 𝐸ௗ೥
) are sufficiently trained to invert

generator 𝐺 with squared error. In that case,

the output of each encoder (i.e.,

𝐸ଵ൫𝐺(𝑍)൯, 𝐸ଶ൫𝐺(𝑍)൯, … , 𝐸ௗ೥
൫𝐺(𝑍)൯) follows an

independent normal distribution but has

different variances less or equal to 𝜎ଶ with

mean 𝜇 because some of the encoders cannot

fully recover the information from generated

data distribution 𝐺(𝑍).

At this time, the variance of each trained

encoder represents information that can be

recovered from the latent distribution.

Therefore, it is possible to train a generator

without information loss by training the

generator and encoder together with a scaled

latent vector during the GAN training. If no

information loss on latent distribution occurs in

the generator, each encoder can converge.

Therefore, each encoder can be integrated into

one encoder that shares all hidden layers.

Furthermore, the encoder can also be

integrated with the discriminator because it

converges. Since the dynamic latent scale GAN

requires both the encoder and the generator to

be trained together, it is efficient to integrate

the encoder into the discriminator. Also,

because the encoder converges, the generator

and encoder can be trained cooperatively. That

is, encoder loss (objective function) can be

added to generator loss (objective function).

 The following algorithm shows the process of

obtaining the loss (objective function) for

training dynamic latent scale GAN.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐺𝑒𝑡𝐿𝑜𝑠𝑠(𝐷, 𝐺, 𝑥, 𝑣):

1 𝑧 ← 𝑠𝑎𝑚𝑝𝑙𝑒(𝑁(0,1ଶ)ௗ೥)

2 𝑠 ←
ඥௗ೥௩

ฮ√௩ฮ
మ

3 𝑎௚, 𝑧ᇱ ← 𝐷൫𝐺(𝑧 ⊙ 𝑠)൯

4 𝐿௘௡௖ ← 𝑎𝑣𝑔((𝑧 − 𝑧ᇱ)ଶ ⊙ 𝑠ଶ)

5 𝑎௥ , _ ← 𝐷(𝑥)

6 𝐿ௗ ← 𝑓௥
ௗ(𝑎௥) + 𝑓௚

ௗ൫𝑎௚൯ + 𝜆௘௡௖𝐿௘௡௖

7 𝐿௚ ← 𝑓௚൫𝑎௚൯ + 𝜆௘௡௖𝐿௘௡௖

8 𝑣 ← 𝑢𝑝𝑑𝑎𝑡𝑒൫𝑣, 𝑧ᇱଶ
൯

9 𝑟𝑒𝑡𝑢𝑟𝑛 𝐿ௗ , 𝐿௚, 𝑣

Algorithm 1. Obtaining loss (objective function) for training

dynamic latent scale GAN

In the above algorithm, 𝐷 , 𝐺 , and 𝑥

represent discriminator, generator, and real data,

respectively. Real data 𝑥 is sampled from real

data distribution 𝑋 . Since encoder 𝐸 is

integrated with discriminator 𝐷 , discriminator

𝐷 outputs two values: 1-dimensional

adversarial value and 𝑑௭-dimensional predicted

latent vector. 𝑣 represents the element-wise

variance of the predicted latent distribution 𝑍ᇱ.

It is ideal for calculating 𝑣 for each training

step, but for efficiency, in practice, 𝑣 is

calculated through samples of predicted latent

vector 𝑧ᇱ obtained from the past 𝑘 train steps.

In line 1, 𝑁(0,1ଶ)ௗ೥ is a 𝑑௭ dimensional i.i.d.

random variable following normal distribution

𝑁(0,1ଶ). For convenience, a mean of 0 and a

standard deviation of 1 were assumed. 𝑠𝑎𝑚𝑝𝑙𝑒

is a function that samples a single value from a

random variable.

In line 2, 𝑠 is the latent scale vector. √𝑣𝑒𝑐

represents the element-wise square root of the

example vector 𝑣𝑒𝑐 . ‖𝑣𝑒𝑐‖ଶ represents L2

norm of example vector 𝑣𝑒𝑐.

