

INTRODUCTION TO CAT4

Part 2. CAT2.

Andrew Holster1

Draft Jan 2021

Abstract

CAT4 is proposed as a general method for representing information, enabling a powerful

programming method for large-scale information systems. It enables generalised machine learning,

software automation and novel AI capabilities. It is based on a special type of relation called CAT4,

which is interpreted to provide a semantic representation. This is Part 2 of a five-part introduction.

The focus here is on defining key mathematical properties of CAT2, identifying the topology and

defining essential functions over a coordinate system. The analysis is from first principles. This

develops on from the axioms introduced in Part 1. The interpretation of fact networks is introduced

in Part 3, and the full application to semantic theory comes in Part 4, where we introduce general

functions, including the language interpretation or linguistic functions. In Part 5, we turn to software

design considerations, to show how files, indexes, functions and screens can be defined to

implement a CAT4 system efficiently.

1 © Andrew Holster. 2020-2021. ATASA Research, Aotearoa New Zealand.

Introduction to CAT4: Part 2. CAT2

Andrew Holster

Jan 2021

1

Contents

INTRODUCTION TO CAT4 .. 0

Part 2. CAT2... 0

Introduction. ... 2

The CA2 relation. ... 2

The CAT2 relation. ... 4

Islands in CAT2. .. 5

Pushing atoms up. ... 7

The FCAT2 relation. ... 8

Absolute coordinates for FCAT2. .. 10

Absolute Coordinate Position Vectors. ... 12

Coordinate chains. .. 14

Transformations of coordinates. .. 15

The A-lattice. ... 16

Interior and Exterior geometry for positions. ... 17

Interior and Exterior geometry for points. ... 19

The Diamond Property. ... 20

Extension to classes of points. .. 23

General Diamond property. .. 24

Geometric Concepts.. 26

CAT2 Topology. ... 28

Union and Intersection Classes. .. 29

The INTEXT Class. .. 31

Metric Space and Distance.. 32

Composite Chains. .. 34

Shortest Chains. .. 35

GLB and Intersection Matrix. .. 39

Tree Symbols LTS and RTS. .. 42

Combinatoric problems. ... 49

Scalability and Interior Index. ... 50

Chains of CPs and Addresses. ... 55

References. ... 56

2

Introduction.

This continues from Part 1. Here we define restrictions on C2, and analyse properties which allow us

to define general functions over a type of coordinate framework. The treatment here is by no means

complete, but it is sufficient to go on with the subsequent development.

In Part 1 we defined C2. However our main interest will be in a more restricted class, having atomic

sequences with unique points, i.e. no repetition of points in the atomic row of any interior. Note this

means: A≤D, as there are only D possible unique points in a sequence of length A. E.g. for D=3, there

are 15 possible sequences: (1), (2), (3), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (1,2,3), (1,3,2), (2,1,3),

(2,3,1), (3,1,2), (3,2,1). There are D!/(D-A)! unique sequences (permutations) of length A from D

points. These correspond to interiors that are lattices, and we now define the CA2 relation as the

sub-class of C2 relations in which the interior of any point is a lattice. Since every interior is now a

lattice, the point relation corresponds uniquely to the position lattice. Hence, we can use the interior

position coordinates for interior point coordinates. We subsequently define the stronger CAT2

relation.

The CA2 relation.

Axiom for CA2. A C2 relation is CA2 just in case all interiors are lattices.

Equivalent axiom.

Axiom for CA2. A C2 relation is a CA2 just in case all atomic sequences have unique points.

CA2 still allows atomic points in various orders within the same relation, e.g. we might add points:

(4,1,2) and (5,2,1). The second is the reflection of the first. Or we may add: (6,2,3) and (7,4,6),

defining the atomic sequence 1,2,3. And also: (8,1,3) and (9,5,8), defining the atomic sequence:

2,1,3. These may all be in the same CA2 relation.

3

0 0 0

1 0 0

2 0 0

3 0 0

4 1 2

5 2 1

6 2 3

7 4 6

8 1 3

9 5 8

Figure 2.1. A CA2 graph (but not CAT2, below). This is the union of the two separate graphs

on the right (which are separately CAT2).

However we cannot add a further point: (10,4,5) in CA2 (although it is permissible in C2) as this

makes a circle (pipe) in the atomic sequence: (1,2,1) for the interior of the point 10.

Similarly we can add: (11,3,1) and (12,6,11) but not: (13,7,12) at the fourth level as this has the

atomic sequence: (1,2,3,1). Indeed, we cannot add any point at the fourth level in a CA2 relation

with only 3 atomic points. In general:

· Proposition. A CA2 relation with D atomic points cannot have positions below level D.

This gives us a stronger structure than C2. However the combined graph above still looks messy, and

is difficult to visualise clearly, unlike the simple position lattice. Furthermore, it is difficult to make

local recursive axioms to ensure this structure, because we have to check multiple ordering

possibilities. We now restrict attention further to graphs having atomic sequences with consistent

order with each other. I.e. if sequences A and B are in the relation, then any pair of points i,j in both

A and B occur in the same order at the same distance. E.g. if 123 is in the class, {1,2,3, 12, 23, 123}

are all the possible seqs. This is the CAT2 relation.

4

The CAT2 relation.

Axiom for CAT2. A CAT2 relation is a CA2 relation where the atomic order is consistent for all

interior lattices.

· Definition. The atomic order is consistent just in case the following condition holds.

· If two points i,j have the same CP, and have atomic sequences: b1, … bB and c1… cC,

respectively (from the class of all atomic points ai under the CP), then if bn = cm and bp = cq,

then: p-n = q-m.

This means that we can uniquely order the atomic points, ai, for the CP. We can label points using an

index system, e.g.

Figure 2.2. This represents a set of 9 atoms for the collection point CP=z. Atoms are now

labelled as: al,m where l is the (horizontal) order for the position, and m is a (vertical) index

for multiple atoms in the position. Note the Order Categories are not part of the graph.

There can be any number of points in any column. The order category is the significant property.

(The order of the index labels has no significance). Relative order is determined by points in the

exterior. If two atoms, j and k, are joined below by i, i.e. (i,j,k), then i and j must be sequential in all

interiors. I.e. if: j = al,m then: k = al+1,n. The indices m and n are arbitrary, the important thing is

that the order is sequential, so l and l+1.

However the order is determined by the exterior, which is contingent. We can have the situation

where some atoms have no exterior, and hence no order determined relative to any other atoms.

More generally, there may be two or more disconnected groups (‘islands’), with no relative order

relation determined between them. In this case there are multiple disconnected groups in the

exterior, and the logical relations become complex. Hence order is not determined unless there are

sufficient points in the exterior.

 z Level 0 (CP)

 A1 A2 A3 A4 Order categories

 a1.1 a 2.1 a 3.1 a 4.1 Level 1 (Atoms)

 a 2.2 a 3.2 a 4.2

 a 3.3

 a 3.4

5

Islands in CAT2.

Figure 2.3. Illustration of two islands. {a3,2, a4,2} forms a small island disconnected from the

other points.

Here the atoms in the top row are ordered by points b1, b2, b3, in the next row and a2,2 is ordered

relative to all points in that row by b4. So a2,2 must be in the second order column, i.e. the same

column as a2,1. Also a3,2 is ordered relative to a4,2 by b5. But there is nothing in the exterior to

determine the relative order of the two groups – there are two islands.

But why should we label the second group in this position? It might be put anywhere, e.g.

Figure 2.4. Atoms that were labelled a3.2 and a4.2 above are now labelled a1.2 and a2.. I.e. we

have labelled them in a different order relative to the other group. They are still ordered

relative to each other by b5.

Alternatively we might extend the atomic columns.

 z Level 0

 a1.1 a 2.1 a 3.1 a 4.1 Level 1

 a 2.2

 a 1.2 a 2.3

 b1 b4 b5 b2 b3 Level 2

 z Level 0 (CP)

 a1.1 a 2.1 a 3.1 a 4.1 Level 1 (Atoms)

 a 2.2 a 3.2 a 4.2

 b1 b4 b2 b3 b5 Level 2 (Exterior)

6

Figure 2.5. Atoms that were labelled a3.2 and a4.2 above are now labelled a5,1 and a6,1. We

have extended the order categories to the right. It is now possible to add a new point ◊ in

this ordering.

Or alternatively again, we might place these two points to the left of the main group – and then we

would need to relabel the order columns of the other points so the order labels start with 1.

If we want to assign atoms to order categories, what determines the choice? It must be consistent at

least with the other points present lower down. But the order of the small island is not determined

at all by anything in the current graph: it depends on what we want to use these atoms for in the

future. If this small island is never going to have any exterior relations to the main island, it doesn’t

matter, and we could have a convention that we introduce all independent islands on the left. Note

in this case that there can never be joins between the two islands, they have no relations except

through the CP, and we could separate two such islands under two distinct CP’s. The two CPs will be

in the same positions in the larger graph. But this would remove the future possibility of relating

them in an extension of the graph.

But if we do want to join them to the other island in the future, it depends what points we want to

be able to join them to. E.g. the order above is necessary if we want to add a point below joining a4,1

to a5,1. The position indicated as ◊ is consistent with this ordering, but not consistent with the

previous orderings.

We may also ask: what represents the ordering in the graph? The order labels are not part of the

graph: they are just a way for us to talk about it. They provide us with structured variables over the

points. The only determination of order in the graph itself is through the exterior points. Until we

add a specific exterior point joining islands to each other, we are free to join them in any relative

order. And we might also remove such points in the future, and lose the relation between islands, so

the order information represented by the exterior is not very robust.

 z Level 0

 a1.1 a 2.1 a 3.1 a 4.1 a 5.1 a6.1 Level 1

 a 2.2

 b1 b4 b2 b3 ◊ b5 Level 2

7

This is a difficulty in assigning these order labels as variables over points – we can only assign the

variables over single islands at a time. The variables for different islands do not relate to each other.

But we ideally want to use these labels as variables to refer over all the points.

Having multiple atoms in the order positions, and allowing order to be indeterminate until they are

related by exterior points, makes things formally more complex, and the next step is to simplify the

system by a simple technique that does not reduce the representational power. This is called

pushing the exterior (or atoms) of the CP up a level.

Pushing atoms up.

We introduce an extra level between the CP and the present atoms, with a single unique sequence

that becomes the new atomic level.

Figure 2.6. We introduce a sequence of atomic points, a1, a 2, a3, a4, a5, which now represent

the order columns from the previous diagram. These are now points in the graph, with

double-joins to z. The original atoms have been ‘pushed up’ a level (down in the diagram).

We now have a sequence of five atoms instead of four. This now explicitly defines the order of the

original atoms, determined through their interiors. Previously this order was only implicit, through

the extensions. Atoms without extensions, or islands, had no order previously, but now all points are

defined with an explicit order from the atoms.

However we still have the situation that the ordering of the new atoms is now represented only by

the exterior, at Level 2. If there are A atoms, there must be a sequence of A-1 points in the second

row (the original atoms) joining them for the atomic level to be ordered.

Now we cannot join any points in the second row without determining an order relative to the new

atoms. And it must be consistent with any extension below in the third row. Nonetheless when there

are islands, there is still an open choice of relative order of the two islands. However the graph must

now embody a specific choice of order relations – we cannot leave it free as before. So this enforces

8

a stronger structure – but still lets us specify any graph structure below the atomic row that we

could specify before.

We now visualise in terms of the process of building a graph. We first specify the number of atoms

we need in the first row. This determines how many Levels the graph can contain. (We can always

extend it of course). The atoms are introduced only to represent order and the size of the possible

lattices. So their identity is irrelevant in a sense: they do not represent any information other than

this order. But we must define an order through points at Level 2. Instead of inserting just these

points, we insert a full interior lattice that orders the atoms, determining the lattices. This acts like a

coordinate system. Indeed, we can insert such points with the sole purpose of providing a

coordinate lattice. This has no other joins to other points. This is exactly like the simple flat graphs

illustrating coordinate systems we saw earlier.

We define a local CAT2 space by inserting a lattice extending across the entire set of atoms.

Remember this is generally a sub-space within a larger CAT2 relation, although it can be a complete

CAT2 relation by itself, if we make the CP point the zero point.

This defines the ‘space’ of the graph so to speak, making it unambiguous. We can then insert any

other points in the positions defined by the coordinate lattice. We can embed the original graphs we

saw at the start of this section on top of this space. But now the original graphs are pushed up a

Level. If we define every graph with a coordinate lattice we have a simple form for defining graphs.

We can now create a complete coordinate system covering positions for the whole exterior of the

CP. These may now be labelled from the top down, instead of bottom up (later). We call these flat

CAT2 lattices.

The FCAT2 relation.

We define a flat CAT2 relation or FCAT2, as follows.

Axiom for FCAT2. An FCAT2 relation is a CAT2 relation where all CP’s it contains are flat.

· Definition. A CP is called flat just in case its atoms are uniquely ordered in every interior.

This is the critical restriction on the general CAT2 relation for the database application. We primarily

want to use flat CAT2s. (Whether we allow some other structures is still an open question). But we

cannot restrict a dynamic system to flat CAT2 relations, since discrete transformations defined by

9

adding or removing single points creates intermediate states that are not flat (although the initial

and final states may be Flat CAT2).2

· Proposition. To extend a flat CAT2 relation by discrete operations, we generally must have

intermediate relations which are not flat.

