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Abstract

An important and challenging problem in the evaluation of baseball players is the quan-

tification of batted-ball talent. This problem has traditionally been addressed using linear

regression on the value of a statistic derived from a set of observations. We use large sets

of trajectory measurements acquired by in-game sensors to show that the predictive value

of a batted ball depends on its physical properties. This knowledge is exploited to estimate

batted-ball distributions defined over a multidimensional measurement space from observed

distributions by using regression parameters that adapt to batted ball properties. This

process is central to a new method for estimating batted-ball talent. The domain of the

batted-ball distributions is defined by a partition of measurement space that is selected to

optimize the accuracy of the estimates. We present examples illustrating facets of the new

approach and use a set of experiments to show that the new method generates estimates

that are significantly more accurate than those generated using current methods. The new

methodology supports the use of fine-grained contextual adjustments and we show that this

process further improves the accuracy of the technique.
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1 Introduction

The assessment of player skills in baseball is increasingly dependent on data-driven models

rather than subjective evaluation. The accuracy of these models is critical to a team’s

success as executives attempt to maximize performance while abiding by organizational

financial constraints. Measuring player skill on batted balls is of particular interest since

the majority of Major League Baseball (MLB) matchups result in a batted ball. Estimating

batted-ball skill, however, has proven difficult [2] because batted-ball results are subject to

a large amount of random variation and are biased by confounding variables such as the

atmospheric conditions.

Player talent level on batted balls is defined as the expected value of a statistic which can

be estimated from a sample of observations. The utility of an estimate is often evaluated

by its ability to predict player performance on unobserved data. An intuitively appealing

estimate of talent level is simply the computed value of the statistic over a player’s observed

sample. But paradoxically this method is less accurate than estimators [8] [13] [21] that

are defined by a weighted average of this computed value and the mean of the statistic

over a group of players. An example of these estimators is linear regression (LR) for which

the weighting depends on the correlation of the value of the statistic across samples. LR

estimates have been used by several systems to predict player performance [19][23].

In recent years radar and optical sensors have been used in MLB stadiums to measure

characteristics of batted balls such as speed, direction, and spin [11]. We use these sensor

measurements to develop a new method for estimating talent level called measurement space

partitioning (MSP). After constructing a discrete batted-ball distribution defined over a

partition of the multidimensional measurement space for samples from a group of players,

we use Cronbach’s alpha to show that the expected correlation of distribution values across

samples has a strong dependence on location in measurement space. This allows a player’s

underlying batted-ball distribution and the corresponding talent level to be estimated using

regression parameters that adapt to his specific batted-ball distribution. The accuracy of

the talent level estimate depends on the partition which leads to the derivation of a method

for partition optimization. A set of experiments is used to show that the MSP method

improves on the accuracy of linear regression for estimating batted-ball talent level.
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Another advantage of the MSP approach is the ability to incorporate fine-grained con-

textual information into estimates. Contextual information includes a range of variables

that can affect batted-ball value. The weather conditions and elevation, for example, will

affect how far a batted ball will carry in the air [1]. Batted balls that follow similar tra-

jectories can have different outcomes due to differences in outfield geometry from ballpark

to ballpark [9]. A player’s running speed [12] and variables that include the height of the

infield grass and the composition of the infield surface [3] can affect the value of batted balls

hit on the ground. The fate of batted balls also depends on the quality of the defenders

in the field. Contextual factors are typically accounted for by a coarse adjustment that

compensates for the average effect of the environment [17]. Since the MSP method com-

putes talent level estimates from regressed batted ball distributions defined over physical

parameters, contextual adjustments can be employed that depend on the characteristics of

individual batted balls. A ball hit in the air at high speed, for example, can be adjusted

differently from a ball hit softly on the ground. We will show that the use of fine-grained

contextual adjustments improves the accuracy of predictions made by the MSP method.

2 Estimation and Prediction

2.1 Talent Level

Talent for a skill varies from player to player and can be represented by a statistic that is

derived from a set of observations. The computed value of such a statistic equals talent level

T (j), which is the expected value of the statistic for player j, plus estimation error. In this

work, we examine the problem of estimating player talent level on batted balls. Consider a

dataset that contains information on 2N batted balls for each of P players where the data

is arranged so that the first N batted balls for each player are observed and the second N

batted balls for each player are unobserved. Let R(i, j) represent the numerical value of

batted ball i for player j and define the observed performance statistic for player j as the

average over the first N batted balls

x(j) =
1

N

N∑

i=1

R(i, j) (1)
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and define the unobserved performance for player j as the average over the second N batted

balls

y(j) =
1

N

2N∑

i=N+1

R(i, j). (2)

We consider the task of using the observed batted ball data to estimate talent level T (j) for

the x(j) statistic for each player j. The estimated T (j) can be used to predict the unobserved

performance y(j).

