
Python String Slicing | K. S. Ooi

1 | P a g e

Python String Slicing

K. S. Ooi

Foundation in Science

Faculty of Health and Life Sciences

INTI International University

Persiaran Perdana BBN, Putra Nilai,

71800 Nilai, Negeri Sembilan, Malaysia

E-mail: kuansan.ooi@newinti.edu.my

Abstract
Python slice syntax is nothing new. We find such syntax in other programming languages.

However, string slicing in Python is usually covered briefly in standard references, Python

textbooks as well as favorite websites. In this article, the author attempts to explore every nook

and cranny of string slicing in Python. Besides proving a string slicing theorem, the author

explores the limitation of string slicing expressed in everyday languages, the default values of

all three arguments of the slice, the minimal string slice statement, the meaning of negative

step, the influence of step on other two arguments, and two suggestions to correctly predict the

substring of a slice.

Keywords: Python 3, string slicing, slice indices, string slicing theorem.

Date: Dec 25, 2020

1. Introduction

All general-purpose programming languages deal with strings. Modern languages such as

Python have tremendous ability to identify text patterns in strings through their implementation

of regular expression engine. According to the history, Perl is perhaps the first language that

pushes the use of regular expressions to the mainstream. Python support this Perl flavor [1].

The first chapter of Hellman’s recent book [2] illustrates the fact string manipulation is

dominated by regular expressions. However, this article deals with another string manipulation

usually overlooked by Python programmers, that is string splicing. One of the favorite

textbooks on Python programming [3] has about one page on string slice. One of the favorite

Python learning websites, where beginners turn to for learning Python, W3Schools [4], has less

than half a page on slicing string using Python. String splicing, in my opinion, is the

prerequisite of regular expressions. I have recently written about string splicing in a tiny

section of a book chapter [5]. That section needs revision and expansion, with additional new

materials and examples, and correction of some misconceptions I had.

Python String Slicing | K. S. Ooi

2 | P a g e

2. String Splicing Theorem

String splicing is about using splice syntax to obtain a substring from a string. It is a rather

simple thing to do. Let us have a string object called a_string. The slice syntax is simply given

by

(1) a_string[start:end:step]

We view a string as a sequence of characters. In this article, I use the term argument loosely.

In equation (1), I will say string slicing has three arguments, start, end, and step. The first

character is indexed by 0. And if the length of the string is n, the last character is indexed by n

– 1. So, the range of indices of the string is given by

(2) i = 0, 1, …, n – 1 where n = len(a_string)

The start index is the index of the first character of the substring. However, the end index of

the string will not be included in the substring. Do not be alarmed. This is how indexing works

in Python. For example, range(2,6) will return a list of numbers [2, 3, 4, 5], that is the index

starts with 2 but not included 6 in the list. The step argument defines how you want the

characters to jump in the substring, including reversed jumping. I will focus on the step

argument near the end of this article.

This seems like an innocuous affair until you read Python code littering all over places, which

obviously produced with pride. Programmers are people [6]; therefore, we should not be too

surprise to find code that is cool but hard to understand. The string slice from programmers is

deliberately obtuse. The complication comes from the syntax of slice, which has sign. The

positive index is the forward indexing; the negative is the reversed indexing. If you start from

the first character, the forward index is 0; if you use the reversed index, you start at the last

character, which is -1. So, mathematically for a_string, which has length n,

(3) a_string[i] = a_string[i – n], where i = 0, 1, …, n – 1

Let us consider this is as a theorem. Since the first index is 0 and the last index is -1, counting

backward, you reach the first character by -n.

(4) a_string[0] = a_string[-n]

Similarly, counting forward you reach the last character by counting n – 1, and since the

reversed index for the last character is -1,

(5) a_string[n – 1] = a_string[-1]

By mathematical induction, if the forward index advances on step, the reversed index becomes

larger one step as well.

