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                       ABSTRACT.     We introduce and suggest to study famous 

                           Zeta Function, extending it to a quaternionic variable and 
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1.  Introduction   

 

     A well-known famous  Zeta Function was first introduced and studied for 

a real variable. Then, it was extended to a complex variable.  

    We will recall its history and details and suggest to extend it to quaternion 

and other hypercomplex variables. 

 

2.  Real variable   

 

     Zeta Function that was first introduced and studied by Leonhard Euler  in 

1734  for solution of  Basel problem, first posed by  Pietro Mengoli  in 1650,  

which asks for the precise sum of the infinite series: 

 

      ζ(2) = (1)
-2

 + (2)
-2

 + (3)
-2

 + ...  . 

 

      Euler found the exact sum to be  π
2
/6  and announced his discovery in 17 

35 and produced a truly rigorous proof in  1741.    Complex analysis was not  

available at the time. In 1979 Roger Apéry proved irrationality of  ζ(3). 

 

        For any positive even integer 2n: 
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       ζ(2n)  =  (–1)
n+1

 (2π)
2n 

B2n(2n!)
-1

/2,  

 

where B2n  is 2nth Bernoulli number. 

 

        For odd positive integers, no such simple expression is known. 

 

        For non positive integers one has: 

 

        ζ(–n)  =  (–1)
n
 (n+1)

-1
 Bn+1  

 

 for n ≥ 0 (using the convention that B1 = 1/2). 

 

        For the negative even integers ζ is vanished because Bn = 0 for all odd  

n ≠ 1(trivial zeros of zeta function). 

 

       Another specific values of Zeta function: 

 

       ζ(–1)  =  –1/12, ζ(0)  =  –1/2,  ζ(1/2)  ≅  –1.4603545088095868129, 

 

       ζ(1)  =  ∞, ζ(3/2)  ≅ 2.61237534868548834335, 

 

       ζ(3) ≅ 1.20205690315959428540,  ζ(4)  =  π
4
/90,   ζ(∞)  =  1.      

       

3.  Complex variable 

 

        Later, Chebyshev extended the Euler definition to Re(s) > 1,  s = σ + it,   

i
2
   =   –1, σ  =  Re(s), t  = Im(s), s ∈ C, σ ∈ R, t ∈ R. 

 

        In 1859, Bernhard Riemann extended the Euler definition of Zeta funct-   

tion to a complex variable s = σ + it,   i
2
   =   –1: 

 

        ζ(s) = (1)
-s
 + (2)

-s
  + ... + (n)

-s
 + ...   . 

 

        The Riemann   Zeta function is defined  as the   analytic continuation of 

the function defined for σ > 1 by the sum of the preceding series. 
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        The Riemann Zeta function is a meromorphic function on the whole co- 

mplex s-plane, which is holomorphic everywhere except for a simple pole at 

s = 1 with residue 1.  

 

         The Riemann Zeta function has trivial zeros at   -2,  -4, ... .  It is known 

that any non-trivial zero lies in the open strip { s ∈ C, 0 < Re(s) < 1 }, which 

is called the critical strip.   The famous  Riemann hypothesis asserts that  any 

non-trivial zero s has Re(s) = 1/2. The set { s ∈ C, Re(s) = 1/2 } is called the 

critical line.   In 1914 Hardy proved that  ζ(1/2 + it)  has infinitely many real 

zeros. There are no zeros of the Zeta function on the Re(s) = 1.  There are in- 

finitely many zeros on the critical line (see [4, 8, 12, 14, 16]). 

 

         The Generalized  Riemann hypothesis (GRH) for Drichlet L-functions 

was probably first formulated by Adolph Piltz in 1884. 

 

         The Extended Riemann hypothesis(ERH) asserts that for every number 

field K with ring of integers OK and every complex number s with  ζK(s) = 0, 

wherein  

         ζK(s) =  Σ(Na)
-s
  , a is an ideal of OK other than the zero ideal, Na is the 

norm of ideal of OK:    if { s ∈ C, 0 < Re(s) < 1 }, then it is in fact 1/2. 

 

         Zeta function occurs in statistic, quantum field theory and is also useful 

for analysis of dynamical systems, and, of course, in Number Theory. 

 

         ZetaGrid was at one time the largest distributed computing project, de- 

signed to explore the non-trivial roots of the Riemann Zeta Function, check- 

ing over one billion roots a day. The project ended in 2005. 

 

         There are a number of generalizations of Zeta function:    Hurwitz Zeta 

function, Drichlet L-functions, Dedekind Zeta function, Polylogarithm,  Ler-  

ch Zeta function,  Multiple Zeta function,  Drichlet Eta function,  Arithmetic 

Zeta function, Prime Zeta function, Xi function (see [2, 5, 8, 12, 14, 16]). 