2.2 Linear Regression

One estimate of T (j) is the observed performance x(j) for player j. However, the James-

Stein paradox [13] [21] as illustrated by Effron and Morris [8] shows that a more accurate

estimate of T (j) is obtained by adjusting the x(j) using an average of the observed R(i, j)

values over multiple players. Since an estimate for talent level can be assessed by its ability

to predict the unobserved performance y(j), we can define an estimate ŷ(j) for T (j) by

minimizing the sum of the square errors

E =
P∑

j=1

(y(j)− ŷ(j))2 (3)

using the linear regression model

ŷ(j) = a + bx(j). (4)

The values of a and b that minimize E are

a = µy −
rµxσy

σx

(5)

b =
rσy

σx

(6)

where µx and σx are the mean and standard deviation for the x(j), µy and σy are the mean

and standard deviation for the y(j), and r is the correlation coefficient for the set of P

points (x(j), y(j)) [7].
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Since the data used to generate the y(j) are unobserved, the parameters µy, σy, and r

in equations (5) and (6) cannot be computed directly. The y(j), however, are generated in

the same way for the same players as the x(j) which allows us to use the approximations

µy = µx and σy = σx. The remaining unknown parameter, the correlation coefficient r, can

be approximated from the observed R(i, j) values using Cronbach’s alpha [6]

α(N) =
N

N − 1

(
1−

∑N
i=1 σ

2
Ri

σ2
RT

)
(7)

where σ2
Ri

is the variance of the observed R(i, j) values over players j for batted ball i and

σ2
RT

is the variance of

RT (j) =
N∑

i=1

R(i, j) (8)

over players j. Using these approximations, equation (4) becomes

ŷ(j) = α(N)x(j) + (1− α(N))µx (9)

which can be computed using the observed data. ŷ(j) in equation (9) is consistent with the

James-Stein result that an improved estimate for T (j) can be obtained by adjusting x(j)

using the overall mean µx.

2.3 Varying Observed Sample Size

The α(N) that is used to compute the estimate ŷ(j) in equation (9) is derived using a dataset

ofN observed batted balls for each of P players using equation (7). The utility of the method

is enhanced if we can use this dataset to compute the estimate ŷ(j) using a sample of N ′

batted balls for player j where N ′ 6= N. The value of α(N) tends to increase with N due to

a decrease in the variance of the random error in the observed performance x(j) [27]. The

Spearman-Brown prophecy formula [4] [20] allows us to predict α(N ′) from the estimated

α(N) using

α(N ′) =
Cα(N)

1 + (C − 1)α(N)
(10)
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where C = N ′/N. This α(N ′) can be used in equation (9) to compute ŷ(j) using an observed

performance x(j) computed using any number of samples N ′.

3 Exploiting Sensor Measurements

3.1 Partitioning the Measurement Space

Sensors allow batted balls to be represented by a point in a measurement space with dimen-

sions defined by properties such as speed, direction, and spin. The measurement space can

be partitioned into B disjoint subsets. For the dataset described in Sec. 2.1 let M(i, j, k)

be a binary-valued function which is one if batted ball i for player j is in subset k and zero

otherwise. Define the observed batted ball distribution for player j over the subsets k by

px(j, k) =
1

N

N∑

i=1

M(i, j, k) (11)

and define the unobserved batted ball distribution for player j over the subsets k by

py(j, k) =
1

N

2N∑

i=N+1

M(i, j, k). (12)

We will show that an estimate for py(j, k) can be used to generate an estimate for the talent

level T (j).