· Proof. Suppose we add two atoms (i.e. points with double-joins) below a point. Until we add

a coordinate point that orders them, it is not a flat CAT2 (just CAT2).

· We cannot add the order point until the two parents are present.

· Therefore the sequence of relations required to add a CP with even two atoms must include

a non-flat relation.

However although the flat FCAT2 relation is more restricted than the CAT2 relation, this does not

restrict the representational power, because any CAT2 relation can be embedded into a flat CAT2

relation with the same representational power.

· Proposition. Every CAT2 relation has a homeomorphic embedding into a flat CAT2 relation.

· Proof. First show that this holds for the exterior of any CP within a CAT2 relation. Then prove

inductively that it holds for whole CAT2 relation.

· Take a CP and its exterior in a CAT2 relation. Suppose it has the general structure as

illustrated above, with multiple atoms in order categories determined by the exterior, and

multiple islands, so relative order is not always determined.

· Transform by pushing up. Define the number of atoms as the longest sequence of ordered

atoms plus 1. Order all independent islands from the left (by convention).

· Then show this contains the original structure.

· The homomorphism is defined by mapping each point in the extended relation to itself, and

each join to the original join. Note the joins from the original atoms to the CP no longer

correspond to single joins in the extended relation, but instead to chains to the CP.

· When this is done for every CP, we have a flat CAT2 relation.

2 Note in a database context, this might be managed with transactions, which are multiple

operations defined in sequence, executed in one action. Typically we perform a transaction, check if

the result is consistent with our rules, and commit if it is, or roll-back if not. However we do not want

to make this limitation on fundamental operations, and we allow discrete operations.

10

Note however that if we have two islands initially in a CAT2 relation C2, and push up, by our

convention they come out ordered on the left in a flat CAT2, call it F2. If we subsequently joined

them in the original CAT2, creating a new relation C2’ and push up, we get F2’. However we cannot

generally add the new point to F2 to get F2’. We may order islands in incompatible ways in C2’, and

we would need to reposition them in F2 to get F2’. A second method would be to push up separate

islands under separate CP’s. But if we subsequently wish to join them, we would then need to move

them back under the atoms of one CP.

This raises the general issue that for a dynamic system we need to think about the process of moving

lattices around. I.e. not just adding, deleting or moving single atoms at once, but whole blocks. Again

this relates to the process of transforming relations through a sequence of intermediate states. We

cannot do this one point at a time and retain CAT2 at every stage when there are multiple points in

an interior to move. Note we can always avoid moving points by duplicating them as new points in

the new positions (copying), and then deleting the originals. But this will be very inefficient with

large graphs. There may be millions of points to move, but generally only a handful of atoms. And it

also means renumbering points because we cannot have duplicates in the primary key.

Absolute coordinates for FCAT2.

Exteriors of CPs in a FCAT2 can now be labelled with top-down coordinates. Note this canonical

coordinate system takes Levels as increasing downwards, while the interior coordinates took Levels

decreasing downwards. It conforms to the vector algebra of the interior coordinates, but they now

provide a system of absolute coordinates, which removes the need to calculate interior vectors. This

is possible because the FCAT lattice covers the whole space.

11

 Canonical Exterior Coordinate System As a square coordinate system

Figure 2.7. Left. Illustrating top-down exterior coordinates for A = 5. This is symmetric w.r.t.

left-right reflection, and has no negative numbers. Right illustrates how this corresponds to

discrete coordinate axes, X,Y, as for a grid. We use only the bottom half-triangle of the

coordinate plane. The top half (blue) only represents the CP. We will assign this the

coordinate [0,0].

We define the coordinate function for points p as:

· Definition. Coordinate function for points.

· [p] = [x,y] where: [x,y] is the 2-place coordinate for point p.

· x, y are integers.

If: [p] = [q] for points p,q, they are at the same coordinate position. But they need not have the same

parents. (Points p and q with identical parents are said to be in the same position in the graph, which

is stronger than having the same coordinate position.)

We can formally define canonical coordinates as follows.

· Definition. Canonical coordinates for points in an FCAT lattice above the CP.

· Atomic points ordered: (a1,…ai, … aA) from left to right have coordinates: [(i),(A-i)].

· If a position [x,y] has a right child (i.e. down-right), the child coordinates are: [x+1,y].

· If a position [x,y] has a left child, the child coordinates are: [x,y+1].

12

We might extend the rule to assign coordinates upwards.

· If a position has coordinates [x,y], the left parent position has coordinates: [x-1,y] and the

right parent position has coordinates: [x,y-1].

This gives identical coordinates up to the atomic row, but above that we now get multiple

coordinates, which correspond only to the CP position. To allow a unique coordinate for the CP, we

define:

· Definition. The CP position has coordinates [0,0]

· Definition. Any coordinate [x,y] where x+y < A is equivalent to [0,0]

We define the Levels so that the atoms are at level 1, and increase going down the lattice:

· Definition. Levels for canonical coordinates.

· The Level of a position above the CP with coordinates: [x,y] is: L[x,y] = x+y-A.

This defines Levels in the reverse order to the interior coordinate system. I.e. going up one step

means decreasing L by one. The vector algebra is otherwise equivalent to that for the interior

coordinate system.

Absolute Coordinate Position Vectors.

· Definition. Coordinate vectors below a CP.

· If [i] ≡ [xi,yi] and: [j] ≡ [xj,yj] are position coordinates within a CP, not including [0,0], the

vector from [i] to [j] is: vi,j = [xj-xi,yj-yi].

The main issue is that the class of vectors connecting positions is constrained by the size A of the CP.

E.g. there are no vectors connecting positions larger than: v = [A-1,0] or smaller than: v = [-A+1,0].

Or generally if: v = [x,y] then: |x+y|< A.

However we can define the vectors with components as ranging over any integer values. Then

vectors generally lie outside of positions, and we must constrain the addition of positions to vectors:

position + vector à new position to cases where the new position exists. However the class of

vectors can be treated as the full class.

· Definition. Vector addition.

· vj + vj = [xi,yi] + [xj+yj] = [xi+xj,yi+yj] if: |xi+xj+yi+yj| ≤ A

· Definition. Scalar multiplication.

13

· av = a[x,y] = [ax,ay] if: |ax+ay| ≤ A and a is an integer.

We can add a vector to a position to get to another position:

· Definition. Position-Vector addition.

· [x,y] + [x’,y’] = [x+x’,y+y’] where: 0 ≤ (x+x’) ≤ A and: 0 ≤ (y+y’) ≤ A and: A < (x+x’+y+y’) ≤ 2A,

otherwise: [x,y] + [x’,y’] is null (no position).

· Equivalently, [x,y] + [x’,y’] = [x+x’,y+y’] exists only when: –L([x,y]) ≤ x’+y’ ≤ A – L([x,y]).

Remember the Level of a position is: L([x,y]) = (x+y – A). We define the Level of a vector as:

· Definition. Level of a Vector. L[x’,y’] = x’+y’.

So if we add a vector position to a vector: [x,y]-[x’y’], the levels add:

· L([x,y]-[x’y’]) = L([x-x’,y-y’]) = (x+y-x-y-A) = L([x,y])-L([x’y’])

Note that:

· Proposition. Vectors are independent of linear transformations of the coordinate system.

Note the positions stop at the atomic row. The CP will have its own exterior coordinates defined by

its position in its own CP. We may define the coordinates of the CP as: [0,0], and its Level as 0.

· Definition. [CP] = [0,0]

· Definition. Level[0,0] = L[0,0] = 0

Then position + vector addition holds for all positions in the CP, but not the CP. For these vectors to

form a vector space they must satisfy these axioms.

Axiom Meaning

Associativity of addition u + (v + w) = (u + v) + w

Commutativity of addition u + v = v + u

Identity element of addition
There exists an element 0 ∈ V, called the zero

vector, such that v + 0 = v for all v ∈ V.

Inverse elements of addition
For every v ∈ V, there exists an

element −v ∈ V, called the additive

inverse of v, such that v + (−v) = 0.

Compatibility of scalar multiplication with field
multiplication

a(bv) = (ab)v

Identity element of scalar multiplication
1v = v, where 1 denotes the multiplicative
identity in F.

Distributivity of scalar multiplication with
respect to vector addition

a(u + v) = au + av

Distributivity of scalar multiplication with
respect to field addition

(a + b)v = av + bv

14

[Wikipedia. Vector space].

The scalars, a,b, are the integers. These axioms are satisfied as long as we allow vectors of any size.

Thus we have the same vector space for all CP’s, but distinct position spaces for different sized CP’s.

We can take the position spaces of CP’s to be contingent states (or initial conditions), imposed on

the background vector space, forming ‘containers’ in which to place the points. We subsequently

impose a distribution of points on the position space, which is analogous to imposing a contingent

distribution of bodies on a Euclidean space. However there is a major difference, in that bodies in

Euclidean space have all their spatial relations determined by the Euclidean position relations,

whereas points in C2 space do not have all their graphs relations determined by the C2 position

relations. Another difference is that we now have a manifold of CP points with their separate

position spaces. The manifold of CPs is a tree, and relations between points in different CPs are

determined by these trees. The trees can be described with coordinate chains.

Coordinate chains.

Note that since the exterior coordinates are relative to a CP we may index coordinate functions in

coordinate chains. The following takes z, z’, …, to be the numbers for CP points, and uses: [z], [z’],

etc, to construct bracketed symbols for those points.

· Definition. Coordinate chains.

· [0][x,y][z][x’,y’][z’] … [x’’,y’’][z’’][x’’’,y’’’] represents a complete coordinate chain from the

zero point [0] to the final position in the chain: [z’’][x’’’,y’’’].

· This position exists just in case the sequence: [0][z’]…[z’’] is the complete sequence of CPs in

the interior of [z’’], and the position: [z’’][x’’,y’’] exists.

We may say that coordinate chains are valid only if they have appropriate coordinates for the CPs.

· Definition. Valid coordinate chains.

· A coordinate chain is valid iff all its terms are valid, as defined below.

· A coordinate chain containing: …[z][x,y]… is valid only if point z has at least: x+y-A atoms.

· A coordinate chain containing: …[z][x’,y’][z’]… is valid only if [z] is the CP of z’.

· A coordinate chain containing: …[z][x’,y’][z’]… is valid only if [z’] is at position [x’y’] in [z].

· A coordinate chain is complete only if it begins at [0] and contains the complete sequence of

CPs up to the final coordinate position.

Coordinate chains are a more complete basis for coordinate vectors going across the entire graph.

15

· Proposition. Each point p has a unique complete coordinate chain: [0]…[x,y].

Transformations of coordinates.

The correspondence to the XY grid on the right illustrated above shows why the canonical system

gives the most symmetric coordinate system. There are several equivalent variations of this

coordinate system, equivalent to translation and reversal transformations, e.g. we might define any

linear combination:

· Definition. Linear transformations of coordinate systems.

· Map: [x,y] à [x’,y’]’ = [±x+X0, ±y+Y0] where X0,Y0 are constants, to form an isomorphic

coordinate system.

Coordinates must change if we extend the atomic row. We may insert a new atom a* between two

existing atoms at: [an]≡[n,A-n+1] and [an+1]≡[n+1,A-n]. (We allow n e [0,A] here to insert to the left of

a1 or to the right of aA-1.) The transformation may be defined piecewise as:

· Definition. Transforming coordinates by adding an atom.

· If [x,y] is an original position, there are three cases:

o Case A. x ≤ n and y ≥ A-n. Then: [x,y] à [x,y+1]

o Case B. x ≥ n and y ≤ A-n. Then: [x,y] à [x+1,y]

o Case C. Otherwise. Then: [x,y] à [x+1,y+1]

16

Figure 2.8. Left is a graph with 7 atoms. On the right, an additional atom is inserted between

points 3 and 4. This makes 8 atoms and introduces 8 new points (red lines). All existing

points must have coordinates relabelled since the atomic number has changed, and 6 points

have new parents.

There are other methods to extend the lattice, e.g. extending on the right and moving only selected

points across, etc. This illustrates the general problem.

The A-lattice.

To ensure the FCAT structure, we can explicitly define a complete coordinate lattice for every CP. We

will refer to this as the A-Lattice (for atomic lattice). For any point z with a set of A>1 atoms (double-

joined points below), we can define a lattice spanning them.

· In the database context we can do this physically, constructing the A-lattice as the first step

before constructing exterior graphs (the “empirical graphs”). We make no other C2 joins to

these, so they never get mixed up with the rest of the graph.3

· In the mathematical context, we can consider this as a virtual graph that we can refer to,

distinct from the empirical graph.

3 Note in the database application, we want to distinguish the A-lattice from the ‘empirical lattice’,

so we do not get it mixed up, e.g. in counting classes, etc. There is nothing in C2 joins to make this

distinction, but it is done with the third or fourth joins.

17

The A-lattice looks just like the pattern of the canonical coordinate graph above, with the

assumption that it spans the entire set of atoms. Thus every CP z has an A-lattice defined as follows.

· Definition. A-lattice for a CP z.

· Assume the class of atoms below z is: (a1, …an,… aA). A is the number of atoms.

· Step 0. Label the atoms with indices: an,(A-n+1). This forms the sequence: (a1,A,a2,A-1, … aA,1).

