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Abstract 

 Generators in generative adversarial networks 

map latent distributions into data distributions. 

GAN inversion is mapping data distribution to 

latent distribution by inverting the generator of 

GAN.  

 When training the encoder for generator 

inversion, simply using the mean squared error 

causes the encoder to not converge due to 

information loss on the latent distribution from 

the generator. In other words, it is impossible 

to invert the generator as it is due to the 

information loss on the latent distribution. 

 This paper introduces a dynamic latent scale 

GAN, a method for training a generator without 

information loss on latent distribution, and an 

encoder that inverts the generator. Dynamic 

latent scale GAN dynamically scales each 

element of the normal i.i.d. (independent and 

identically distributed) latent distribution during 

GAN training to adjust the entropy of the latent 

distribution so that information loss on the 

latent distribution does not occur in the 

generator. The amount of information that can 

be recovered from the generated data 

distribution can be obtained through the 

variance of the predicted latent distribution 

(encoder output distribution). By dynamically 

adjusting the scale of the latent distribution 

through the variance of each element of the 

predicted latent distribution, it is possible to 

train a generator that does not have 

information loss on latent distribution. This 

means that mutual information between the 

latent distribution and predicted latent 

distribution can be maximized, and the encoder 

can converge. 

 Since the latent distribution scale of the 

dynamic latent scale GAN changes dynamically, 

the encoder should be trained together during 

GAN training. The encoder can be integrated 

with the discriminator, and the loss for the 

encoder can be added to the generator loss 

because the encoder converges. 

 

1. Introduction 

It is very useful to learn the inverse transform 

of the generator of GAN. It can perform the role 

of feature learning or can be used for various 

useful applications such as data manipulation. 

Many useful applications and methods for GAN 

inversion are introduced in the GAN inversion 

survey paper [1]. 

 

 



2. Problem analyze 

The generator maps the latent distribution to 

the data distribution. However, there is no 

guarantee that the generator uses all the 

information of the latent distribution. For 

example, when the latent distribution has too 

many dimensions, the generator can be trained 

to ignore some elements of latent distribution. 

Or, the generator can be trained so that some 

elements of latent distribution have relatively 

more information than others. In other words, 

different latent vectors can be mapped to the 

same or nearly similar data points by the 

generator. It means that information loss on the 

latent distribution occurs in the generator. 

Due to information loss by the generator, the 

encoder cannot perfectly recover the latent 

distribution from the generated data 

distribution. Therefore, training the encoder 

with mean squared error to recover 

unrecoverable latent distribution [6], [7] causes 

a convergence problem. When the encoder 

encodes the generated data distribution into a 

𝑑௭ -dimensional predicted latent distribution, 

this encoder can be considered as an 

integration of 𝑑௭  encoders, each encoder 

encoding each dimension. Since all encoders 

share all layers except the output layer, if some 

encoders are trained to recover elements of 

latent distribution that are impossible to recover, 

it also prevents other encoders from 

convergence. This degrades the performance of 

the entire encoder. Likewise, when an encoder 

is integrated into a discriminator, it also 

degrades the performance of the discriminator. 

3. Dynamic latent scale GAN 

To prevent information loss on the latent 

distribution that occurs in the generator, I 

introduce a dynamic latent scale GAN that 

dynamically adjusts the scale of each element 

of the latent distribution. 

Assume that the latent distribution 𝑍 follows 

𝑑௭ -dimensional i.i.d. normal random variable 

𝑁(𝜇, 𝜎ଶ)ௗ೥ . Suppose 𝑑௭  number of 

independent one-dimensional encoders 

(𝐸ଵ, 𝐸ଶ, … , 𝐸ௗ೥
) are sufficiently trained to invert 

generator 𝐺 with squared error. In that case, 

the output of each encoder (i.e., 

𝐸ଵ൫𝐺(𝑍)൯, 𝐸ଶ൫𝐺(𝑍)൯, … , 𝐸ௗ೥
൫𝐺(𝑍)൯ ) follows an 

independent normal distribution but has 

different variances less or equal to 𝜎ଶ  with 

mean 𝜇 because some of the encoders cannot 

fully recover the information from generated 

data distribution 𝐺(𝑍).  