3.2 Estimating Measurement Space Distributions

For a given subset k we can use a linear regression model and approximations similar to

those described in Sec. 2 to estimate py(j, k) from the observed data according to

p̂y(j, k) = α(N, k)px(j, k) + (1− α(N, k))µ(k) (13)

where µ(k) is the average

µ(k) =
1

P

P∑

j=1

px(j, k) (14)
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and α(N, k) is the Cronbach approximation to the correlation coefficient for the set of P

points (px(j, k), py(j, k)) for subset k. Specifically, α(N, k) is computed using

α(N, k) =
N

N − 1

(
1−

∑N
i=1 σ

2
Mi

σ2
MT

)
(15)

where σ2
Mi

is the variance of the observed M(i, j, k) values over players j for batted ball i

and subset k and σ2
MT

is the variance of

MT (j) =
N∑

i=1

M(i, j, k) (16)

over players j for subset k. α(N, k) can then be used in equation (13) to compute the

regressed distribution p̂y(j, k) using only the observed data. We note that the calculation

in equation (15) can yield α(N, k) values that are negative [27] and in these cases α(N, k)

is set to zero for the calculation of p̂y(j, k).

3.3 Estimating Talent Using Measurement Space Partitioning

The batted ball distribution estimate p̂y(j, k) for player j can be used to estimate the player’s

talent level T (j). If R(j, k) is an estimate of the expected value of batted balls for player j

in subset k then T (j) can be estimated by

ŷs(j) =
B∑

k=1

p̂y(j, k)R(j, k). (17)

For cases where we would like to estimate ŷs(j) using a sample of N ′ batted balls for player j,

the values α(N ′, k) for each k in equation (13) can be computed using the Spearman-Brown

formula as described in Sec. 2.3.

The ŷs(j) estimate in equation (17) is equivalent to the linear regression estimate ŷ(j)

in equation (9) if α(N, k) has the same value α(N) for all subsets k and the average value

of the observed batted balls in any subset k is the same for all players j. For this special

case, if we let R(j, k) equal the overall mean of the observed R(i, j) for subset k
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R(k) =

N∑

i=1

P∑

j=1

M(i, j, k)R(i, j)

N∑

i=1

P∑

j=1

M(i, j, k)

(18)

then equation (17) can be written

ŷs(j) =
B∑

k=1

[α(N)px(j, k) + (1− α(N))µ(k)]R(k)

=

[
α(N)

B∑

k=1

px(j, k)R(k)

]
+

[
(1− α(N))

B∑

k=1

µ(k)R(k)

]
(19)

where the first sum in equation (19) equals x(j) and the second sum equals µx which

demonstrates the equivalence to equation (9). We will see that by allowing α(N, k) to vary

over subsets k and by allowing R(j, k) to vary over players j, the model in equation (17) can

generate estimates that are more accurate than the linear regression estimate in equation (9).

4 Experimental Results

4.1 Sensor Data

The Trackman (TM) phased-array Doppler radar has been used by MLB’s Statcast sys-

tem [11] since 2017 to track and characterize batted balls. The TM radar operates in the

X-band at approximately 10.5 GHz and is positioned high behind home plate. The mea-

sured initial speed s and vertical launch angle v (Fig. 1) for batted balls play an important

role in determining batted ball value [10]. In particular, batters tend to achieve the best

results for batted balls with an initial speed of greater than 90 miles per hour and a vertical

launch angle between 10 and 30 degrees.

4.2 Representing Batted Ball Value

Many statistics [17] can be used to quantify a batter’s performance on batted balls. Batting

average, for example, is the fraction of batted balls that result in a hit but has the deficiency

that all hits are given equal value. Slugging percentage allocates different weights to different

8



Figure 1: Vertical launch angle v

kinds of hits, e.g. single or double, but has been shown to overweight doubles, triples, and

home runs. Weighted on base average (wOBA) [23] uses weights for each batted ball outcome

that are proportional to run value and, for this reason, we use wOBA to represent batted

ball value R(i, j).

4.3 Contextual Information

A batted ball with a given set of physical parameters such as s and v occurs in a context that

can affect its value. Variation in the outfield geometry across stadiums [9] and variation in

the ambient weather conditions [1] can affect the value of a ball hit in the air. The batter’s

running speed [12] plays a role in determining batted ball value especially for balls hit on

the ground. The quality of defenders can also affect the value of a batted ball hit to a given

region of the field. These factors cause the batted ball value R(j, k) for subset k to vary

depending on the distribution of contextual variables for player j. We will show later in

this section how contextual information can be combined with the batted ball distribution

estimates p̂y(j, k) to improve the accuracy of the ŷs(j) predictions.