These are Level 1.

· Recursion step. Add a point-relation: (i,j,k) = (i,ax-1,y, ax,y-1) for every pair: (ax-1,y, ax,y-1) in

the previous Level. Label these with indices: ax,y. These are Level x+y-A.

· Repeat until Level A. The A-lattice is complete.

Figure 2.9. Coordinate labels at an arbitrary point in the coordinate lattice.

· Exercise. Show this method of labelling coordinates is equivalent to the canonical system.

· The number of points in the A-lattice are the triangular numbers: A(A-1)/2 à A2/2.

Interior and Exterior geometry for positions.

Referring back to the earlier diagram of interior and exterior sets, we now show how the position

coordinates gives an efficient way to formalise intersections and unions of interior and exterior sets.

We introduce the following functions.

· Let p and q be any two points with the same CP in a C2 relation.

· Assume points p and q have position coordinates: [p] ≡ [xp,yp], [q] ≡ [xq,yq].

· We define these operators.

· Minimum: min(xp,xq) and: min(yp,yq)

· Maximum: max(xp,xq) and: max(yp,yq)

· Interior Meet position: [p]^[q]

o [xp,yp]^[xq,yq] = [min(xp,xq),min(yp,yq)]

o Note if: min(xp,xq) + min(yp,yq) < A then [min(xp,xq),min(yp,yq)] ≡ [0,0], the CP.

18

· Exterior Join position: [p]v[q]

o [xp,yp]v[xq,yq] = [max(xp,xq),max(yp,yq)]

· Left position: [p]<[q]

o [xp,yp]<[xq,yq] = [min(xp,xq),max(yp,yq)]

· Right position: [p]<[q]

o [xp,yp]>[xq,yq] = [max(xp,xq),min(yp,yq)]

Figure 2.10. Illustrating [p]^[q] and [p]˅[q] when p<q. Left shows two points with [p]^[q] in the

interior. Right shows two points where [p]^[q] = [0,0], i.e. the CP position. The latter occurs

whenever two points are sufficiently separated horizontally.

If p is in the interior of q, the meet and join positions are [p] and [q] respectively. Every pair of positions

in the same CP has a meet and join position in the CP (including the CP).

We define interiors of positions by:

· Definition of Interior Positions.

· INT[xp,yp] is the class of all positions: [x,y] such that: x≤xp and: y≤yp.

· Note valid position are where either: x+y > A, or x=0 and y=0 (for the CP).

· [CP] = [0,0] is in the interior of all positions of the CP exterior.

· Note we can take positions: [x,y] where x+y ≤ A to be identical to: [0,0], and then we can allow

x,y to range over 0 to A, with the constraint on valid positions above.

Exterior positions are defined as the inverse of Interior positions, i.e.

19

· Definition of Exterior Positions.

· [xq,yq] e EXT[xp,yp] just in case [xp,yp] e INT[xq,yq]

· Equivalent Definition. EXT[xp,yp] is the class of all positions [x,y] such that: x≥xp and: y≥yp,

and either: A < x+y ≤ 2A, or x=0 and y=0 (for the CP).

· Note [CP] = [0,0] is in the exterior of [0,0].

Interior and Exterior geometry for points.

The previous section defines functions on positions, not on points at positions. For the corresponding

points, we define the Meet p^q of points p,q as the (GLB) point r in the interior intersection of p and

q at the interior join position if such a point exists, otherwise null.

· Definition. Meet p^q. This is a unique point, or null.

p^q = r if [p]^[q] = [r] and r is in INT(p) and r is in INT(q).

· Otherwise p^q is null.

We similarly define the Join: p˅q of p,q at the LUB position.

· Definition. Join p˅q. This is a class of points, or null.

r e p˅q if [p]v[q] = [r] and r is in EXT(p) and r is in EXT(q).

· Otherwise, if there are no such points, p˅q is null.

These operations can be extended beyond a single CP, using coordinate chains. However we first work

within the CP, i.e. at coordinate positions: [z][x,y] where z is the CP.

Key propositions relate interiors of points to interiors of positions. Interior positions of a point q

correspond 1-1 with interior points.

· Propositions. If point p is in the INT of point q, then position [p] is in the INT of position [q].

Ditto with EXT. Formally:

· p e INT(q) just in case [p] e INT([q]).

Interior points are unique w.r.t interior positions, i.e. every interior position of a point corresponds to

a unique interior point. But exterior points are not unique, i.e. to every exterior position of a point,

there may be multiple exterior points, or there may be no exterior points.

· Proposition. The highest possible level of a point (GLB) in the intersection of the interiors of

two points: INT(P) ∩ INT(q) is at: [p]^[q].

20

· Proof. The Level is defined as: x+y-A. Interior positions of p and q are at [x,y] where: x≤xp,

x≤xq, y≤yp, y≤yq. Let: xs = min(xp,xq) and: ys = min(yp,yq). Then there are no interior

positions of both p and q higher than: [xs,ys], since this requires: L = xs+ys < xt+yt, but then

either xs< xt or: ys<yt, but this contradicts the previous relation.

Note that the position: [p]^[q] is the highest possible interior intersection position of p and q, but

there is not necessarily a shared point at that position. (There is a shared a point only if they meet. If

they meet, they can be joined in the exterior, forming a lattice.)

Note viewing CAT2 as a lattice, we define the concepts of Greatest Lower Bound and Least Upper

Bound of a pair (or class) of positions or points. The GLB of p, q is the highest point in the intersection

of interiors. It is equal to p^q if a point exists there, in which case we may say p and q are in the same

lattice. Otherwise it is class of highest-level points of: MAX(INT(p)∩INT(q)).

If they do not meet at: [p]^[q], we say the meet: p^q does not exist. We also say the points are split.

They must then still intersect at some point/s at a (lower) Level, say: ([p]^[q])-[x’,y’] where: 0 < x’+y’ ≤

L([p]^[q]).

The Diamond Property.

A key result is summarised here as the Diamond Property. This lets us find graph solutions using

coordinate algebra.

· The Diamond property means: If two points p and q in a C2 relation have any shared points in

their exteriors, then:

o (A) they must have a unique shared point in their interiors, p^q = r at the unique (GLB)

position: [p]^[q], and

o (B) the intersection of their exteriors is the exterior of the intersection: EXT(p˅q), at

the unique (LUB) position: [p]˅[q].

· Formally. If: EXT(p) ∩ EXT(q) is not empty, then (A) there is a single point: r e INT(p) ∩ INT(q)

which is at (GLB) position: [p]^[q], and (B) EXT(p) ∩ EXT(q) = EXT(p˅q).

This is a general property of C2, but we illustrate it for CAT2. The reason can be seen from the

following diagram.

21

Figure 2.11. The points p and q are both valid, but they cannot be joined below by r* (which

is not a valid point), because the LR and RL grand-parents are split. Because the parents are

split and do not intersect, the structures below p and q foliate in separate 2-D layers. They

cannot be joined again in CAT4.

The points p and q can never be joined by a shared exterior point (below), as shown by r*, because

the parents of p and q are split. LR(r*) ≠ RL(r*), which contradicts C2. The interiors of points p and q

do not intersect at position: [p]^[q] = [3,4], but rather at two positions: [2,4] and [3,3]. The intersection

of their interiors: INT(p) ∩ INT(q) in this example starts (GLB) at level 1, with two points, not at level 2

with a single point.

By extension, p and q (and any children of p and q) can never join below no matter how far the graph

is extended. Hence there can be no shared points in the exteriors, and: EXT(p)∩EXT(q) is empty.

Conversely, the Lattice property tells us there if is a common point in the exteriors of p and q, call it

r*, then since the interior of r* is a lattice, any pair in it including p and q must join above at a single

point, p^q. This is the defining property of a lattice. The following is another demonstration using the

coordinate geometry.

If points are split they can never be joined. To give a general proof we can give an inductive proof, or

use the coordinate algebra, as follows.

22

Figure 2.12. The two cases. Left diagram. p is left of q. They are not in each other’s interior

or exterior. There may be a common point in their exteriors, but (Diamond property) only if

there is a common point: p^q in their interiors. Right diagram. p is in the interior of p and q.

(p is at a lower Level than q.) q is in the exterior of p and q. Cf. the previous diagram shows

the special case when p^q is the CP point. This special case conforms to the same algebra.

· Proof of Diamond property. There are four possible relationships between [p] and [q], viz.

o 1(a) xp ≤ xq and: yp ≤ yq

o 1(b) xq ≤ xp and: yq ≤ yp

o 2(a) xp ≤ xq and: yq ≤ yp

o 2(b) xq ≤ xp and: yq ≤ yp

· 1(a) is equivalent to 1(b) by exchanging the names of p and q, and similarly 2(a) is equivalent

to 2(b). Hence, we may analyse just the two cases, 1(a) or 2(a). These are illustrated above.

· First Case. xp ≤ xq and: yp ≤ yq. Then by definition of interior positions, [p] is in the interior

of [q] and [p]= [p]^[q] and: p = p^q. Hence p is in the interior of q. Also, for any point p, p is

the unique lowest point in INT(p). Hence p e (INT(P)∩INT(q)), and p = p^q, and p is the unique

lowest point in (INT(P)∩INT(q)). Hence the property holds for this case.

· Second case. xp ≤ xq and: yq ≤ yp. Assume there is some r e EXT(p)∩EXT(q) with

coordinates: [r] = [xr,yr]. By our previous propositions, xp ≤ xr and: yq ≤ yr. Then r has an

interior point, r’, at position: [xp,yq]. This is the position: [p˅q]. This is the lowest (level)

position in the shared exterior of p and q. Then r’ also has an interior point, s, at: [xq,yp]. This

is the same position as: [p]^[q]. This is also an interior point of both p and q. Interior points

are unique (for each position). Hence s is a unique point in the interior of both p and q. The

23

position: [p]^[q] is also the lowest possible position common the interiors of p and q

(proposition above). Hence the property holds for the second case.

· Hence the property holds for all cases.

The Diamond property is important in applications, used to calculate interior and exterior

intersections. Diamond property is closely related to these:

· INT(p) ∩ INT(q) = INT(p^q)

· EXT(p) ∩ EXT(q) = EXT(p˅q)

· EXT(p^q) ≥ EXT(p˅q)

Extension to classes of points.

We can generalise the previous functions to act on classes of points. We have defined the functions:

[p]^[q], [p]˅[q], p^q and p˅q as binary functions. We can then consider: ([p]^[q])^[r], ([p]˅[q])˅[r],

(p^q)^r and (p˅q)˅r. These are both commutative and associative. Note also that for the A-lattice

alone, the positions and points have a 1-1 correspondence. Hence if we can show algebraic properties

for points this shows the analogous property for positions, since positions correspond to a special case

of points. Hence proofs of the following for points can be considered as more fundamental than proofs

for positions.

· Proposition. The operations ^ and ˅ are commutative.

· For positions: ([p]^[q]) = ([q]^[p]) and: ([p]˅[q]) = ([q]˅[p])

· For points: (p^q) = (q^p) and: (p˅q) = (q˅p)

· Proof. Set intersection is commutative so: INT(p) ∩ INT(q) = INT(q) ∩ INT(p), and ditto for

positions.

· Proposition. The operations ^ and ˅ are associative.

· For positions: ([p]^[q])^[r] = [q]^([p]^[r]) and: ([p]˅[q]) = [q]˅([p]˅[r])

· For points: (p^q)^r = p^(q^r) and: (p˅q)˅r = p˅(q˅r)

· Proof. Set intersection is associative so: (INT(p) ∩ INT(q)) ∩ INT(r) = INT(p) ∩ (INT(q) ∩ INT(r)),

and ditto for positions.

Hence we can unambiguously write: p^q^r^…^t and: p˅q˅r˅…˅t, and similar for positions. We can use

single operators operating on sets of points (analogous to S instead of + in arithmetic), thus:

· Definition. ^(p,q,..r) ≡ p^q^…^r and ditto for positions.

24

· Definition. ˅(p,q,..r) ≡ p˅q˅…˅r and ditto for positions.

Note the operations are also distributive for positions, with ^ distributing over ˅.

· Proposition. Distributive law for positions. ([p]˅[q])^[r] = ([p]˅[r])^([q]˅[r]).

However the distributive law does not hold for points. Generally: (p˅q)^r ≠ (p˅r)^(q˅r). They are equal

when either: (p˅q), (p˅r) and (q˅r) all exist, e.g. in the A-lattice, or when all are null.

General Diamond property.

There is a general solution for finding the position interior and exterior intersections: ^([p],[q],…[r])

and: ˅([p],[q],..[r]). With coordinates: [p] = [xp,yp], etc, we define the four quantities:

· x- = Xmin([p],[q],…[r]) = min(xp, xq,… xr)

· x+ = Xmax([p],[q],…[r]) = max(xp, xq,… xr)

· y- = Ymin([p],[q],…[r]) = min(yp, yq,… yr)

· y+ = Ymax([p],[q],…[r]) = max(yp, yq,… yr)

Then we can write the general solution:

· Proposition.

· ^([p],[q],..[r]) = [x-,y-] and: ˅([p],[q],..[r]) = [x+,y+]

And similarly we can define the left and right positions:

· <([p],[q],..[r]) = [x-,y+] and: >([p],[q],..[r]) = [x+,y-]

Geometrically, we are just defining the corners of a rectangle on the position lattice that contains all

the points.