In line 3, ⊙ represents element-wise

multiplication. 𝐺(𝑧 ⊙ 𝑠) is the generated data

point. The discriminator 𝐷 outputs the

adversarial value 𝑎௚ and the predicted latent

vector 𝑧ᇱ . The generator 𝐺 receives scaled

latent vector 𝑧 ⊙ 𝑠 as input. When all elements

of 𝑣 are the same, i.e., when the distribution of

all encoder outputs has the same variance, the

scaled latent distribution has the largest

amount of information. On the other hand,

when the variance of only one element of the

encoder output is not 0, and the variances of

the other elements are 0, the scaled latent

vector has the least information. ඥ𝑑௭ is a

constant multiplied to make the latent

distribution follow 𝑁(0,1ଶ)ௗ೥ when the entropy

of the latent distribution is the largest. The

entropy of the scaled latent distribution input

to the generator dynamically changes

according to the variance of each element of

the encoder's output during GAN training. That

is, during training, the scaled latent distribution

𝑍 ⊙ 𝑠 converges to have an optimal entropy

representing the real data distribution 𝑋.

In line 4, 𝑣𝑒𝑐ଶ means the element-wise square

of the example vector 𝑣𝑒𝑐. 𝑎𝑣𝑔 is a function

that calculates the average of a vector. 𝐿௘௡௖ is

encoder loss. The encoder loss 𝐿௘௡௖ is equal to

the mean squared error between the scaled

latent vector 𝑧 ⊙ 𝑠 and the scaled predicted

latent vector 𝑧ᇱ ⊙ 𝑠.

In line 5, 𝑎௥ is the adversarial value of real

data. “_” represents not using value.

 In lines 6 and 7, 𝑓௥
ௗ, 𝑓௚

ௗ, and 𝑓௚ are adversarial

loss functions. There are several adversarial loss

functions such as Original GAN [2], NSGAN [3],

LSGAN [4], WGAN-gp [5], etc. 𝜆௘௡௖ is encoder

loss weight. One can see encoder loss 𝐿௘௡௖ is

added to both generator loss 𝐿௚ and

discriminator loss 𝐿ௗ . This means that the

generator and discriminator are trained

cooperatively to reduce the encoder loss 𝐿௘௡௖ .

 In line 8, 𝑢𝑝𝑑𝑎𝑡𝑒 function update the variance

of predicted latent distribution 𝑍ᇱ with the new

predicted latent vector 𝑧ᇱ. Since the mean of

the predicted latent vector 𝑧ᇱ become

automatically zero, 𝑧ᇱଶ (element-wise square of

predicted latent vector 𝑧ᇱ) can be considered as

the variance of predicted latent vector 𝑧ᇱ. An

exponential moving average or a simple

moving average can be used for the 𝑢𝑝𝑑𝑎𝑡𝑒

function.

 Note that the latent vector input to the

generator should always be scaled by the scale

vector 𝑠. Therefore, the generated data point is

𝐺(𝑧 ⊙ 𝑠) , and the recovered data of 𝑥 is

𝐺(𝑧௫ ⊙ 𝑠), where 𝑧௫ is from _, 𝑧௫ ← 𝐷(𝑥).

4. Experimental results and discussion

4.1 Experiment settings

 I trained GAN to generate the celeb A dataset

[8] resized to 128x128 resolution. As the model

architecture, a partially reduced version of

styleGAN2 [9] was used. Batch operations

(minibatch stddev layer) of StyleGAN2 are

removed so that the encoder encodes one data

point as one latent vector. As an adversarial loss,

NSGAN [3] with r1 loss was used as StyleGAN2.

I used encoder loss weight 𝜆௘௡௖ = 1.0.

 I compared the performance with and without

dynamic latent scale. Without dynamic latent

scale means using the mean squared error as

the encoder loss 𝐿௘௡௖ . For 𝑢𝑝𝑑𝑎𝑡𝑒 function for

dynamic latent scale GAN, I used a simple

moving average using past 512× 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 =

512 × 32 samples.