4.4 Assessing Prediction Accuracy

Statcast data fromMLB games in 2019 was employed to evaluate methods for using observed

data to predict player performance in unobserved data. After removing bunts from the

dataset, each of the P = 159 players with at least 300 batted balls during the 2019 season
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was considered. Switch-hitters who bat both right-handed and left-handed were regarded as

a different batter for each handedness. The first 300 batted balls for each player were divided

into an observed set of N = 150 batted balls and an unobserved set of N = 150 batted

balls. The odd batted balls in chronological order for each player defined the observed

set and the even batted balls defined the unobserved set. The batted ball value R(i, j)

for batted ball i and player j was defined by the wOBA weight for the batted ball result

as described in Sec. 4.2. For the 2019 MLB season the wOBA weights are out=0.000,

single=0.870, double=1.217, triple=1.529, homerun=1.940, and batter reaches on error=

0.920 [25]. The observed batted ball data was used to generate predictions for the unobserved

performance y(j). The accuracy of a set of predictions ŷ(j) is evaluated using the sum of

squared errors (SSE)

SSE =
P∑

j=1

(y(j)− ŷ(j))2 (20)

between the unobserved performance and its prediction.

4.5 Linear Regression

The linear regression model defined by equation (9) was used to generate the ŷ(j) predictions

for the data described in Sec. 4.4. The resulting model is

ŷ(j) = 0.294x(j) + (1− 0.294) · 0.402 = 0.294x(j) + 0.284 (21)

where the observed batted ball data was used to compute α(150) = 0.294 and µx = 0.402 as

described in Sec. 2.2. This model gives an SSE of 0.647 using equation (20). Two boundary

instances of the linear regression model are the naive prediction ŷ(j) = x(j) for α(N) = 1

and the baseline prediction ŷ(j) = µx for α(N) = 0. For this dataset, the naive prediction

gives an SSE of 0.780 and the baseline prediction gives an SSE of 0.743 which are both

larger than the SSE obtained using the linear regression model in equation (21). The ŷ(j)

prediction lines for the linear regression model and the naive and baseline predictions are

shown in Fig. 2 along with the (x(j), y(j)) points for each of the 159 players.
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Figure 2: (x(j), y(j)) points with naive, regression, and baseline predictions

4.6 Measurement Space Partitioning

The measured initial speed and launch angle can be used to represent a batted ball as a

point in a two-dimensional (s, v) measurement space. This space can be partitioned into

B disjoint subsets as described in Sec. 3.1. In Appendix I, we show that the accuracy of

the prediction in equation (17) depends on the partition. In this section we define different

ways to partition the (s, v) measurement space and show how training data can be used to

optimize partition selection.

4.6.1 Partition Definition

The (s, v) space can be divided into an internal region defined by

(smin ≤ s < smax) and (vmin ≤ v < vmax)
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which includes the large majority of batted balls and four boundary regions B1, B2, B3, B4

defined by

B1 : s < smin

B2 : s ≥ smax

B3 : (smin ≤ s < smax) and (v < vmin)

B4 : (smin ≤ s < smax) and (v ≥ vmax).

The internal region can be further divided into rectangular subregions b(i, j) of dimension

swidth × vwidth which are defined by

b(i, j) : (smin + (i− 1) ∗ swidth) ≤ s < (smin + i ∗ swidth) and

(vmin + (j − 1) ∗ vwidth) ≤ v < (vmin + j ∗ vwidth)

so that there are a total of

(smax − smin)(vmax − vmin)

swidth ∗ vwidth

b(i, j) subregions.

We defined the internal and boundary regions for the 2019 data using smin = 37.5 mph, smax =

117.5 mph, vmin = −75◦, and vmax = 85◦ which yields an internal region that includes 99.5

percent of all batted balls. The internal region was partitioned into different configurations

of fixed-size rectangular subregions b(i, j) where the subregion widths were allowed to vary

over the values

swidth = 2.5, 5, 10, 20, 40, 80 mph

vwidth = 2.5, 5, 10, 20, 40, 80, 160 degrees

By considering all combinations of the six swidth values and the seven vwidth values we can

define 42 partitions with each denoted Pswidth,vwidth
where the boundary regions B1, B2, B3, B4
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are the same for each partition. Figure 3, for example, depicts the P
10,40

partition with the

four boundary regions and thirty-two internal subregions b(i, j) where b(2, 3) is explicitly

labeled.

Figure 3: The P
10,40

partition of measurement space

The prediction method described in Sec. 3.3 was used to process the observed and

unobserved data described in Sec. 4.4 using each of the 42 partitions. For the finer partitions

the observed data does not contain enough samples to reliably estimate R(j, k) for each (j, k).