25

Figure 2.13. A set of positions {pn} defines a rectangle enclosing the positions. Left diagram:

the positions are enclosed within the main lattice. Right diagram: the positions are too wide,

and the top position is [0,0], i.e. the CP.

A similar solution for interior and exterior intersections of points is not possible however, because

two points at specified positions may be joined by points anywhere from [p]^[q] down to the CP. We

have seen examples previously. So there is not necessarily an interior intersection at: p^q. And if

there is, there are not necessarily any exterior points at p˅q.

To calculate the intersection above we must examine the interior and exterior sets, INT(p) and

EXT(p). The Diamond property tells us where to look for the joins (joins and meets). Instead of

recursively comparing all points in the exteriors of p,q to find intersections, which becomes

unscaleable in large datasets, we need only compare points at specific positions. We check first if

p^q exists, and then look for shared points at position: [p]˅[q]. The exterior intersection:

EXT(p)∩EXT(q) is the exterior of the points: EXT(p˅q).

This also means there is a generalised version of the Diamond property, viz.

· Diamond Property Generalised. If a class of points: (p,q…r) in a FCAT relation have any shared

point in their exteriors, they must have a unique shared point in their interiors, ^(p,q,…r) at

the unique position: ^([p],[q],…[r]).

· Formally. If: ˅(p,q,…r) is not empty, there is a single point: ^(p,q,…r) at position: ^([p],[q],..[r]).

· Proof by induction. (1) It holds for p,q by the original Diamond property. (2) Induction step.

Assume this holds for p,q,…r. Then show it holds for: p,q,…r,s. Observe that: ˅(p,q,…r,s) is

either null or contains at least one point. If it is null, ˅(p,q,…r,s) is null, and the property is

26

trivially satisfied. Otherwise ˅(p,q,…r,s) contains at least one point, so ˅(p,q,…r) contains at

least one point. The position: [t] of every point: t e ˅(p,q,…r) is the same: ˅([p],[q],..[r]) = [t],

and: ^([p],[q],..[r],[s]) = [t]^[s]. Then by assumption: ˅(p,q,…r,s) = s˅t, and by the simple

Diamond property (applied to pairs), there is a single lowest point: ^(t,s) = ^(p,q,…r) at

position: ^([p],[q],..[r],[s]), this is unique, and the property is satisfied. (3) By induction it holds

for all finite sets.

Geometric Concepts.

Various CAT2 classes, such as INT(p), INT(EXT(p)), etc, may be visualised as manifolds bounded within

the larger relation, c2, and we may define special features, such as tips, surfaces, volumes, diamonds,

lattices, etc, with analogies to 3-D geometry. These concepts may be regarded as shapes and

manifolds. In 3-D Euclidean geometry, there is a strict distinction between different dimensional

manifolds, e.g. lines (1-D), surfaces (2-D), volumes (3-D), etc. These have different definitions as class

entities, corresponding to (infinite) 1-tuples, 2-tuples, 3-tuples, etc. Incidentally this makes it very

problematic to ever change the manifold dimensionality in a continuous multi-dimensional realm. But

in CAT2, because the domain is finite, all geometric shapes, including lines, surfaces, volumes,

manifolds, have the same type: they are finite subsets of points. They can morph into each other (e.g.

by adding or removing or moving joins). This is a big difference from continuous geometry. We also

have an interpolated structure of A-dimensional lattices double joined to a CP within another A’-lattice

within another CP’, …, up to the Zero point. This lets us store finite structures recursively within others.

These are like trees of manifolds of different finite dimension.

However it is the manifold structure within the specific CP that is most important. This is structured

principally by tips.

· Definition. Tips of a relation. The tips of any relation c2 is a subset: TIPS(c2) of points that are

not left or right parents of any other points in c2.

· Definition. Tips in a relation. A point p is a tip: p e TIPS(c2) in c2 just in case EXT(p) = {p} in c2.

· Note the EXT function is relative to a relation, c2. EXT(p) ≡ EXT(p) ∩ c2 ≡ EXT(p,c2).

· I.e. EXT(p) is really a 2-place function: EXT(p,c2).

We may also define the concept of tips in a point-subset R relative to a C2 relation.

· Definition. Tips in a subset R of a c2. A point p is a tip in a subset R of a C2 relation c2 just in

case: EXT(p)∩R = {p}. Note again EXT(p) is defined relative to c2.

27

· Note EXT(p) is defined on the C2 relation c2, so R may not contain points with p as a parent,

but may contain other exterior points of p in c2.

· Hence we may have the case where p is not a tip of R in c2, although p is a tip in R.

The class of tips is defined for any class of points, not just for C2 or CAT2 relations. E.g. an exterior

class EXT(p) is not C2, but has a class of tips (which is the same as the tips of: INT(EXT(p)). Some

propositions are stated as follows. Proofs may be given as exercises.

· The tips of (a set of points) R in c2 are the tips of INT(R) in c2.

· The interior of the tips of c2 is equal c2. INT(TIPS(c2) = c2.

· When a new point is added to an existing relation, it is initially a tip.

· The set of tips of a collection of points: TIPS(p,q,…r) is the minimal subset: (s,t,…u) of (p,q,…r)

such that: INT(s,t,…u) = INT(p,q,…r).

· For R a general subset of points: INT(Tips(R))=INT(R).

· For R a C2 relation: INT(Tips(R))=INT(R) = R.

We can define other geometric analogies for C2 relations also. E.g.

· Definition. Surface points.

o A point is a right surface point in c2 if it has at least one left child point but no right

child points in c2.

o Ditto for a left surface point.

o A point is a surface point if it is either a right surface point or a left surface point.

· Generalise. Surface points of subsets or manifolds.

o A point p is a right surface point of a subset R of c2 just in case p is in R and R has at

least one left exterior point of p but no right exterior point of p in c2.

o R may be called a manifold of c2 if R is a subset of c2 and R is connected. This means

that for every pair of points p,q in R, whenever q is in the interior of p, each chain:

<p,…,q> in c2 is in R.

· Ditto for a left surface point.

· Definition. Interior surface. A point p is in the interior surface of INT(EXT(p,q,r,…)) if it has only

one parent in EXT(p,q,r,…) and the other parent in INT(EXT(p,q,r,…)).

· Definition. Plane. A plane may be an x-plane or a y-plane. The points in an x-plane belong to

all possible positions of x for a fixed value, Y0, of y: {[x,Y0]}. And conversely for a y-plane.

o E.g. with A = 5, the x-plane at y=5 is: {[1,5],[2,5],[3,5],[4,5],[5,5]}. This includes all the

positions along the vector from [1,5] à [5,5].

28

o Planes at y = n have n positions, e.g. the plane at y=3 is: {[3,3],[4,3],[5,3]}. (Since the

condition is: A < x+y ≤ 2A).

o The class of all positions in A is given by the union of all the x-planes, or of all the y-planes.

o A specific position may be defined by the intersection of an x-plane and a y-plane.

These kinds of geometric concepts may be useful, especially with the coordinate concepts. However

from a pure mathematics points of view, the defining characteristic of the structure lies more in its

topology than geometry.

CAT2 Topology.

The most important classes in CAT2 (or C2 generally) are the interiors and their unions. This family of

classes provides the open sets to define a natural topology, T, on any C2 or CAT2 relation.

· Definition. The open sets of the topology,T, for c2 are (i) the interior sets of each point:

INT(p), and (ii) the unions of these: INT(p,q,…r) for points p, q, …r, and (iii) the empty set.

Note this class also contains all subsets of c2 that are C2.

· The topology T for any c2 is identical to the class of all the C2 sub-relations in c2.

The base of the topology corresponds 1-1 to the points:

· The class of interiors of individual points: {INT(p)} is the base of the topology.

Key to the topology property is that:

· All intersections of interiors are given by unions of interiors.

This is simply because any intersection: INT(P)∩INT(q) is the union of interiors of all the (finite

number of) tips in the intersection, and all finite unions of points interiors are in T. We prove it

below in terms of tips. We now formally demonstrate the property of the topology.

· Definition. Topology on a set of points. [Wikipedia].

Let X be a set and let τ be a family of subsets of X. Then τ is called a topology on X if:

1. Both the empty set and X are elements of τ
2. Any union of elements of τ is an element of τ
3. Any intersection of finitely many elements of τ is an element of τ

 If τ is a topology on X, then the pair (X, τ) is called a topological space.

 [WIKIPEDIA. General Topology.]

29

We now show that any C2 relation c2 is a topological space: (X,T), on the set of points X = c2, with the

familyT of subsets of X including all unions of interior sets, and the empty set.

· Definition. The C2 Topology. Define: T = {INT(p,q…,r)} U {f}, for any: p,q,…,r in relation c2.

· Proof this is a topology. See definition above.

i. INT(EXT(0)) = c2 is in T. f (empty set) is in T.

ii. Union of any two elements of T: INT(p,q…,r) U INT(s,t…,u) = INT(p,q…,r,s,t,…u) which

is an element of T. (By associativity of set unions.)

iii. Consider the intersection: INT(p) ∩ INT(q). There is a finite set of points: (r,s,…t) in

the intersection. The interior union: INT(r,s,…t) is in T. The same argument applies

for the intersection of any number of elements of T. Hence any intersection of

finitely many elements of T is an element of T.

Note we may also visualise intersections in terms of tips. Take the class of tips of the intersection:

{tn} = tips(INT(p) ∩ INT(q)). The union of interiors of the tips: INT({tn}) is the intersection: INT(p) ∩

INT(q). The interior of each tip tn is in T. Hence the union of the elements: INT({tn}) is in T.

Union and Intersection Classes.

We write interior unions and intersections as follows, using “,” for union and “|” for intersection:

· INT(p,q,…,r) ≡ INT(p) U INT(q) U …U INT(r))

· INT(p|q|…|r) ≡ INT(p) ∩ INT(q) ∩ … ∩INT(r))

And combinations of set operations in the parameter string, using “,” for union and “|” for

intersection, e.g.:

· INT(p,q|r) ≡ (INT(p) U INT(q)) ∩ INT(r)

· INT(p|q,r) ≡ (INT(p) ∩ INT(q)) U INT(r)

· INT(p,(q|r)) ≡ (INT(p) U (INT(q) ∩ INT(r))

We can bracket terms, e.g.: (p,(q|r)), etc, to symbolise all Boolean set-theoretic operations.

This symbolism works equally for exterior set unions and intersections:

· EXT(p,q,…,r) = EXT(p) U EXT(q) U … U EXT(r)),

· EXT(p|q|…|r) = EXT(p) ∩ EXT(q) ∩ … ∩EXT(r)),

· etc.

30

Remember exterior sets are not C2 (or CAT2). We must take interiors of exterior sets to get C2s.

· Each point p of c2 maps to a unique element: INT(p) of T.

· Each point p of c2 maps to a unique subset: EXT(p) of c2.

· Each point p of c2 maps to a class: INT(EXT(p)) which is an element of T.

Note that each exterior is unique to its points. If: EXT(p) = EXT(q) for two points, then p and q are in

each other’s exteriors, and p=q. However note:

· INT(EXT(p)) is not necessarily unique.

· There may be two points, p≠q, with the same: INT(EXT(p)) = INT(EXT(q)).

· INT(EXT(p)) = INT(EXT(q)) if:

o q is the sole child of p.

o r is the sole child of p and q.

o q is the sole child of r which is the sole child of p. Etc.

· More generally: INT(EXT(p)) = INT(EXT(q)) iff p and q are connected by a path of singular points

in an exterior lattice.

· INT(EXT(p)) = INT(EXT(q)) defines an equivalence relation.

The INT(EXT(p)) classes are in T.

· Each class: INT(EXT(p)) is in T.

· If p is a tip, INT(EXT(p)) = INT(p).

· If p is not a tip, INT(EXT(p)) > INT(p).

· INT(EXT(p)) = INT(tips(EXT(p)))

31

Figure 2.14. The class of points (left) corresponds 1-1 with the point-interiors (right). Unions

of point interiors, right, correspond 1-many to subsets of points, left. The interior topology

induces classes on the (Boolean lattice of) subsets of points. It is coarser than the set topology.

The INTEXT Class.

Two important classes are the interior of exterior intersections, and the interior of exterior unions,

which we write as the INTEXT function.

· Definition. INTEXT(p|q|…|r) = INT(EXT(p|q|…|r))

 = INT(EXT(p) ∩ EXT(q) ∩ … ∩ EXT(r))

· Definition. INTEXT(p,q,…,r) = INT(EXT(p,q,…,r)

 = INT(EXT(p) U EXT(q) U … U EXT(r)).

Note the identity:

· INTEXT(p|q|…|r) = INTEXT(p˅q˅…˅r) since: EXT(p|q|…|r) = EXT(p˅q˅…˅r)

Note all C2 interior classes are C2, including unions and intersections of interiors.

The key feature is the natural partition of the C2 or CAT2 relation by the sets: INTEXT(p). These are

partially overlapping, as points always have partially shared interiors: INT(p) ∩ INT(q) = INT(p|q) and

may have partially shared exteriors: EXT(p) ∩ EXT(q) = EXT(p|q) = EXT(p˅q).