 

         Let us introduce our contribution:  the following two Zeta-like functio- 

ns: 
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        ϕ(s) := (1)
-s
 + (2)

-2s
  + ... + (n)

-ns
 + ...  , 

 

        ψ(s) :=  (1)
-r
 + (2)

-r
  + ... + (n)

-r
 + ... , r = s

n
 . 

 

        Note that  ϕ(0) = ψ(0) = ζ(0) =  –1/2, ϕ(1) = ψ(1) = ζ(1) = ∞. 

 

        Similar to Zeta function, the aforementioned generalizations could be 

introduced for the functions ϕ(s) and ψ(s). 

 

4.   Next step: Quaternionic Zeta function 

       

       Quaternions are generally represented in the form:  q =  a + bi + cj + dk, 

where, a ∈ R, b ∈ R, c ∈ R, d ∈ R, and i, j and k are the fundamental quate- 

rnion units and are  a number system that extends the  complex numbers( see  

[1,6,11]). Quaternions find uses in both pure and applied mathematics: in th- 

ree-dimensional computer graphics, computer vision, robotics, control  theo- 

ry, signal processing, attitude control, physics, bioinformatics, molecular dy-  

namics, computer simulations, orbital mechanics, crystallographic texture a-  

nalysis.  In quantum mechanics, the spin of an electron and other matter   pa-  

rticles can be described using quaternions.  In 1999 is was shown that  Einst- 

ein equations of general relativity could be formulated using quaternions. 

       The set of all quaternions H is a normed algebra, where the norm is mu- 

ltiplicative:   || pq || = || p || || q ||, p ∈ H, q ∈ H, || q ||
2
  =  a

2
 + b

2 
+ c

2
 + d

2
.  

       This norm makes it possible to define the distance d(p, q) = ||p – q|| whi- 

ch makes H into a metric space.            

         As we see,  there were no suggestions yet to extend Zeta function defin- 

ition to a quaternionic or other hypercomplex variables. 
 

         Let us introduce Quaternionic Zeta function:  
 

        ζ(q) := (1)
-q

 + (2)
-q

  + ... + (n)
-q

 + ...   ,  

 

        q :=  a + bi + cj + dk, where, a ∈ R, b ∈ R, c ∈ R, d ∈ R, q ∈ H. 

 

        Respectively, ζK(q) =  Σ(Na)
-q

 , q ∈ H. 

 

        Note that q
p
 = exp( ln(q) p),  p, q ∈ H. 
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          Correspondingly, 
 

          ϕ(q) := (1)
-q

 + (2)
-2q

  + ... + (n)
-nq

 + ...  , 

 

        ψ(q) :=  (1)
-r
 + (2)

-r
  + ... + (n)

-r
 + ... , r = q

n
 , q ∈ H. 

 

        It would be important and interesting to explore and calculate, e.g.: 

 

        ζ(0 + 0i + 0j + 1k), ζ(0 + 0i + 1j + 0k), ζ(0 + 0i + 1j + 1k), 

        ϕ(0 + 0i + 0j + 1k), ϕ(0 + 0i + 1j + 0k), ϕ(0 + 0i + 1j + 1k), 

        ψ (0 + 0i + 0j +1k), ψ (0 + 0i + 1j + 0k), ψ (0 + 0i + 1j + 1k),  

 

as well as to explore the corresponding critical "zero sets" and Riemann-like 

hypothesis of the above introduced Quaternionic Zeta Functions.                        

          Similarly we can define quaternionic extensions for   Hurwitz Zeta fun- 

ction, Drichlet L-functions,   Dedekind Zeta function,   Polylogarithm, Lerch 

Zeta function,   Multiple Zeta function,  Drichlet Eta function,      Arithmetic 

Zeta function, Prime Zeta function, Riemann  Xi function, as well as for  Ga- 

mma function,  Laplace, Mellin and other transforms. The same can be  done 

for octonions  and other hypercomplex systems.  

        Correspondingly, we would like  to inspire and motivate   researchers to  

investigate properties of Quaternionic Zeta function and other aforemention- 

ed new-defined functions and transforms.   In particular, it may help to solve 

Riemann hypothesis. 

 

5.  Conclusions 

 

        This is a pioneering work extending definition of   Euler-Riemann  Zeta 

function,  its generalizations as well as  some other functions and  transforms                                     

to quaternionic and other hypercomplex variables. 

        It would  stimulate researchers to develop the corresponding new meth- 

ods and algorithms.  
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