Therefore, the mean R(k) in equation (18) was used to approximate R(j, k) for each j. The

smallest SSE of 0.532 was obtained for P
2.5,40

while the largest SSE of 0.743 was obtained

for P
80,160

. If we neglect the effect of the boundary regions, the use of P
80,160

is equivalent to

the baseline prediction ŷ(j) = µx for which we also reported an SSE of 0.743 in Sec. 4.4.

4.6.2 Partition Selection

Partition selection is an important issue since there are large differences in the SSE for

different partitions. To address this issue, we examine whether the analysis of previous

year data can be used to optimize partition selection for current year data. To this end,
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we computed the SSE for each of the 42 partitions defined in Sec. 4.6.1 using 2018 batted

ball data arranged as described in Sec. 4.4 for the 2019 data. There were P = 158 players

with at least 300 batted balls in 2018 that were considered for analysis. Fig. 4 plots the

(SSE 2018, SSE 2019) point for each of the 42 partitions and we see that there is a strong

correlation between the SSE values for the two years. In particular, the partitions that

give the smallest SSE values in 2018 also give the smallest SSE values in 2019. This result

suggests that we can use previous year data to select an optimized partition for current year

data. The P
5,10

partition gives the smallest SSE of .419 on 2018 data. Using this partition

for the 2019 data gives an SSE of 0.546 which is close to the smallest value of 0.532 and

significantly better than the linear regression SSE of 0.647 reported in Sec. 4.5.
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Figure 4: Prediction SSE in 2018 and 2019 for 42 partitions

4.6.3 Example

In this section we illustrate the mechanics of the MSP method using the 2019 batted ball

data. The example considers the P
5,10

partition defined in Sec. 4.6.1 that was selected using
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prior year data as described in Sec. 4.6.2. Fig. 5 plots the α(150, k) function and fig. 6 plots

the mean µ(k) function over the subregions k for this partition. The α(150, k) function is

approximately in the shape of a rotated V with most of the larger values occurring for s

greater than 95 mph. Figures 7 and 8 demonstrate properties of α(150, k) and µ(k) for

specific subregions S1 and S2 of P
5,10

defined by

S1 : (87.5 mph ≤ s < 92.5 mph) and (5◦ ≤ v < 15◦)

S2 : (107.5 mph ≤ s < 112.5 mph) and (15◦ ≤ v < 25◦)

which correspond respectively to b(11, 9) and b(15, 10) using the notation in Sec. 4.6.1. The

observed data described in Sec. 4.4 gives values of

α(150, S1) = 0.01, µ(S1) = 0.017, α(150, S2) = 0.61, µ(S2) = 0.011

which predict little correlation between the fraction of batted balls in the observed and

unobserved data for S1 and a larger correlation between the fraction of batted balls in the

observed and unobserved data for S2. Fig. 7 plots the P = 159 points (px(j, S1), py(j, S1))

as defined by equations (11) and (12) along with the prediction line from equation (13)

where each point in the figure has been moved by a small random amount to increase the

visibility of the points. There is little correlation between the px(j, S1) and the py(j, S1) as

predicted by the small estimated value of α(150, S1). Figure 8 is the same plot for S2 where

the points have a larger positive correlation as predicted by α(150, S2). In each figure the

red prediction line agrees reasonably well with the structure of the data.

Fig. 9 displays the full observed distribution px(j, k) for player j = Jorge Polanco as

left-handed batter using P
5,10

. Figure 10 is the corresponding regressed distribution p̂y(j, k)

computed using equation (13). We see that the regressed distribution captures the overall

structure of px(j, k) but is substantially smoother. The regressed distribution results in

a talent level estimate ŷs(j) in equation (17) of .397. This ŷs(j) is much closer to the

unobserved performance y(j) of 0.386 than the LR prediction ŷ(j) = .424 or the naive

prediction of x(j) = .475 which corresponds to the observed distribution shown in Fig. 9.
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Figure 5: α(150, k) for P
5,10

partition
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Figure 6: µ(k) for P
5,10

partition
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Figure 9: Observed distribution px(j, k) for Jorge Polanco as left-handed batter
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Figure 10: Regressed distribution p̂y(j, k) for Jorge Polanco as left-handed batter
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4.6.4 Comparison with Linear Regression