· INT(EXT(p)) is the smallest CAT2 relation representing all points directly related to p.

· INT(EXT(p)) includes all points q directly related to p, and all interior points of those points.

· Points p and q are said to be directly related if they are in a chain: <p,…,q> or: <q,…,p>, or

equivalently, if either q is in the interior of p, or q is in the exterior of p.

· Note: <p,…,q> iff q is in the interior of p. And: <q,…,p> iff q is in the exterior of p.

For the database application it is important to be able to partition the CAT2 (or CAT4) table

effectively, to be able to work with partial subsets of records of relevance at a time. The CAT4

database relation is able to grow indefinitely large as we accumulate records, but it is naturally

partitioned into separate, semi-autonomous datasets. The complete subset of a CAT2 relation

directly related to (at least one of) several points: p,q, … ,r, is represented by the union:

INTEXT(p,q,…r). The complete subset relevant to all these points at once is represented by the

intersection: INTEXT(p|q|…|r).

The ability to generate the sets is critical for scalability over a large network. Instead of working with

all the data at once, we can create subsets relevant to subjects of interest. Note there is no

32

comparable ‘partitioning’ operation w.r.t content in relational databases, where a partition of all the

information on a specific subject (insofar as it is defined) depends on partitioning record-sets from

many tables, and depends on complex relationships and special ‘business rules’ that may be

encoded in functions and programs (information outside the soft-data tables and SQL table joins).

See Part 3.

Metric Space and Distance.

C2 (and thus CAT2) has a natural distance function between points, viz. the length of the shortest

path/s to traverse the graph between the points. We analyse the CAT2 coordinate system as a

metric space. The distance between positions is a simple metric, but does not represent the distance

concept between points. A metric concept of distance between points also applies.

[Wikipedia. Normed Metric Space.]

We first analyse this for the simple case of the position vectors. Define the norm (length) of vectors

as before as:

· |v| = |x|+|y|

33

where the vector is: v = [x,y], and |x|,|y| are the absolute values of x,y. The conditions (above) for a

normed metric space are satisfied as follows.

· The norm is non-negative, zero on zero vectors, positive on non-zero vectors.

For addition of two vectors:

· |v1 + v2| = |[x1,y1]+[x2,y2]| = |[x1+x2,y1+y2]| =|x1+x2|+|y1+y2|

Since: |v1| + |v2| = |x1|+|x2|+|y1|+|y2| and: |x1|+|x2|≥|x1+x2| and: |y1|+|y2|≥|y1+y2|, it follows

that:

· Proposition. Triangle Inequality. |v1| + |v2| ≥ |v1 + v2|

And we can define a scalar product for a any integer:

· av = [ax,ay]

Hence:

· |av| = |[ax,ay]| = |ax|+|ay| = |a|(|x|+|y|) = |a||v|

Thus the position vectors appear at first sight to provide properties of a normed metric space.

Figure 2.15. Equidistant positions around [p] form a square. Since we can only move

diagonally, it takes the same path length to reach any points on edges of the square. Thus

squares are analogue of Euclidean circles for our position metric.

However this is problematic, first because it only represents vector addition within a CP, not across

the entire graph, and second because the class of vectors per CP is constrained by the number of

atoms, so we do not have: av defined as a position vector for all a. The second may be dealt with by

distinguishing the vector space from the position space, as noted earlier. The first requires full

vectors across the space, and we will need to incorporate coordinate chains (across multiple CPs),

and assign norms to these.

[p]

34

However, the most important point is that the norm on position vectors represents only the minimal

distance possible between two points in a CP. It does not represent the natural concept of distance

between two points, which is the length of the shortest composite path connecting two points. To

deal with the point metric we need composite chains.

Composite Chains.

To deal with paths, we introduce composite chains, as our simple chains only go downwards, and

can only connect points in the same lattice. We need to represent zig-zagging paths between points

in distinct lattices. A composite chain is a conjunction of chains and reversed chains.

· Definition. If <p,q,…,r> is a chain, then: <r,…,q,p>*, with the points in reversed order, is the

reversed chain.

While chains go downwards (to 0), reversed chains go upwards. Note the trivial chain: <p> is the

only chain equal to its reversal: <p> = <p>*.

· Definition. Composite and Simple Chains.

i. Every chain and reversed chain is a simple chain.

ii. The conjunction of two chains: <p,…,r><r,…,q> ≡ <p,…,r,…,q> and similarly two

reversed chains: <p,…,r>*<r,…,q>* ≡ <p,…,r,…,q>*, where the end-point of the first is

the start-point of the second, is a simple chain.

iii. The conjunction of a chain and a reversed chain: <p,…,r>*<r,…,q> or:

<p,…,r><r,…,q>*, where the end-point of the first is the start-point of the second, is

a composite chain. This is a chain pair.

iv. The conjunction of a composite chain and any chain where the end-point of the first

is the start-point of the second, is a composite chain. E.g. <p,…,r><r,…,q>*<q,…,s> or:

<p,…,r><r,…,q>*<q,…,s>*, etc.

· Composite chains always reduce to alternating chains and reverse chains. This because any

sequence of two chains: <p,…,r><r,…,q> reduces to one chain: <p,…,r,…,q>. and likewise with

reversed chains.

· E.g. <p,…,r><r,…,q>*<q,…,s>* reduces to: <p,…,r><r,…,q,…,s>*.

· Alternating chains and reversed chains like: <p,…,r><r,…,q>*<q,…,s> cannot be reduced.

We define path-connections through chains:

· Definition. p and q are path-connected by any (simple or composite) chain having p and q as

the start-point and end-point.

The length of a chain is defined:

· Definition. Length of a chain.

35

· A chain or reverse chain with n points: <p1,p2,…pn> has length: |<p1,p2,…pn>| = n-1.

· A composite chain: <p1,p2,…pn><pn,q2,…qm>* has length:

|<p1,p2,…pn><pn,q2,…qm>*| = |<p1,p2,…pn>||<pn,q2,…qm>*| = (n-1)+(m-1)

· Proposition. The length of any composite chain is the sum of lengths of its simple chains.

Note a pair of chains connecting p and q may be:

i. <p,…,r><r,…,q> Single interior chain: <p,…,q>.

ii. <p,…,r>*<r,…,q>* Single interior chain: <q,…,p>.

iii. <p,…,r><r,…,q>* Interior chain pair.

iv. <p,…,r>*<r,…,q> Exterior chain pair.

In the first two cases, there are direct chains: <p,…,q> or <q,…,p>.

In the third case, p and q are connected by r in the interior. (An interior chain).

In the fourth case, p and q are connected by r in the exterior. (An exterior chain).

· Proposition. All pairs of points are connected by at least one composite pair.

· Proof: <p,…,0> and <q,…,0> are chains, hence: <0,…,q>* is a reversed chain, and p and q are

connected by: <p,…,0><q,…,0>*.

Note from the Diamond property, we know that in case (iv), when p and q are connected by a point

in the exterior, then (iii) they are also connected by a point in the interior.

Figure 2.16. Left: p^q = r exists and p and q are connected through r by a single interior

chain. In this case, p˅q = r’ may exist, and p and q are also connected through r’ by an

exterior chain. Middle and Left: there is no meet point: p^q and no exterior points: pⱽq. In

this case, p and q are connected though (four distinct) shortest interior chains: <p,.,r,.,q>

and: <p,.,r’,.,q>, going through points r, r’ in: GLB(p,q) = {r,r’}.

Shortest Chains.

Some further propositions are:

36

· Propositions. Shortest composite-pair chains.

· There is always at least one shortest chain connecting p and q are through the interior.

· Every shortest chain in the interior always goes through a point in GLB(p,q) .

· This can always be written as a composite chain: <p,…,r><r,…,q>* or: <q,…,r><r,…,p>*.

· There is generally more than one shortest interior chain.

To prove this, we first we establish the existence of a chain through a point in GLB(p,q), and

subsequently show it is the shortest.

· Proof. Existence of the chain. There is always at least one point in the GLB(p,q). If r is in the

GLB(p,q), then: <p,…,r> and: <r,…,q>* are chains. Hence: <p,…,r><r,…,q>* is a (composite)

chain connecting p and q. Note if there is a simple chain: <p,…,q> then q is the GLB(p,q), and:

<p,…,q><q>* is a (composite) chain connecting p and q. Likewise, if there is a simple chain:

<q,…,p> then p is the GLB, and: <q,…,p><p>* is a (composite) chain connecting p and q.

To prove this is the shortest chain we first observe that:

· Proposition. The length of any interior chain: |<p,…,q>| is equal to the difference in levels of

the start-point and end-point: |<p,…,q>| = L(p)-L(q).

· Proof. By induction. (i) The length of chain: |<p>| = 0 = L(p)-L(p). (ii) Suppose the length of a

chain: |<p,…,q>| = n = L(p)-L(q). Then the length of a chain: |<p,…,q,r>| = n+1 = L(p)-L(q)+1.

But: <q,r> is a chain of length 1, so r is a parent of q, and the Level: L(r) = L(q)-1. Hence:

|<p,…,q,r>|= L(p)-L(r). (iii) By induction, the length of all chains is: |<p,…,q>| = n = L(p)-L(q).

· Note the converse holds for reversed chain: |<q,…,p>*|= |<p,…,q>| as they have the same

number of points, so: |<q,…,p>*|= L(p)-L(q), the difference in levels of the end-point and

start-point.

From this we conclude that:

· The shortest chain joining p to a point in the interior of q is a chain from p to any point r in

GLB(p,q). This is because the GLB(p,q) is by definition at the highest level in the interior

intersection, hence the chain length: |<p,…,r>| = L(p)-L(r), and since L(r) is maximal, this is

the minimal length from p to the intersection: INT(p,q).

· Similarly, the chain length: |<q,…,r>| = |<r,…,q>*| = L(q)-L(r) is minimal.

· Since every interior chain connecting p and q must go through at least one point in INT(p,q),

the chain length: |<p,…,r>|<r,…,q>*| is minimal.

Hence we can summarise:

37

· The chain length: |<p,…,r>|<r,…,q>*| = L(p)+L(q)-2L(r), where: r e GLB(p,q), is the shortest

interior chain length between p and q.

· Any chain: |<p,…,r>|<r,…,q>*| where r e GLB(p,q), is a shortest chain between p and q.

 In the case where there is an external intersection, the Diamond property means this is always at:

p˅q, and the meet point: p^q exists and is the GLB(p,q). We can similarly show that the shortest

exterior chain is: |<p,…,r’>*<r’,…,q>|, where r’ e p˅q. From the previous coordinate geometry, this is

the same as the interior chain length: |<p,…,r><r,…,q>*|, where r e p^q.

Finally we can define the distance between two points.

· Definition. The distance: |p,q| is the length of the shortest chain connecting p and q.

· Hence in general: |p,q| = L(p)+L(q)-2L(r), where: r e GLB(p,q).

· E.g. if q is in the interior of p, then: p^q = q, and: |p,q| = L(p)+L(q)-2L(r) = L(p)-L(q).

We can now see this distance function defines a metric, representing distance between two points.

The key property is that the triangle inequality holds. i.e.

· Proposition. Triangle inequality. The distance: |p,q|+|q,r| ≥ |p,r|.

· Proof. If there are two shortest chains: <p,…,q> and: <q,…r> from p to q and q to r

respectively, there is a chain: <p,…,q,…r> from p to r. Then: |<p,…,q,…r>| = |p,q|+|q,r|. If:

<p,…,q,…r> is a shortest chain from p to r, then: |<p,…,q,…r>| = |p,r| = |p,q| +|q,r|. If there

is a shorter chain: <p,…r> then: |<p,…r>|<|<p,…,q,…r>|, so: |<p,r>|<|p,q| +|q,r|. In either

case the triangle inequality holds.

This is because given: <p,…,q> and: <q,…r>, there is always at least one path: <p,…,q,…r> (we can go

from p to q then q to r), with distance: |p,q|+|q,r|, giving the maximal bound for: |p,r|. Hence the

distance function between points has the triangle inequality property of a metric.

Note shortest paths do not need to pass through the GLB, but there is always at least one shortest

path connecting p and q through the GLB of p and q.

38

Figure 2.17. Shortest paths from p to q when there is a LUB. Every shortest path (e.g.

red, blue) from p to q traverses a total of Dx steps (right-down) and Dy steps (right-up),

taking steps in any order. This always reaches q in the minimal number of steps, viz.

Dx+Dy. The two blue paths are also shortest paths, and are the only paths to include

the GLB and LUB.

The number of shortest paths between p and q in the interior of a specific point in p˅q is the number

of ways to place Dx objects in Dx+Dy positions, divided by the permutations Dx! which is:

· Number of shortest paths = (Dx+Dy)!/Dx!Dy! = C(Dx,Dy).

Remember this metric (distance between p and q) only holds when there is a GLB. To reiterate:

· Proposition. If p,q has a LUB, it is at the join position: [p]˅[q], and the GLB is the meet point:

p^q (Diamond property).

· Then there is one shortest chain each through the LUB and the GLB respectively, but many

others as well.

The feature that there may be many shortest paths between two points is unlike 2-D or 3-D

Euclidean geometry.

We might now ask if this corresponds to a normed vector space, inner product space, or some other

special class of spaces. But we leave this analytic focus now, and move on to describe some other

features of the CAT2 structure directly. Next we consider the GLB intersection in the case where

there is no p^q point.