(6) a_string[i + 1] = a_string[i – n + 1]

And with that we have proved the theorem (3).

Python String Slicing | K. S. Ooi

3 | P a g e

With the theorem proving out of the way, we can show one example. Let us have “Jumping-

Fox” as our string. The forward and reversed indices are shown in the following figure.

0 1 2 3 4 5 6 7 8 9 10

J u m p i n g - F o x
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Figure 1: Two indexing systems for the “Jumping-Fox” string

The following Python program will print True 11 times on the screen.

Program 1

a_string = "Jumping-Fox"

n = len(a_string)

for i in range(n):

 print(a_string[i] == a_string[i-n])

3. The Default Values

The equation (1) shows that slicing has three arguments: start, end, and step. The first two

arguments are essential, and the step argument is optional. You can leave the arguments blank.

Since start and end are essential, even though can be blank, you have to supply them in slicing.

So, the following program will fail to run, because of syntax error, for you fail to supply the

arguments of start and end. So, you cannot use [] in slicing a string.

Program 2 

a_string = "Jumping-Fox"

print(a_string[])

However, if you supply the two arguments start and end, it will work, even though you leave

them blank, as shown in the following program. The program will print out Jumping-Fox on

the screen.

Program 3

a_string = "Jumping-Fox"

print(a_string[:])

When you leave start and end blank, in a_string[:], Python will supply the default values. The

default values of the three arguments are tabulated below.

Python String Slicing | K. S. Ooi

4 | P a g e

Argument Default value

start 0 or -n

end n

step 1

Table 1: Default values of start, end, and step. Bear in mind this table is valid only when

your step is not a negative value.

The following program will print Jumping-Fox on the screen 9 times, as all the slicing are the

same. Observe how the default values play out.

Program 4

a_string = "Jumping-Fox"

n = len(a_string)

print(a_string)

print(a_string[:])

print(a_string[::])

print(a_string[0:])

print(a_string[0:n])

print(a_string[:n])

print(a_string[-n:n])

print(a_string[-n:])

print(a_string[0:n:1])

However, print(a_string[:-1]) will print Jumping-Fo on the screen, without the x. Now you

know why.

4. Expressing String Slicing in Everyday Language

Using the a_string as an example, I attempt to express string slicing in everyday language. I

summarize the result in the following table.

Everyday language Slice Substring

Get the first 6 characters a_string[:6]

Jumpin

Get the last 6 characters a_string[-6:]

ng-Fox

Obtain the substring containing all

characters except the last 3 characters

and also except the first 2 characters

a_string[2:-3] mping-

Obtain the substring containing the last

6 characters except the last 2 characters

a_string[-6:-2] ng-F

Obtain the substring of length 5 starting

from the second character

a_string[1:6] umpin

Table 2: Slicing in everyday language. The string a_string = "Jumping-Fox".

Python String Slicing | K. S. Ooi

5 | P a g e

Based on these 5 examples in Table 2, let us test how well we are able express slicing in

everyday language. So, a_string[:-3] means the whole string except the last three characters.

This is correct. However, it is difficult to express a_string[-6:7]. You cannot say obtain a

substring of length 13, that contains the last 6 characters. Since ng is printed on the screen, the

substring we obtain is the characters when these two indices overlap, as shown in the following

figure.

0 1 2 3 4 5 6 7 8 9 10

J u m p i n g - F o x
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Figure 2: Two indexing systems overlap when you try the slice a_string[-6:7]. Since the

substring will not contain the character indexed by 7, we end up getting a substring ng.

It is obvious that we cannot express the entire string slicing into everyday language. We can

do it for certain cases, for examples the ones in Table 2. In the end, the overlap of indices of

start and end is the general way to express the slices we get. You may try the overlap of start

and end on the cases of Table 2.