In this section we compare properties of the LR and MSP predictions. For the data described

in Sec. 4.4 the LR prediction is defined by the line (equation (21)) plotted in Fig. 11. This

figure also plots the 159 ŷs(j) predictions for the same data using the P
5,10

partition. We see

that players j1 and j2 with the same observed performance x(j1) = x(j2) and therefore the

same LR prediction ŷ(j1) = ŷ(j2) can be assigned different MSP predictions ŷs(j1) 6= ŷs(j2).
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Figure 11: ŷs(j) predictions for 159 batters using P
5,10

partition and LR line

In Sec. 3.3 we showed that an important difference between ŷ(j) and ŷs(j) is that the

former is defined using a single α(N) while the latter employs a separate α(N, k) for each

subset k. Players with an observed batted ball distribution px(j, k) that includes a large

fraction of batted balls in subsets k with large values of α(N, k) will have less regression to

the mean in the calculation of ŷs(j) than players with a batted ball distribution that has

smaller values of α(N, k). This allows the ŷs(j) prediction to adapt the amount of regression
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to a player’s collection of batted balls. By comparing equations (13) and (17) with the LR

model of equation (9) we see that the correlation-weighted expected wOBA

C(j) =
B∑

k=1

α(N, k)px(j, k)R(k) (22)

should capture a large fraction of the variance in the difference ŷs(j) − ŷ(j). Fig. 12 is a

scatterplot of ŷs(j)− ŷ(j) versus C(j) for the P
5,10

partition of the 2019 data which shows

that the variables have a strong relationship as expressed by a correlation coefficient of 0.87.

Thus, C(j) is a batter-controlled component of ŷs(j) that measures the combined value and

α-correlation of a player’s batted balls and is strongly related to the deviation of a player’s

ŷs(j) prediction from the LR prediction ŷ(j).
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Figure 12: Prediction difference ŷs(j)− ŷ(j) versus correlation-weighted expected wOBA C

Table 1 considers four players with similar ŷ(j) LR predictions. The table also shows that

several of the players have significant differences in correlation-weighted expected wOBA C.
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The players (Hernandez, DeJong) with below average values of C have negative ŷs − ŷ dif-

ferences while the players (Acuna, Donaldson) with above average values of C have positive

ŷs − ŷ differences as predicted by Fig. 12. We see from the last two columns of the table

that these differences benefit the MSP prediction as the LR prediction error ŷ − y is larger

in absolute value than the MSP prediction error ŷs − y in each case.

Player Hand ŷ C ŷs − ŷ ŷ − y ŷs − y
Cesar Hernandez Left .410 .054 -.049 .106 .057
Paul DeJong Right .410 .082 -.021 .067 .047

Ronald Acuna Jr. Right .411 .144 .040 -.077 -.036
Josh Donaldson Right .411 .146 .042 -.081 -.039

Table 1: Players with similar ŷ, 2019

4.6.5 Incorporating Contextual Information

In Sec. 4.3 we described several contextual factors that can affect the value of a batted ball

with parameters (s, v). Accounting for each of these factors can improve the accuracy of the

MSP predictions. In this section we describe a method that can be used to estimate R(j, k)

in equation (17) to account for the effects of varying outfield geometry and atmospheric

conditions across ballparks. Since a player j typically plays about half of his games in a

single home park these effects can have a significant impact on R(j, k). As an example,

Figure 13 plots the outfield boundaries for Fenway Park in Boston and Yankee Stadium in

New York where the batter’s location is at home plate in the lower left corner. A shorter

distance from home plate to the outfield boundary typically improves the batter’s likelihood

of a home run for a batted ball hit in the air. In addition, the altitude of the ballpark

affects the air density which plays an important role in determining how far a batted ball

will carry [1]. The outfield geometry can affect players differently depending on whether

they bat right-handed or left-handed since right-handed batters tend to hit most of their

home runs to left field while left-handed batters tend to hit most of their home runs to right

field.

We will learn ballpark-dependent batted ball values from 2018 data and use these values

to process the 2019 data described in Sec. 4.4. The value of batted balls in a subset k will
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Figure 13: Outfield geometry for Fenway Park and Yankee Stadium

depend on the quality of the fielders that defend against these batted balls. The home team

defenders are on the field about half of the time for games played in park p which can cause

bias in batted ball values for a given (k, p). Define Rh(k, p) as the average wOBA value

for batted balls hit by batters of hand h in subset k and park p with the visiting team on

defense in 2018. Let Rh(k) be the average wOBA value for batted balls hit by all batters

of hand h in subset k in all parks in 2018.