39

GLB and Intersection Matrix.

For any two points p and q in the same CP, the GLB of p,q may occur at any level, down to the CP in

the interior of the position intersection: INT([p]^[q]).

The GLB intersections have a relatively simple algebraic pattern. The interiors of p and q act exactly

like 2-D intersecting triangular sheets of ‘mesh’ that are joined along the atomic row, but separate at

certain points, up to the [p]^[q] position of p and q.

· Proposition. Points in the union: INT(p,q) = INT(p) U INT(q) at any position [x,y] across any

constant Level: L = x+y-A, i.e. where x + y = Constant, may or may not be in the intersection:

INT(p|q), independently of intersections at any other positions in the same Level.

· Before giving a proof, we add some useful functions. We can write classes at positions as

functions using the “.[x,y]” notation.

o INT(p,q).[x,y] = {r e INT(p,q) & [r] = [x,y]}

o INT(p|q).[x,y] = {r e INT(p|q) & [r] = [x,y]}

· We now construct a binary sequence: (a1,a2,...aL) where: al = 1 or 2, to represent the

counts of the union: INT(p,q).[i,L-i+1], across a level: x+y = L.

· Note the position-intersection is singular, the union is binary.

o The union: INT(p,q).[x,y] has two points if: INT(p|q).[x,y] is null.

o The union INT(p,q) has one point if INT(p|q).[x,y] has one point.

· Use sequences of {1,2} values to represent the counts of the interior position-unions:

INT(p,q).[x,y].

· For convenience, we may switch to using interior coordinates and interior Levels, taken from

the meet position: [p]^[q]. We may set this as [0,0] at Level 1, with coordinates [x,y]

increasing to the atomic level at Level A, where: x+y=A-1. We now take levels: L = x+y+1.

· This means there is now a sequence of L values: (a1,a2,...aL) in the row at each level L.

· We may call a matrix of such values, from L = 1 to L = A, the intersection profile of the points.

· The proposition is then that every possible sequence of two values, e.g.: (2,2,1,2,2,1,1,2) of

length L, e.g. 8, represents a possible intersection profile for points p, q, at level L.

o Note this holds as long as the level L is between their position intersection: [p]^[q]

and the atomic level, where the row is determined to be singular: (11,12,...1A).

o Note if INT(p) and INT(q) do not intersect in the CP exterior, they intersect at the CP,

and this is the only intersection and union point and is a trivial case.

· Proof. This is possible if we can construct a valid CAT2 graph at intermediate levels between

L = 1 and L = A that is consistent with the sequence: (a1,a2,...aL). We now show we can

40

construct at least one graph. This is the minimal graph, in which every row in the

intersection profile above L is filled with 2’s: (a1,a2,...aL-i) = (21,22,...2L-i), and every row below

L is filled with 1’s: (a1,a2,...aL+j) = (11,12,...1L+j).

· First construct part of the simple flat A-lattice, from the atomic row to the level before L,

with a single point in each position. This has count profile: (11,12,...1L+j), at each level from

L+1 to A.

· Then for each ai in: (a1,a2,...aL), at Level L, insert either one or two points, according as ai is

1 or 2, in the interior position: [i-1,L-i]. In each case there are unique points at the interior

lattice positions: [i-1,L-i+1] and: [i,L-i], providing left and right parents.

· Wherever there are two points in a position in L, label one “P” and the other “Q”. These are

non-intersecting points, and belong to separate lattices: P ≡ INT(p), Q ≡ INT(q).

· Wherever there is one point in a position in L, label it “P|Q”, (meaning “P and Q”). These are

intersection points. And belong to: P|Q ≡ INT(p|q).

· Then for each ai in: (a1,a2,...aL-1), at Level L-1, insert two points in each position: [i-1,L-i-1].

In each case, there may be either one or two points available for parents, in both the left

and right parent positions, in the previous row L.

o If there is a single point on both sides, they are “P|Q” points. Add two new points,

both parenting to the single “P|Q” parents, and arbitrarily label one point “P” and

the other “Q”.

o If there are double points on both sides, add one new point parenting to the “P”-“P”

pair and label this “P”, and add one new point parenting to the “Q-Q” pair and label

this “Q”.

o If there is a single and a double parent available, add new points “P” and “Q”, joining

with parents: “P” à (“P”,“P|Q”) and: “Q” à (“Q”,“P|Q”).

· Then for each ai in each subsequent Level: (a1,a2,...aL-1-j), from Level: K = L-2 to 1 (or: j = 1 to

L-2), every position has two points, a “P” and “Q” point. Insert two points in the interior

position: [i-1,K-i], and in each case use: “P”-“P” pairs and “Q”-“Q” pairs as parents. (The

parents are now determined: we can now longer join “P” and “Q” points.)

· When we get to Level 1, or interior position [0,0], there are two points, labelled “P” and “Q”.

· These belong to two sheets, “P” and “Q”, that are separate at the edge, but meet at

intermediate points, up to the atomic row.

We now observe that the formal pattern of the intersection graph is fully defined by the intersection

matrix.

41

· Proposition. The formal pattern of an interior intersection of two points in the same CP is

fully represented by the intersection matrix: {(a1,a2,...aL)}, for i = 1 to A.

· Any two interior union graphs: INT(p,q), and: INT(p’,q’), having the same intersection matrix:

{(a1,a2,...aL)} are isomorphic to each other. (Also vice-versa).

· Hence they represent the same C2 relation, by the Isomorphism Axiom (4).

o This assumes the interior union graphs: INT(p,q), and: INT(p’,q’) is taken up to the CP,

and requires: [p]=[q] and: [p’]=[q’]. (This is not really a restriction.)

· Proof. Using the assumptions, we will define a mapping: p: r à r’ that maps each point r at

position [r] in INT(p,q) to a point r’ at the same position [r] in INT(p’,q’), and preserves all join

relations, hence showing isomorphism.

· First choose: p(p) = p’, p(q) = q’. (It does not matter which order they are paired as they are

identical).

· Then take: INT(p) and INT(p’). Each has the same lattice of positions with one point in each

position, up to the CP. Hence a 1-1 correspondence.

· First map: INT(p) à INT(p’).

o For each i in INT(p), define: p(i) = j’ where j’ is in INT(p’) and: [i]=[j’].

· Do the same for q.

o For each i in INT(q), define: p(i) = j’ where j’ is in INT(q’) and: [i]=[j’].

· Note this second process will overwrite the first when i is in the intersection: INT(p|q), but

the mappings do not change.

· This maps all points of INT(p) uniquely onto all points of INT(q).

· The mapping p matches the coordinate structure, and hence the C2 join structure.

· If: ID1(p) = q, then: ID1(p’) = q’, because: ID1(p’) = ID1(p(p)) = p(ID1(p)).

· Hence there is an isomorphism.

This is quite useful to know. It means every interior intersection of pairs of points is fully described

by their Intersection matrix.

· Proposition. The number of possible distinct ordered rows that can occur at Level L in an

intersection matric is 2L.

Thus every logically possible ordered binary sequence is a distinct interior graph row. However there

are strong vertical relations on rows, as illustrated. In the following matrices, using interior levels, 2

means two interior parents for p and q at this position, 1 means one interior parent (intersection).

The atomic row is taken to be A = 10.

42

1. (2) ß 1 pattern: distinct parents at [p]^[q]

2. (2,2)

3. (2,2,2) determined

4. (2,2,2,2)

5. (2,2,2,2,2)

6. (2,2,2,2,2,2) ß 1 possible higher intersection pattern

7. (2,2,2,2,2,1,2) ß 2 possible higher intersections patterns

8. (2,2,1,2,2,1,1,2) ß Possible intersection pattern at L = 8

9. (2,2,1,1,2,1,1,1,2) ß 16 possible lower intersections patterns

10. (1,1,1,1,1,1,1,1,1,1) ß 1 pattern at L = A: single Atomic Parents.

Figure 2.18. A possible intersection pattern for the matrix represents a possible type of CAT2

interior relationship between p and q where [p]^[q] is at Level 10. Here we have fixed the row at

level 8 as an arbitrary sequence, and filled the other rows above and below it. Some points,

shown in red, have alternative possible values in rows above and below Level 8.

Note the general rule for labelling a possible matrix is simply:

· All values in the atomic row are 1.

· All cells with 1 must have 1’s in neighbouring cells below.

· All cells with 2 must have 2’s in all neighbouring cells above.

We pose this question:

· What is the number, N(A), of distinct intersection matrix patterns possible at given level A?

Note N(A) increases faster than 2A-1, as there are always at least that many possibilities for

the A-1 row, with then between 1 and up to 2A-2 subsequent possibilities in the A-2 row, etc.

It must be constrained to at most the exponential quadratic: N(A) << 2^(2A)2, but most likely

to just an exponential: N(A) < 22A.

We now consider another type of approach to classifying CAT2 relations.

Tree Symbols LTS and RTS.

While CAT2 relations are defined in detail by class of points, we want to develop a language for

describing relations in a more general structural way. E.g. we have seen we can summarise relations

as trees of CP’s, characterised by the number of atoms. But this does not capture much detail of

structures inside the CPs. We mention here that another kind of description of CAT2 relations may be

given, by what we call C2 Tree Symbols. The general idea is that this gives a more detailed description

of relations without a full point-like specification. In such a system, types of tree symbols act as a

43

language to characterise types of sub-relations. They can be also be considered as a kind of type

symbols.

Figure 2.19. Three descriptions at different levels of generality. The translations between

these descriptions is of key interest for describing common structures of relations.

Here we introduce the idea of tree symbols and some basic properties.

· Definition. Simple tree symbols for C2. We define a left and right tree symbol (LTS, RTS) for

each point, defined recursively as follows. Complete the following process for a C2 (or CAT4)

relation to determine the simple tree symbols.

· Step 0. The LTS and RTS for each point is first labelled “1”.

· For each point in turn (taken in some fixed order, e.g. the reversed ID order) we perform the

following three steps to generate a new LTS and RTS for each point. (The following process

executed over all points in turn represents one update loop, which is repeated until the

symbols are stable.)

o Step 1. If the point has no right children, leave the RTS as “1”. If it has no left children,

leave the LTS as “1”.

o Step 2 . If the point has right children, label the RTS with the string of all the RSTs of

the right children enclosed in brackets: (s1)(s2)… (sn). Ditto for the LTS.

o Step 3. For both symbols. Order the symbols: (si) alphabetically in each string: (s1)(s2)…

(sn), to get identical symbols adjacent. Wherever there are m adjacent symbols of the

same type: …(s1)1(s1)2…(s1)m…, replace them with: …m(s1)…. (Note this may be done in

stages, replacing …n(s),m(s)… à …,(n+m)(s),…, where s is a symbol type and m,n are

whole numbers).

o If the new LTS and RTS calculated for a point is the same as the previous one, it is

stable, and its symbols do not need to be recalculated in the next update loop.

C2 Point Relation

(full detail)

C2 Geometric

description

C2 Tree Symbol

description

44

· Repeat the steps 1-3 over the record set until the left and right tree symbols for all points are

stable.

Examples of replacements.

o E.g. (1)(1)(1) à 3(1).

o E.g. (2(1))(2(1))(2(1))(3(1))(3(1)) à 3(2(1))2(3(1)).

o Note you cannot add symbol types through brackets.

o E.g. …(n(s)),(m^(s))… cannot be replaced by: …,(n(s)+m(s)),….

o E.g. 2(1)3(1) is replaced by: 5(1). But: (2(1))(3(1)) is not replaced by: (5(1)).

o Note when a double bracket term occurs: …,((s))… in a string, it may be replaced with:

…,(1(s)),… e.g.: ((2(1))) à (1(2(1))). However it is not necessary to replace single terms:

(s) with 1(s).

The resulting symbols are called tree symbols, and symbolise the left and right trees, T1 and T2, of C2

exteriors. The symbols accumulate in the interiors, and the zero point symbols represent the complete

trees. Note these symbols completely determine the tree structures. But do the two tree structures

determine the full relation? This is related to finding a method of describing the graph of a C2 relation

sufficient to reconstruct it. If there was an efficient means of codifying the C2 relation in a shorter

symbolic string, and subsequently reconstructing the relation from this, this would be very useful.

Note the tree symbols are much shorter than the list of C2 database records of the 3-point-relations:

(ID, ID1, ID2).

Indeed if there was a method of determining the C2 graphs from tree symbols, this would amount to

a higher-level symbolic language for specifying C2 graphs. Alternatively, it may be that there is no

generally effective method to completely specify graphs, short of specifying all the point-relations.

It is quickly found that the simple tree symbols do not determine unique reconstructions of graphs.

E.g. take the simple relations:

These may be represented as the following CAT2 graphs (see canonical graph for simple relations,

Part 3).

R1 A B

A 1 1

B 1 1

R2 A B

a 2

b 2

45

Figure 2.20. Left. Relation R1. Right. Relation R2. The relations are distinct, but they have

identical tree symbols. The LTS for 0 is: (2(2(1)))(2(1))(1) and the RTS for 0 is: (1) (2(1)) (2(2(1)))

in both cases. Note that these are not ordered.

 These are the simple tree symbols.