Program 5

a_string = "Jumping-Fox"

n = len(a_string)

Get the first 6 characters

print(a_string[:6])

Get the last 6 characters

print(a_string[-6:])

Obtain the substring containing all characters

except the last 3 characters and

except the first 2 characters

print(a_string[2:-3])

Obtain the substring containing the last 6 characters

except the last 2 characters

print(a_string[-6:-2])

Obtain the substring of length 5

starting from the second character

print(a_string[1:6])

Obtain the substring that contains

all character except the last 3 characters

Python String Slicing | K. S. Ooi

6 | P a g e

print(a_string[:-3])

Obtain the substring of length 13

containing the last 6 characters.

This doesn't make sense.

print(a_string[-6:7])

5. The Step Has Life of Its Own

The step can be set either positive or negative. Positive step means forward slicing; negative

means reversed slicing. In the following program, the first print statement results in Jumping-

Fox, whereas the second one results in xoF-gnipmuJ.

Program 6

a_string = "Jumping-Fox"

n = len(a_string)

print(a_string[::+1]) # Jumping-Fox

print(a_string[::-1]) # xoF-gnipmuJ

The following program prints upn- 4 times.

Program 7

a_string = "Jumping-Fox"

n = len(a_string)

print(a_string[1:8:2])

print(a_string[1:-3:2])

print(a_string[-10:8:2])

print(a_string[-10:-3:2])

The following program prints ogp 4 times.

Program 8

a_string = "Jumping-Fox"

n = len(a_string)

print(a_string[9:1:-3])

print(a_string[9:-10:-3])

print(a_string[-2:1:-3])

print(a_string[-2:-10:-3])

Python String Slicing | K. S. Ooi

7 | P a g e

If you trace the programs 7 and 8, you will have 100% correct substrings if you use

• Theorem 3 to convert all negative start and end indices to positive values, and interpret

the indices as usual. Perform the jump as specified by step. If the step is negative,

reverse the substring and perform the jump.

• Or, you use the overlap indices (such as the example in Table 2) to obtain the substring.

Then Perform the jump as specified by step. Again, reverse the substring if the step is

negative and perform the jump.

This is not the end of story. If you set the step a negative value, the default of end is –(n + 1).

This fact is illustrated in the following program, which print the substring xFgimJ 4 times.

Program 9

a_string = "Jumping-Fox"

n = len(a_string)

print(a_string[::-2])

print(a_string[-1::-2])

print(a_string[10::-2])

print(a_string[10:-12:-2])

6. Concluding Remarks

In this article, I have proved the string slicing theorem (3), which can be used as a tool to predict

the substring, particularly if you encounter negative values for start and end. The three

arguments of slicing have default values. However, if you reverse the string by setting the step

a negative value, the default value of end will be affected; the default end will become –(n +

1) instead of n, where n is the length of the string. An attempt is made to express string slicing

in everyday language; however, this does not work for all cases. In the end, if you want to trace

a slice and correctly predict the substring, the general way to do it is by converting all negative

indices of start and end to positive value using theorem (3), interpret the indices as usual,

perform the jump as specified by the step, and reverse the substring if the step is a negative

value. Or, you can also use the overlap indices technique shown in this article to correctly

predict the substring of a slice.

Python String Slicing | K. S. Ooi

8 | P a g e

References

1. Felix Lopez and victor Romero, Mastering Python Regular Expressions, Packt

Publishing, UK (2014)

2. Doug Hellmann, The Python 3 Standard Library by Example, Pearson Education, Inc,

Boston (2017)

3. Allen B. Downey, Think Python, O’Reilly Media, Sebastopol (2016)

4. W3Schools, Python Slice String, at

https://www.w3schools.com/python/gloss_python_string_slice.asp

5. K. S. Ooi, The Perils of Idiomatic Python, Chapter 1, Current STEM. Volume 2,

Edited by Maurice H. T. Ling, Nova Science Publishers (2019)

6. Gerald M. Weinberg, The Psychology of Computer Programming, Dorset House

(1971)