For (h, k, p) groups that correspond to vertical launch angles v ≥ 15◦ and include at

least ten batted balls in the calculation of Rh(k, p) we compute the factor

Fh(k, p) =
Rh(k, p)

Rh(k)
(23)

where otherwise Fh(k, p) is set to 1. For a player j of hand h with home park p in 2019 we

define

R(j, k) = 0.5
[
R(k) +R(k)Fh(k, p)

]
(24)

where R(k) is defined in equation (18) and the 0.5 accounts for the fact that a player plays

approximately half of his games in the same home ballpark. The R(j, k) can be used to

24



improve the accuracy of the prediction in equation (17).

To illustrate this process we consider the b(13, 12) subregion of the P
5,10

partition which

is defined by

(97.5 mph ≤ s < 102.5 mph) and (35◦ ≤ v < 45◦).

For this subregion we have the R(j, k) values shown in Table 2 which demonstrate that

right-handed batters have an advantage in Fenway Park and left-handed batters have an

advantage in Yankee Stadium. These observations are consistent with the outfield geome-

tries shown in Fig. 13.

Hand (h) Ballpark (p) R(j, k)
Right Fenway Park .557
Left Fenway Park .381
Right Yankee Stadium .378
Left Yankee Stadium .490

Table 2: R(j, k) for player j of hand h with home park p for b(13, 12)

Let ŷs1(j) be the prediction of equation (17) using R(j, k) = R(k) and let ŷs2(j) be

the prediction using R(j, k) as defined by equation (24). As reported in Sec. 4.6.2, ŷs1(j)

produces an SSE of 0.546 for partition P
5,10

on the data described in Sec. 4.4. The use of

ŷs2(j) reduces the SSE to 0.526.

Table 3 presents the five players j with the largest differences ŷs2(j)− ŷs1(j) and Table 4

presents the five players with the smallest differences ŷs2(j) − ŷs1(j). Thus, the players

in Table 3 are expected to benefit from their home ballpark while the players in Table 4

are expected to be hindered by their home ballpark. The parks represented in Table 3

are known to benefit batters. Coors Field in Denver has an altitude of 5197 feet which

enables batted balls to carry longer distances and Citizens Bank Park in Philadelphia has

an outfield geometry which is beneficial to right-handed batters. Similarly, both Busch

Stadium in St. Louis and Marlins Park in Miami which appear in Table 4 have outfield

geometries that are detrimental to right-handed batters. The last two columns in each

table give the prediction errors E1(j) = ŷs1(j)− y(j) and E2(j) = ŷs2(j)− y(j) where y(j)
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is the unobserved performance. E1(j) is negative for each of the players in Table 3 which is

consistent with the expectation that these players should benefit from their home ballpark

while E1(j) is positive for four of the five players in Table 4 which is consistent with the

expectation that these players should be hindered by their home ballpark. We see that for

nine of the ten players in the two tables we have |E1| > |E2| so that the use of home park

information reduces the prediction error.

Player Hand Home Ballpark ŷs2 − ŷs1 E1 E2

Trevor Story Right Coors Field .020 -.080 -.061
Nolan Arenado Right Coors Field .019 -.071 -.052
Ian Desmond Right Coors Field .018 -.016 .001
Rhys Hoskins Right Citizens Bank Park .017 -.060 -.042
Scott Kingery Right Citizens Bank Park .016 -.029 -.013

Table 3: Players with largest ŷs2 − ŷs1, 2019

Player Hand Home Ballpark ŷs2 − ŷs1 E1 E2

Marcell Ozuna Right Busch Stadium -.026 .088 .062
Paul Goldschmidt Right Busch Stadium -.023 -.020 -.043

Paul DeJong Right Busch Stadium -.021 .047 .025
Yadier Molina Right Busch Stadium -.020 .080 .060
Brian Anderson Right Marlins Park -.012 .045 .033

Table 4: Players with smallest ŷs2 − ŷs1, 2019

5 Conclusion

Sensor systems that acquire large sets of data have been deployed to document the me-

chanics of several sports including baseball [11], basketball [26], football [5], and golf [24]

at unprecedented levels of detail. Data-driven techniques have been applied to these sensor

measurements to discover new skills [15], quantify known skills with greater accuracy [22],

and understand biomechanical principles [14] to improve performance and prevent injury.