 Relation R1 Relation R2

 Symbols LTS RTS LTS RTS

 ROWS: 2(2(1)) 1 2(2(1)) 1

 R: 2(1) 2(1) 2(1) 2(1)

 COLS: 1 2(2(1)) 1 2(2(1))

 Zero: (2(2(1))) (2(1)) (1) (2(2(1))) (2(1)) (1)

 (1) (2(1)) (2(2(1))) (1) (2(1)) (2(2(1)))

Given the tree symbols for the two relations are identical, we could reconstruct either relation. The

simple tree symbols provide limited information about how the two trees can be ‘spliced’ together to

reconstitute the relations. A second method gives tree symbols with more information. This is similar

to the previous method, but differs in Step 3:

· Step 3. For both symbols.

o Added Step: Order the LTS child symbols: (s1)(s2)… (sn), so that symbols for points with

the same right-hand-side parents are in adjacent groups, and insert brackets: {}

around each group, e.g. if there are two right parent groups: {(s1)(s2)…(si)}{(sj)…(sn)}.

Ditto for RTS, bracketing by left-hand-side parents.

o Then continue as before, ordering the symbols: (si) alphabetically within each set of

curly brackets: {(s1)(s2)… (sn)}, to get identical symbols adjacent. Wherever there are

m adjacent symbols of the same type: …(s1)1(s1)2…(s1)m…, replace them with: …m(s1)….

46

o Then order the bracketed symbols: {s}{s’}…{s’’} alphabetically to get identical symbols

adjacent. Wherever there are m adjacent symbols of the same type: {s}1{s}2…{s}m,

replace them with: m{s1}.

This involves a triple ordering of the child symbols: first by their right (left) groups, then within {}

brackets by symbol types, then between bracketed terms, by symbol types within the brackets.

These symbols give more information about the graph construction. E.g.

 Symbols LTS RTS LTS RTS

 ROWS: {2(2{(1)})} 1 {2({2(1)})} 1

 R: {2(1)} {2(1)} {2(1)} {2(1)}

 COLS: 1 {2(2{(1)})} 1 {2({2(1)})}

 Zero: {({2(2{(1)})}) ({2(1)}) (1)} {({2({2(1)})}) ({2(1)}) (1)}

 {({2(2{(1)})}) ({2(1)}) (1)} {({2({2(1)})}) ({2(1)}) (1)}

Notice now the left hand relation has: {2(2{(1)})} as LTS for the ROWS point, while the right hand

relation has instead: {2({2(1)})}. These symbols now fully determine these two relations.

However these symbols are still not deterministic. The smallest relation they fail to distinguish appears

to be 3 X 4, e.g.

Figure 2.21. Two distinct (non-isomorphic) relations that are not distinguished by the

enhanced CAT2 tree symbols.

We can indicate the form for these CAT2 tree symbols concisely like:

· Definition. CAT2 Tree Symbols.

· 1. “1” is a TS.

· 2. If a1,a2,…,am and b1,b2,…,bn are whole number symbols and s1,1 … , si,j ,…, sm,n are TS’s, then

aj{bi(sj,i)} is a TS,

R1 A B C D

A 1 1

B 1 1

C 1 1

R2 A B C D

a 1 1

b 1 1

c 1 1

47

Where we define the iterated syntactic operator: aj{bi(sj,i)} ≡ &j=1 to M [aj{&i=1 to N [bi(sj,i)]}] by

primitive syntactic substitution operators, where the symbol (not TS): f(j) = &i=1 to N[bi(sj,i)] is the

repeated conjunction: b1&”(“&sj,i&“)” & … &bn&”(“&sj,n&“)”, and similarly: &j=1 to M [aj{f(j)}] is the

repeated conjunction: a1&”{“&f1&“}” & … &am&”{“&fm&“}”.

This lets us generate a recursive set of symbols, like:

 L1 L2 L3 L4

 1 1{1(1)} 1{1(1{1(1)})} 1{1(1{1(1{1(1)})})}

 1{1(1)1(1)1(1)} 1{1(1)1(1)1(1)} = 2{3(1)}

 2{3(1)} 7{8(2{3(1)})} 11{12(7{8(2{3(1)})})}

 4{5(1)} 9{10(2{3(1)})} etc

 2{3(1)}4{5(1)} 2{3(1)}4{5(1)}{6(1)}7{8(2{3(1)})}

Figure 2.22. Illustration of tree symbols, in levels. Tips have symbol “1”. Every pair of “{}” of curly

brackets represents a parent point, in the opposite tree. Every pair of “()” brackets represents

a point in the exterior.

This defines the class of all symbols including denormalized symbols.

E.g. these symbols reduce to each other: the most compact is called fully normalised.

 1{1(1)1(1)1(1)}1{1(1)1(1)1(1)} = 1{3(1)}1{3(1)} = 2{3(1)}

We can define:

· Fully normalised symbols are ordered, with all sequences of terms of the form: a(f1) within the

curly brackets: {…a(f1)b(f2)…} ordered alphabetically so: f1<f2, and conversely, with all

sequences of terms of the form: a{f1} within the round brackets: (…a{f1}b{f2}…) ordered

alphabetically so: f1<f2,:

· Fully normalised symbols have no repetitions of symbol types f in sequences like:

{…a(f)…b(f)…} or like: (…a{f}…b{f}…). These reduce to: {…c(f)…} and: (…c{f}…) respectively,

where c is the symbol for: a+b.

· Fully de-normalised symbols contain only brackets and “1”’s.

· Fully de-normalised symbols are generated by taking all terms like: …a(f)… with a > 1, and

replacing with: …1(f)11(f)a…, and similarly replacing all: …b{f1}… with: …1(f)11(f)b.

· Proposition. There is a unique fully normalised TS for every CAT2 TS.

· Proposition. There is a unique fully de-normalised TS for every CAT2 TS.

· Proofs. Exercise.

48

Note the enhanced symbols are still only tree symbols, i.e. they correspond uniquely to (pairs of) trees.

This is seen by simply replacing curly brackets with round brackets, which gives back original simple

tree symbols. For this reason it appears such symbols cannot uniquely correspond to C2 relations,

otherwise we would have a general isomorphic mapping between trees and C2s, which is not possible.

· This requires proof.

Perturbations of the network below result in alterations of the collected TS above. But the symbols

may change their numbers.

· Every point we add is (initially) a tip.

· If we add a point in a new position, it will perturb the TS.

· If we add a point in a position with tips, it will perturb numbers in the TS.

E.g. adding another point into: 1{n(1)} gives: 1{(n+1)(1)}. But if there were m of these: {(m{n(1)})} then

introducing an extra point changes it to: {((m-1){n(1)})({(n+1)(1)})}. This propagates all the way to the

CP. When a new point is inserted within a symbol effects in the resulting string . We can take the

interior of the point, and de-normalise the TS representations w.r.t. points in this interior.

By contrast, the relational symbol, RS, may be put as a string like this:

 “{(0,0,0),(1,j1,k1),… (n,jn,kn),… (iN,jN,kN)}”

Where: j1,k1 and n, jn, kn , are replaced by number-symbols, n is unique, and j, k may be numerals up

to n. This string takes about: 3N long-integer symbols. This means it is ordered by the first variable.

If we store this in adjacent records, then we can quickly find subsets of records queried by values in

the (i,j,k) positions. Time to find i is constant with N. (Skip 3i). Time to find j’s can be made like Log(N).

So this is scalable.

A further enhancement to the tree symbol is to impose an order condition. It is possible to require

ordering of symbols for CP atoms matching in some respects between the LTS and RTS. They are then

no longer purely tree symbols. But this may be used to match the two symbols more closely when it

comes to recombine them.

There is an analogy here with the double-stranded DNA, and the splitting and recombination process

of the chromosome. Two half-strands of DNA are combined, and they reproduce a cell, without being

fully deterministic as to the outcome, and with certain potential mutations. Similarly, the LTS and RTS

from one or separate CAT2 tables may be recombined, with indeterministic results.

49

Conditions for ambiguity of relations relative to the tree symbols are interesting. With the simple tree

symbols, any two relations with the same column and row sums have identical tree symbols. With the

enhanced tree symbols, only two relations with the same column and row sums and the same numbers

have identical symbols. But there can be different distributions of the same numbers in the table cells

corresponding to distinct, i.e. non-isomorphic, C2 relations, as in the example above. There are

relations which do have unique tree symbols, and these can be regarded as ‘primes’. This leads to

questions about the ability to codify C2 relations in such strings. Also, this leads to methods of

normalising relations so they will not be ambiguous. This is an extensive topic, and we now move on.

Combinatoric problems.

Before going on with the interpretation, we briefly mention problems of combinatorics or group

theory, counting types of C2 or CAT2 relations, etc. Basic questions are such as:

· How many possible C2 relations are there with N points? Ditto CA2, CAT2, FCAT2.

· How many possible C2 atomic sequences are there of length A from D atoms?

· How many CAT2 or FCAT2 relations are there with A atoms and N points?

· How many points are there in an interior lattice with A atoms? (Answer: A(A-1)/2)

Combinatoric problems can be difficult, and we do not need go into these here, but it is useful to

have an idea of how the cardinalities of the classes are related, especially for some questions of

scalability. E.g. for a free directed bi-graph, where any point (vertex) can have a single join type

(edge) to any other, the number of possible graphs where points are distinct is: (2N)N. (With non-

distinct points we can divide by N!) This is a very explosive function. If there is just one join for every

point it is: NN, which is much smaller, but still explosive. This is why the space of free graphs is too

large to be effective to work with, and imposing structure is essential. The number of C2’s is of much

smaller order, and CA2, CAT2, FCAT2 are smaller again.

Using C as a constant and N as integer variable, we may rank recursive functions types, e.g. like:

· C (constant) < log(N) < N < NC (polynomial) < cN (exponential) < N! (factorial) < NCN < (cN)N <

(…(N^N1)^N2)…)^Nc, etc. (Goes on forever).

50

Each function type eventually overtakes the previous one, for fixed constant C, as N increases.4 But

just to orient ourselves to the cardinalities of the C2 classes:

· Class of all unary relations with N points à NN

· (We think) Class of CAT2 relations with N points à N! (Needs proof.)

The first represents the ‘logical space’ of which C2 is a subspace. The FCAT lattices may be similarly

compared to atomic Boolean lattices:

· Points in atomic Boolean lattice à 2A

· Points in FCAT2 lattice à A2

Thus the C2 and FCAT2 structures we use have much lower cardinalities then their logical spaces. For

a couple of examples of combinatorics that can be solved, with D≤A:

· Proposition. The number of atomic sequences of length A, where 1 ≤ A, that can be chosen

from the atomic set D, where 1 ≤ D ≤ A is: Z(A,D) = D(D-1) (A-1) à DA.

· Proof. The first point in the sequence A is chosen from D distinct points. Subsequent points

are chosen from (D-1) points, as there are no repetitions of the preceding point. Hence the

number of distinct sequences is: D(D-1)…(D-1) = D(D-1) (A-1)

· Proposition. The number of atomic sequences of length A with exactly D distinct points,

where 1 ≤ D ≤ A is: Z*(A,D) = Z(A,D) – Z(A,D-1) = D(D-1)(A-1) – (D-1)(D-2)(A-1)

· Note Z*(A,D)/Z(A,D) = 1- Z(A,D-1)/Z(A,D) = 1–(D-2) (A-1)/D(D-1) (A-2) à 1-1/eD(D-1)

There are interesting combinatoric problems, but our main concern here will be just with a few

questions related to database scalability.

Scalability and Interior Index.

We now pause to illustrate the CAT2 relation in the form of a database table. The remarkable feature

(when extended to CAT4) is that a single table structure can represent all types of information with

one method, which allows a great simplification of information structures. The essential practical

question is whether this is scalable. Here we deal with an important question, which is the scalability

of searches or queries of the CAT2 structure, in terms of forming sub-classes of specific information

4 There is a nondenumerable infinity of increasingly faster functions, including functions faster than any

functions it is possible to define recursively.

51

within larger relations. Although this is put in terms of a database, the interior index illustrates the

essential theoretical CAT2 property required.

The essential C2 relation has just three columns, here called ID, ID1, ID2. This is illustrated below for

an example of small relation, with three atoms under the Zero point (which is the only CP in this

relation). All other variables, such as coordinates and levels, are determined by the C2 relation

determined by these first three columns alone. In the table representation we have added some extra

columns, X, Y, and L to record the coordinates and Levels of points. As these are generally stable, they

can be calculated once and recorded semi-permanently for convenient look-up purposes. This is an

example of a denormalized table.

Table 2.1. Example of a small C2 relation in a denormalized table.