At this time, the variance of each trained 

encoder represents information that can be 

recovered from the latent distribution. 

Therefore, it is possible to train a generator 

without information loss by training the 

generator and encoder together with a scaled 

latent vector during the GAN training. If no 

information loss on latent distribution occurs in 

the generator, each encoder can converge. 

Therefore, each encoder can be integrated into 

one encoder that shares all hidden layers. 

Furthermore, the encoder can also be 

integrated with the discriminator because it 

converges. Since the dynamic latent scale GAN 

requires both the encoder and the generator to 

be trained together, it is efficient to integrate 



the encoder into the discriminator. Also, 

because the encoder converges, the generator 

and encoder can be trained cooperatively. That 

is, encoder loss (objective function) can be 

added to generator loss (objective function). 

 The following algorithm shows the process of 

obtaining the loss (objective function) for 

training dynamic latent scale GAN. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐺𝑒𝑡𝐿𝑜𝑠𝑠(𝐷, 𝐺, 𝑥, 𝑣):  

1   𝑧 ← 𝑠𝑎𝑚𝑝𝑙𝑒(𝑁(0,1ଶ)ௗ೥) 

2   𝑠 ←
ඥௗ೥௩

ฮ√௩ฮ
మ

 

3   𝑎௚, 𝑧ᇱ ← 𝐷൫𝐺(𝑧 ⊙ 𝑠)൯ 

4   𝐿௘௡௖ ← 𝑎𝑣𝑔((𝑧 − 𝑧ᇱ)ଶ ⊙ 𝑠ଶ) 

5   𝑎௥ , _ ← 𝐷(𝑥) 

 

6   𝐿ௗ ← 𝑓௥
ௗ(𝑎௥) + 𝑓௚

ௗ൫𝑎௚൯ + 𝜆௘௡௖𝐿௘௡௖ 

7   𝐿௚ ← 𝑓௚൫𝑎௚൯ + 𝜆௘௡௖𝐿௘௡௖  

 

8   𝑣 ← 𝑢𝑝𝑑𝑎𝑡𝑒൫𝑣, 𝑧ᇱଶ
൯ 

 

9   𝑟𝑒𝑡𝑢𝑟𝑛 𝐿ௗ , 𝐿௚, 𝑣  

Algorithm 1. Obtaining loss (objective function) for training 

dynamic latent scale GAN 

 

In the above algorithm, 𝐷 , 𝐺 , and 𝑥 

represent discriminator, generator, and real data, 

respectively. Real data 𝑥 is sampled from real 

data distribution 𝑋 . Since encoder 𝐸  is 

integrated with discriminator 𝐷 , discriminator 

𝐷  outputs two values: 1-dimensional 

adversarial value and 𝑑௭-dimensional predicted 

latent vector. 𝑣  represents the element-wise 

variance of the predicted latent distribution 𝑍ᇱ. 

It is ideal for calculating 𝑣 for each training 

step, but for efficiency, in practice, 𝑣  is 

calculated through samples of predicted latent 

vector 𝑧ᇱ obtained from the past 𝑘 train steps.  

In line 1, 𝑁(0,1ଶ)ௗ೥ is a 𝑑௭ dimensional i.i.d. 

random variable following normal distribution 

𝑁(0,1ଶ). For convenience, a mean of 0 and a 

standard deviation of 1 were assumed. 𝑠𝑎𝑚𝑝𝑙𝑒 

is a function that samples a single value from a 

random variable.  

In line 2, 𝑠 is the latent scale vector. √𝑣𝑒𝑐 

represents the element-wise square root of the 

example vector 𝑣𝑒𝑐 . ‖𝑣𝑒𝑐‖ଶ  represents L2 

norm of example vector 𝑣𝑒𝑐.  