4.2 Experiment results

 The following figures show the performance

with and without dynamic latent scale.

Figure 1. FID with and without dynamic latent

scale

 Figure 1 shows the FID [10] with and without

a dynamic latent scale for each epoch. One can

see that the dynamic latent scale has little effect

on the generative performance of the model.

Figure 2. Average 𝐿௘௡௖ with and without

dynamic latent scale

 Figure 2 shows the average encoder loss 𝐿௘௡௖

with and without a dynamic latent scale for

each epoch. One can see that without dynamic

latent scale, encoder loss 𝐿௘௡௖ hardly changes

from 1. This shows that the model without

dynamic latent scale fails to converge due to

the information loss on the latent distribution

in the generator. On the other hand, one can

see that the encoder loss 𝐿௘௡௖ continuously

decreases as training progresses with dynamic

latent scale. This shows that the model

converges with a dynamic latent scale.

Figure 3. Average PSNR for generated images

reconstruction with and without dynamic latent

scale

Figure 4. Average SSIM for generated images

reconstruction with and without dynamic latent

scale

 Figures 3 and 4 show the average PSNR and

SSIM for each epoch when reconstruction is

performed on the generated images. One can

see that the performance of reconstruction on

generated images is much better with dynamic

latent scale.

Figure 5. Generated images reconstruction

without dynamic latent scale

Figure 6. Generated images reconstruction with

dynamic latent scale

 Figures 5 and 6 show examples of generated

images reconstruction with and without

dynamic latent scale. Big size images of all

figures for generated images are in the

appendix.

Figure 7. Average PSNR for test images

reconstruction with and without dynamic latent

scale

Figure 8. Average SSIM for test images

reconstruction with and without dynamic latent

scale

 Figures 7 and 8 show the average PSNR and

SSIM for each epoch when reconstruction is

performed on the test images (real images). As

reconstruction on the generated images, one

can see that the performance of reconstruction

on test images is much better with dynamic

latent scale.

Figure 9. Test images reconstruction without

dynamic latent scale

Figure 10. Test images reconstruction with

dynamic latent scale

 Figures 9 and 10 show examples of generated

images reconstruction with and without

dynamic latent scale.

4.3 additional results

 The following figures show some additional

results with dynamic latent scale GAN.

Figure 11. Stochastic latent element flip

 Figure 11 shows the result of the stochastic flip

(multiplying by -1) of each element of the latent

vector of test images. The first column shows

the input images (test images), and the second

column shows the reconstructed image. The

images on the right side based on the thick

white line show the result of stochastic flipping

of the latent vector. In each column, elements

of the same index are flipped. The flip

probability was 10%.

5. Conclusion

 In this paper, I proposed a dynamic latent scale

GAN, a method for training a generator without

information loss on latent distribution, and an

encoder that inverts the generator. Dynamic

latent scale GAN dynamically adjusts the scale

of the normal i.i.d. latent distribution to have

the optimal entropy to express the data

distribution. This ensures that there is no

information loss on the latent distribution in the

generator so that the encoder can converge.

The encoder of dynamic latent scale GAN

showed much better performance than simply

using mean squared error to train the encoder.

6. References

[1] https://arxiv.org/abs/2101.05278

[2] https://arxiv.org/abs/1406.2661

[3] https://arxiv.org/abs/1801.04406v4

[4] https://arxiv.org/abs/1611.04076

[5] https://arxiv.org/abs/1704.00028

[6] https://arxiv.org/abs/2102.01187

[7] https://arxiv.org/abs/1611.06355

[8]

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.h

tml

[9] https://arxiv.org/abs/1912.04958

[10] https://arxiv.org/abs/1706.08500

Appendix

Big size image of figure 5. Generated images reconstruction without dynamic latent scale

Big size image of figure 6. Generated images reconstruction with dynamic latent scale

Big size image of Figure 9. Test images reconstruction without dynamic latent scale

Big size image of Figure 10. Test images reconstruction with dynamic latent scale

Big size image of Figure 11. Stochastic latent element flip