To populate the columns to the right of ID2, we can make a simple recursive function, working down

points level by level, since the child properties are determined by parents. In a relational database, we

can do this for the entire record set. The query time to join the CAT2 table with itself scales to: t ~

log(N), with N the record count, so this operation is scalable. In practice, we would update these

Primary

Key

Left

Parent

Right

Parent

Collect

Point Atoms X-coord Y-coord Level

ID ID1 ID2 CP A X Y L

0 0 0 0 3 0 3 0

1 0 0 0 3 1 2 1

2 0 0 0 3 2 1 1

3 0 0 0 3 3 0 1

4 1 2 0 3 2 3 2

5 1 2 0 3 2 3 2

6 1 2 0 3 2 3 2

7 2 3 0 3 3 2 2

8 2 3 0 3 3 2 2

9 2 3 0 3 3 2 2

10 2 3 0 3 3 2 2

11 4 7 0 3 3 3 3

12 4 8 0 3 3 3 3

13 4 9 0 3 3 3 3

14 4 10 0 3 3 3 3

15 5 7 0 3 3 3 3

16 5 8 0 3 3 3 3

17 5 9 0 3 3 3 3

18 5 10 0 3 3 3 3

19 6 7 0 3 3 3 3

20 6 8 0 3 3 3 3

21 6 9 0 3 3 3 3

22 6 10 0 3 3 3 3

52

calculated fields each time we add a point. Or we can recalculate for different CP exteriors separately,

as the records naturally partition into these. So maintain this index is efficient and very scalable. It is

necessary to have such a method, because it is not efficient to keep recalculating the fields from

scratch every time we wish to perform an operation employing them.

To run queries across the graph we need to generate the interiors and exteriors of points and

determine their intersections. This key operation would be unscaleable if we did it with primitive SQL

table joins every time we ran a query. However the C2 interior coordinates along with the Diamond

property allows an efficient and scalable method. We can make an interior index table, as below.

Table 2.2. Interior coordinate index.

This has the point IDs as primary key column, so it joins 1-1 with the primary table of points, above.

(This means we can just extend the columns of the primary table, although there may be practical

reasons to split tables). Hence it is scalable w.r.t record volume similar to the primary table, having

the same record count, and depending on how many columns we want to include, of similar physical

size.

Key L = 1 L = 2 L = 3 L = 4

ID [0,1] [1,1] [0,2] [1,1] [2,0] [0,3] [1,2] [2,1] [3,0] [0,4] [1,3] [2,2] [3,1] [4,0]

0 0 0

1 0 0

2 0 0

3 0 0

4 1 2 0 0 0

5 1 2 0 0 0

6 1 2 0 0 0

7 2 3 0 0 0

8 2 3 0 0 0

9 2 3 0 0 0

10 2 3 0 0 0

11 4 7 1 2 3 0 0 0 0

12 4 8 1 2 3 0 0 0 0

13 4 9 1 2 3 0 0 0 0

14 4 10 1 2 3 0 0 0 0

15 5 7 1 2 3 0 0 0 0

16 5 8 1 2 3 0 0 0 0

17 5 9 1 2 3 0 0 0 0

18 5 10 1 2 3 0 0 0 0

19 6 7 1 2 3 0 0 0 0

20 6 8 1 2 3 0 0 0 0

21 6 9 1 2 3 0 0 0 0

22 6 10 1 2 3 0 0 0 0

53

The columns represent interior coordinates of the points, and [0,1] and [1,0] are the immediate

parents (ID1 and ID2). Here we show interior points up to 4 levels. As the graph in this case only goes

three levels deep, the fourth level coordinates are null. There is of course an unlimited number of

coordinates possible, depending on how many levels we want to introduce. But we can only extend

the index across in practice to represent a certain finite number of levels. The number of columns goes

as: L(L-1)/2 à L2/2. E.g. to include 10 levels takes 45 columns. However that is small compared to a

free graph, e.g. a binary tree, where the interior positions increase as: 2L, requiring 1,024 columns for

10 levels. E.g. in CAT2, we could extend the index to 15 Levels, with 15*14/2 = 105 columns, which is

still very modest – compared with 215 ≈ 32,000 columns for a binary graph.

Let us suppose for practical purposes we adopt a fixed-width index table representing 10 Levels. In

fact for the main proposed information representation, we should rarely need more than 10 Levels.

However if we do require interiors greater than 10 Levels for some reason, we can extend to 20 Levels

by joining the index to itself, which can be done quite efficiently, so the index method is quite scalable

in practise.

Also, once we get to the CP level, (0 above) there are no more parents, and values are null. We include

the 0 (CP) points in this table, but the final level (the 0’s) can be left null, as they are determined by

the Level of the point and its CP. Generally, large numbers of coordinate records may be null, and

again we can efficiently populate this index and keep it up to date as we add records.

This then gives us an efficient method to generate interior sets, compared to making multiple recursive

SQL joins on the base (ID, ID1, ID2) table to determine interiors. In fact it reduces processing time for

functions like: p^q or p˅q and INT(P), EXT(p), INTEXT(p) to similar scale to: t ~ log(N). Without such a

method, repeated SQL joins become exponentially time consuming.

This method is especially effective because of the Diamond property. The key operation is to find the

exterior intersection of two points p, q, under the same CP, as this is the key record set shared by both

points. To do this, we first look up the x,y coordinates for the points in the previous table (t ~ log(N)),

obtain the position: [p]^[q] = [x,y] and calculate the vector: [p]^[q] – [p] (t ~ constant). This determines

the column in the index row for p that has the value p^q, if it exists. We do the same for q, and compare

these values. If they have the same value, this is p^q. If not, there is no intersection of exteriors. Hence

determining p^q is fast and scalable. This extends to multiple points: p^q^r …

Without the FCAT2 structure and the Diamond property, e.g. for a general graph allowing joins

between any two points, this kind of operation becomes very unscalable using simple SQL joins. Graph

54

DBs use special techniques to try to make this operation scalable, essentially the methods of indexing

chains connecting points. Our method is faster and simpler.

We then similarly calculate the position [p]˅[q], and the vectors from this to [p] and to [q] (t ~ c). We

then find records in the index where this coordinate column equals p, and similarly for q, which are

two more simple queries (t ~ log(N)). We then find common records in these two sets (inner join on

two small subsets of N, t~c). Thus we need only about 5 simple SQL joins, two to find the rows p and

q, two to determine the exterior records for p and q, and another to match these two sets. This gives

us the class: p˅q.

For the full exterior, we then query for the values p˅q in the interior coordinates of points having the

same CP, from p˅q to the maximal level: L[x,y] = A. This may take the union of several queries, but by

filtering on the CP first, this is also very scalable (t ~ log(N)). So even without employing other

techniques of partitioning sets, this process is very efficient, with overall: (t ~ log(N)).

E.g. if it takes 0.001 seconds for an operation with: N = 1,000, it should take only about 0.003 secs for

N = 1,000,000, or 0.006 seconds for N = 1,000,000,000. If time scaled linearly with the record set

instead: t ~ N, it would take about 1 sec for N=1,000,000 and about 100 secs for N=1,000,000,000. This

would be very unscalable.

This addresses a major problem of scalability with graph database representations. The fundamental

point is that we need to represent chains of points somehow, in a way that is efficient to search for

chains from one point to another. While chains are implicitly represented in the C2 table (or in graph

edge tables), it is not efficient or scalable to make primitive SQL joins to find them – query times will

increase unscalably with the table size. As a general principle, we want points represented in

contiguous records, or rows. This means points are separated in the primitive (binary) data strings by

determinate distances. This is how relational tables work: we can find a specific row quite efficiently,

identified by the row ID, and then we can find the value in a particular column of that row efficiently,

by moving a determinate number of characters across the row. This is what the asymmetric row-

column structure of relational database tables provides.

But in general graphs and other network structures, where the class of chains is quite unstructured,

there is a vast number of possible chains, making it difficult to represent a table of chains that provides

contiguous records. Current graph databases require special methods beyond relational database for

this. But in CAT2, there are only a limited number of chains upwards from a point into the interior –

the number of interior chains scales by: L(L-1)/2 instead of 2L. So we can effectively represent them in

55

the index table, which has only one row per point. There are still many chains downwards from a point

into its exterior, but because of the structure typified by the Diamond property, it is easy to determine

exterior chains within the resources of a relational DB. And the method is quite universal, and easy to

program with fully general functions. We continue this in Part 3.

Chains of CPs and Addresses.

Note the full interior chains go above the interior of the CP lattices. But since interior points collect

under a single CP, the interior from the CP up is the same for all exterior points. Chains of CPs form

trees, which are much simpler to deal with than multiple interior chains. We could make a second

index table for this, with only interior chains of CPs included, which is a smaller set of points. Again this

is represented to only a finite number of levels. But this is simpler than the interior index, and allows

a complete calculation of interior and exterior sets, or complete chains.

In this connection we also distinguish these chains from the concept of an address for a point. An

address provides a way to navigate from the top (zero point) to determine a point uniquely. Note that

our coordinates do not provide a way of fully specifying what we may call addresses for points in the

graph. We use integers as names to specify point identities, and in a database table these are primary

and secondary keys (IDs). This is a fundamental form of reference to points, but does not represent

addresses, because point IDs do not represent any relationship between two points.

The problem is to have a method of determining points or classes relative to selected points, e.g. to

efficiently determine points at a level or position below another point. Because the exterior is

branching, the coordinate positions we have seen determine classes of points. We could add an

index to specify specific points in the position-classes. E.g. there may be M points at position [x,y]

relative to a CP z. If we indexed this class with an integer m, we might make ‘coordinate addresses’

like: [x,y;m]. This would pick out the mth point in the position [x,y]. However this does not appear as

a feasible method. The graph is dynamic, and whenever it expands or contracts, such indexes would

change, and it would be a lot of work to maintain them. Most important, such point addresses do

not represent relationships, e.g. a point i at [2,1;3] (the third point at position [2,1]) and a point j at

[3,1;6] may have a parent-right-child relationship (they are in the right relative positions for this), but

there is no way to tell from this index. Instead, we represent chains through the topology.

56

References.

Note references here include some references for later Parts.

Bridges, Jane. 1977. Model Theory. Clarendon Press.

Carnap, Rudolf, 1947, Meaning and Necessity. University of Chicago Press.

Chang, C.C. and H.J. Keisler. 1973. Model Theory. North-Holland.

Church, Alonzo. 1956. An Introduction to Mathematical Logic I. Princeton.

Codd, Edgar Frank (June 1970). "A Relational Model of Data for Large Shared Data

Banks". Communications of the ACM. 13 (6): 377–

387. doi:10.1145/362384.362685. S2CID 207549016.

Date, Chris. 2004. (8th Ed.) An Introduction to Database Systems. ISBN 0-321-19784-4

Durbin, John R., 1992. Modern Algebra: An Introduction. Wiley and Sons.

Duží, Marie. “Intensional Logic and the Irreducible Contrast between De dicto and De re”,

http://www.cs.vsb.cz/Duží/

Duží, M., Jespersen, B., Materna, P. 2010. Procedural Semantics for Hyperintensional Logic:

Foundations and Applications of Transparent Intensional Logic. Springer Verlag.

Frege, Gottlob, 1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des

reinen Denkens. Halle a. S.: Louis Nebert. Translation: Concept Script, a formal language of

pure thought modelled upon that of arithmetic, by S. Bauer-Mengelberg in Jean Van

Heijenoort, ed., 1967. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931.

Harvard University Press.

Frege, Gottlob, 1884. Die Grundlagen der Arithmetik: Eine logisch-mathematische Untersuchung

über den Begriff der Zahl. Breslau: W. Koebner. Translation: J. L. Austin, 1974. The

Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, 2nd

ed. Blackwell

Frege, Gottlob, 1892. “On Concept and Object.” (First published in the Vierteljahrsschrift fir

wissenschaftliche Philosophie, 16 (1892).

Holster, Andrew T. 2008-2011. “System and method for representing, organizing, storing and

retrieving information.” US. Patent Number: 7,979,449. July 12, 2011.

Materna, P. 2004. Conceptual Systems. Berlin: Logos.

Materna, Pavel. 1998. Concepts and Objects. Acta Philosophica Fenica, vol. 63, 1998.

Montague, R. 1970. "Universal Grammar". Theoria 36, pp. 373-398.

Montague, Richard. 1973. "The Proper Treatment of Quantification in Ordinary English". Approaches

57

to Natural Language: Proceedings of the 1970 Stanford Workshop on Grammar and

Semantics. D.Reidel.

Robinson, Ian, Webber, Jim and Eifrem, Emil. 2015. Graph Databases (2nd Edition). NEO4J.

Russell, Bertrand. 1905. "On Denoting", Mind, Vol. 14. ISSN 0026-4423. Basil Blackwell.

Tichý, Pavel. 1971. “An Approach to Intensional analysis”, Nous 5, pp. 273-297.

Tichý, P. 1988. The Foundations of Frege’s Logic. Walter de Gruyter.

Tichý, P. 2004. Pavel Tichý’s Collected Papers in Logic and Philosophy. Svoboda, V., Jespersen, B.,

Cheyne, C. (eds.), Dunedin: University of Otago Publisher, Prague: Filosofia.

TIL (Transparent Intensional Logic) Website: http://www.phil.muni.cz/fil/logika/til/index.html

van Benthem, Johan and Alice ter Meulen. 1997. Handbook of Logic and Language. M.I.T. Press.

Wittgenstein, Ludwig. Philosophical Investigations , 1953, G.E.M. Anscombe and R. Rhees (eds.),

G.E.M. Anscombe (trans.), Oxford: Blackwell.

Wittgenstein, Ludwig. Tractatus Logico-Philosophicus (TLP), 1922, C. K. Ogden (trans.), London:

Routledge & Kegan Paul. Originally published as “Logisch-Philosophische Abhandlung”,

in Annalen der Naturphilosophische, XIV (3/4), 1921.

Wikipedia pages.