In line 3, ⊙  represents element-wise 

multiplication. 𝐺(𝑧 ⊙ 𝑠) is the generated data 

point. The discriminator 𝐷  outputs the 

adversarial value 𝑎௚ and the predicted latent 

vector 𝑧ᇱ . The generator 𝐺  receives scaled 

latent vector 𝑧 ⊙ 𝑠 as input. When all elements 

of 𝑣 are the same, i.e., when the distribution of 

all encoder outputs has the same variance, the 

scaled latent distribution has the largest 

amount of information. On the other hand, 

when the variance of only one element of the 

encoder output is not 0, and the variances of 

the other elements are 0, the scaled latent 

vector has the least information. ඥ𝑑௭  is a 

constant multiplied to make the latent 

distribution follow 𝑁(0,1ଶ)ௗ೥ when the entropy 



of the latent distribution is the largest. The 

entropy of the scaled latent distribution input 

to the generator dynamically changes 

according to the variance of each element of 

the encoder's output during GAN training. That 

is, during training, the scaled latent distribution 

𝑍 ⊙ 𝑠 converges to have an optimal entropy 

representing the real data distribution 𝑋. 

In line 4, 𝑣𝑒𝑐ଶ means the element-wise square 

of the example vector 𝑣𝑒𝑐. 𝑎𝑣𝑔 is a function 

that calculates the average of a vector. 𝐿௘௡௖ is 

encoder loss. The encoder loss 𝐿௘௡௖ is equal to 

the mean squared error between the scaled 

latent vector 𝑧 ⊙ 𝑠 and the scaled predicted 

latent vector 𝑧ᇱ ⊙ 𝑠. 

In line 5, 𝑎௥  is the adversarial value of real 

data. “_” represents not using value. 

 In lines 6 and 7, 𝑓௥
ௗ, 𝑓௚

ௗ, and 𝑓௚ are adversarial 

loss functions. There are several adversarial loss 

functions such as Original GAN [2], NSGAN [3], 

LSGAN [4], WGAN-gp [5], etc. 𝜆௘௡௖ is encoder 

loss weight. One can see encoder loss 𝐿௘௡௖ is 

added to both generator loss 𝐿௚  and 

discriminator loss 𝐿ௗ . This means that the 

generator and discriminator are trained 

cooperatively to reduce the encoder loss 𝐿௘௡௖ . 

 In line 8, 𝑢𝑝𝑑𝑎𝑡𝑒 function update the variance 

of predicted latent distribution 𝑍ᇱ with the new 

predicted latent vector 𝑧ᇱ. Since the mean of 

the predicted latent vector 𝑧ᇱ  become 

automatically zero, 𝑧ᇱଶ (element-wise square of 

predicted latent vector 𝑧ᇱ) can be considered as 

the variance of predicted latent vector 𝑧ᇱ. An 

exponential moving average or a simple 

moving average can be used for the 𝑢𝑝𝑑𝑎𝑡𝑒 

function. 

 Note that the latent vector input to the 

generator should always be scaled by the scale 

vector 𝑠. Therefore, the generated data point is 

𝐺(𝑧 ⊙ 𝑠) , and the recovered data of 𝑥  is 

𝐺(𝑧௫ ⊙ 𝑠), where 𝑧௫ is from _, 𝑧௫ ← 𝐷(𝑥). 

 

4. Experimental results and discussion 

4.1 Experiment settings 

 I trained GAN to generate the celeb A dataset 

[8] resized to 128x128 resolution. As the model 

architecture, a partially reduced version of 

styleGAN2 [9] was used. Batch operations 

(minibatch stddev layer) of StyleGAN2 are 

removed so that the encoder encodes one data 

point as one latent vector. As an adversarial loss, 

NSGAN [3] with r1 loss was used as StyleGAN2. 

I used encoder loss weight 𝜆௘௡௖ = 1.0. 

 I compared the performance with and without 

dynamic latent scale. Without dynamic latent 

scale means using the mean squared error as 

the encoder loss 𝐿௘௡௖ . For 𝑢𝑝𝑑𝑎𝑡𝑒 function for 

dynamic latent scale GAN, I used a simple 

moving average using past 512× 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 =

512 × 32 samples. 