This information has been used by professional sports teams in search of an advantage [16].

While there are large disparities in the financial resources available to teams, the use of
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data-driven models has enabled small market franchises to compete successfully against

their more affluent opponents [18].

We have used ball-tracking radar data to show that the predictive value of a batted

ball in baseball depends on its speed and vertical launch angle. This constraint enables

a batted ball distribution to be estimated from a set of observations using a regression

process that adapts to a player’s particular collection of batted balls. We showed that

these estimated distributions can be used to make improved predictions about unobserved

data. The methodology can be adapted to include additional sensor measurements for

properties such as spin and horizontal angle as they become available. Since the approach

is based on estimating distributions defined over a partition of measurement space, fine-

grained contextual adjustments can be included to improve the accuracy of the predictions.

The measurement space partitioning process can be used for several applications in baseball

including performance forecasting and defensive positioning as well as for a range of other

estimation and prediction tasks involving large sets of multidimensional sensor data.

Appendix I: Dependence of Prediction Accuracy on the

Partition

The error in a prediction generated using the MSP approach depends on the partition of

measurement space. Using equation (17), we can write the unobserved performance for

player j as

y(j) =
B∑

k=1

(p̂y(j, k) + ǫp(j, k))
(
R(j, k) + ǫR(j, k)

)
. (25)

The error terms are defined by ǫp(j, k) = py(j, k)− p̂y(j, k) and ǫR(j, k) = Ry(j, k)−R(j, k)

where Ry(j, k) is the average value of the unobserved batted balls in subset k for player j.

The prediction error is given by

y(j)− ŷs(j) =
B∑

k=1

[
p̂y(j, k)ǫR(j, k) +R(j, k)ǫp(j, k) + ǫp(j, k)ǫR(j, k)

]
(26)

where each term in the sum depends on the subset k.
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The error terms have a complex dependence on the group of subsets that define the

partition. Reducing the size of the ǫR(j, k) error depends on balancing the competing goals

of using subsets k that include enough data to estimate R(j, k) accurately but which also

allow a single R(j, k) to be representative of any particular sample within a subset that

might occur in y(j). The variance of the ǫp(j, k) error is given by [7]

VAR [ǫp(j, k)] = σ2
p(k)

(
1− α2(N, k)

)
(27)

where σ2
p(k) is the variance of px(j, k) over batters j for subset k. Thus, VAR [ǫp(j, k)]

depends on both the distribution of the px(j, k) and the α(N, k). Since the error terms and

the prediction error in equation (26) have a complex dependence on the interaction between

the measurement space partition and the structure of the data we use a learning process for

partition selection as described in Sec. 4.6.2.

Appendix II: Applying MSP to First-Half 2021 Data

In this Appendix we apply the MSP approach to batted ball data collected before the All-

Star break during the 2021 MLB season. The study considers the 185 batters with at least

150 batted balls during this period. The P
5,10

partition was used and the α(150, k) values

were estimated using the first 150 batted balls for each of the 185 batters. The subset means

R(k) were used to approximate R(j, k) for each player j. The full set of first half batted

balls for each player was used to compute ŷs(j) where the α(150, k) values were adjusted

to α(N ′(j), k) using the Spearman-Brown formula to regress each distribution according

to each individual player’s batted ball distribution and number of batted balls N ′(j). The

result is an estimate of true talent wOBA on contact (wOBAcon) that has removed all

contextual information (ballpark, batter running speed, atmospheric conditions, defense,

etc.). The accuracy of wOBAcon predictions can be improved by incorporating context into

the R(j, k) for each player j as demonstrated in Sec. 4.6.5. Table 5 presents the context-

invariant true talent wOBAcon leaders based on first-half 2021 data.
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Player True Talent wOBAcon
Shohei Ohtani .556

Fernando Tatis Jr. .518
Giancarlo Stanton .515

Vladimir Guerrero Jr. .506
Ronald Acuna Jr. .506

Aaron Judge .500
Kyle Schwarber .493

Joey Gallo .488
Tyler O’Neill .480
Nelson Cruz .474

Yordan Alvarez .470
Bryce Harper .470
Rafael Devers .469
Pete Alonso .460
Matt Olson .460

Table 5: Context-invariant ŷs(j) estimate of wOBAcon using first-half 2021 data
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