 

 

 

 

 

 



4.2 Experiment results 

 The following figures show the performance 

with and without dynamic latent scale. 

 

Figure 1. FID with and without dynamic latent 

scale 

 

 Figure 1 shows the FID [10] with and without 

a dynamic latent scale for each epoch. One can 

see that the dynamic latent scale has little effect 

on the generative performance of the model. 

 

 

Figure 2. Average 𝐿௘௡௖  with and without 

dynamic latent scale 

 

 Figure 2 shows the average encoder loss 𝐿௘௡௖ 

with and without a dynamic latent scale for 

each epoch. One can see that without dynamic 

latent scale, encoder loss 𝐿௘௡௖ hardly changes 

from 1. This shows that the model without 

dynamic latent scale fails to converge due to 

the information loss on the latent distribution 

in the generator. On the other hand, one can 

see that the encoder loss 𝐿௘௡௖  continuously 

decreases as training progresses with dynamic 

latent scale. This shows that the model 

converges with a dynamic latent scale. 

 

 

Figure 3. Average PSNR for generated images 

reconstruction with and without dynamic latent 

scale 

 

 



 

Figure 4. Average SSIM for generated images 

reconstruction with and without dynamic latent 

scale 

 

 Figures 3 and 4 show the average PSNR and 

SSIM for each epoch when reconstruction is 

performed on the generated images. One can 

see that the performance of reconstruction on 

generated images is much better with dynamic 

latent scale. 

 

 

Figure 5. Generated images reconstruction 

without dynamic latent scale 

 

Figure 6. Generated images reconstruction with 

dynamic latent scale 

 

 Figures 5 and 6 show examples of generated 

images reconstruction with and without 

dynamic latent scale. Big size images of all 

figures for generated images are in the 

appendix. 

 

 

Figure 7. Average PSNR for test images 

reconstruction with and without dynamic latent 

scale 

 



 

Figure 8. Average SSIM for test images 

reconstruction with and without dynamic latent 

scale 

 

 Figures 7 and 8 show the average PSNR and 

SSIM for each epoch when reconstruction is 

performed on the test images (real images). As 

reconstruction on the generated images, one 

can see that the performance of reconstruction 

on test images is much better with dynamic 

latent scale.  

 

 

Figure 9. Test images reconstruction without 

dynamic latent scale 

 

Figure 10. Test images reconstruction with 

dynamic latent scale 

 

 Figures 9 and 10 show examples of generated 

images reconstruction with and without 

dynamic latent scale. 

 

4.3 additional results 

 The following figures show some additional 

results with dynamic latent scale GAN. 

 

 

Figure 11. Stochastic latent element flip 



 Figure 11 shows the result of the stochastic flip 

(multiplying by -1) of each element of the latent 

vector of test images. The first column shows 

the input images (test images), and the second 

column shows the reconstructed image. The 

images on the right side based on the thick 

white line show the result of stochastic flipping 

of the latent vector. In each column, elements 

of the same index are flipped. The flip 

probability was 10%. 

 

 

5. Conclusion 

 In this paper, I proposed a dynamic latent scale 

GAN, a method for training a generator without 

information loss on latent distribution, and an 

encoder that inverts the generator. Dynamic 

latent scale GAN dynamically adjusts the scale 

of the normal i.i.d. latent distribution to have 

the optimal entropy to express the data 

distribution. This ensures that there is no 

information loss on the latent distribution in the 

generator so that the encoder can converge. 

The encoder of dynamic latent scale GAN 

showed much better performance than simply 

using mean squared error to train the encoder.  
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Appendix 

 

 

Big size image of figure 5. Generated images reconstruction without dynamic latent scale 

 

 

 

 

 



 

Big size image of figure 6. Generated images reconstruction with dynamic latent scale 

 

 

 

 

 

 



 

Big size image of Figure 9. Test images reconstruction without dynamic latent scale 

 

 

 

 

 

 



 

Big size image of Figure 10. Test images reconstruction with dynamic latent scale 

 



 

Big size image of Figure 11. Stochastic latent element flip 

 

 

 

 

 

 

 

 


