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1 Statement of Results

Definition 1.1. 1. A vector of the form o = (@1,..., ), where each com-
ponent «; is a nonnegative integer, is called multi-index of order

lof =a; +... +a,
2. Given a multi-index «, define:
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3. Given a multi-index c, define: k® := [1; (%), where (k;)° equals one
even when &; = (.

4. If w € H*(U) for k integer, we define its norm to be:

Py —— / |D*uf2dz) /2

lal<k

Lemma 1.2. For s > n/2, then:
)z < Cllul g

Proof. Write down,
(11) il = / [a(€)] < € >°< £ >~* de

where < £ >= /14 [£]2, now apply Cauchy- Schwartz inequality, where the
factors are [4(€)| < £ >° and < € > . on equation (1.1), and use the fact that
s > n/2 to get integrability of < £ >~2° and the desired inequality.
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Lemma 1.3. Let s be an integer greater than %, where n is the spatial dimen-
sion. Then for every posilive integer m there exists a constant C' depending only
on s, d, and m such that

(1.2) > W Tew| <CTI sl

0< 7, atd]<s ||i=1 - =1

ml...l

Proof. We will need to estimate |k()|l* k(m)ﬂ"‘(m)’, we use successively

Young’s inequality for numbers, to get:

m
(1.3) ROl ] 2§ (@l el
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The proof of the above inequality goes as follows by induction on m. Suppose
we proved for the case m and let’s prove for m + 1.

We have: [k |12 ... |flm) |l < C (|l ta™ g [ [l 2,
so by Young’s inequality for numbers:

ik{l)lm“” ...|k{m)lla("‘)lik(m-l}lia(m*i)l < G(lk(1)“a“n+...+|a<m?| PR !k(m)|1cx‘”l~+‘-~+|a‘"‘}l}.

Rl < G R B
Young’s inequality for numbers
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The constant after the second < isn’t the same as the constant C a.fi:e(r1 the
first <. For the base case of the induction, obviously for m = 1: [EM[l=®l <

CkW|la®1,



Denote by S == {j : |a¥| = 0}.
(1.4)
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by (1.3)

| (Zr—1 — zi)| [Gks1(@h — Trg1)] - - - An{@a)|dey - - dr,
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where we have reordered the factors without the derivative to appear first, and
let k denote the number of factors not differentiated; This is allowed since
convolution is commutative and associative.

Now, by Parseval identity we get:

I *SuJ * >l< Doyl 2 = | H“J HD ]| 2
Je t¢ j€S  t¢s

We now employ Young’s convolution inequality, on the last RHS in eq. (1.4)(alter
taking L? norm from both sides) above:

() | - %
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+ Clltnl o+ 4. 1atm 11 % - # dna ]l L1,
where we've used the inequality: ||(1 + [.{™)a| 72 < Clul| g
cf [1, Theorem 8, p.297]
for m an integer.
We have by Young’s inequality for convolution (after repeated use of this
inequality, (each use for a convolution of two factors)):

Heas e < [ Il
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As we've seen in Lemma 1.2 we have: ||ifjz1 € Cljuf|gs. And:

Hu|ﬁ{|“(k+1)g+___+|a(ﬂJ! Ef

| ]>1(1+]y15)2ﬂ2dy+ f 442 dy.
2

lwl<1
So we get eventually that: ||ull jjatesn )y gt < Cllulla-. O

Lemma 1.4.

(1.5)
IF@lee < CUF@I+> 3 S IFD@)=ID* w07 12).

|bl=5 7=1 @) 4.4l =b

Proof. We have:

(1.6) | E(u)l bf..[.l] Cll( + &) F (u) (k)| 22

£ CUIF (u) ()2 + NIFI°F(u) (k)| 22)

from triangle inequality for L%-norm

= [ CUF@E 2 + [I1&1° F (u) (k)| 22)

from Parseval identit

< C(IF@)llzz + ) IDPF(w)llz2) =

from Parsciv;ﬂ identity
|bl=s

= C(IF(w)llz= + Y_ ID*F(u)z2),

[bl=s

where we have used the facts that

D)) = | [ oxpl—iz DD F(u)(a)da| = | [ oxp(—ia- k) [[ o Flu(a))ds

Integration hy parts

= o [ TIR exp(ie - By (u@as| — | TTK7 FOI0)

and

1.7 clk|? — C(Z K2y < Z Hk?bj

bl=s J

for some positive constant ¢ > 0. The last inequality above is obtained since
both sides of the inequality arc homogenous of order 2s in k, and the fact
that its RIS is positive and continuous cverywhere on the unit sphere. Since
Eihl'—s HJ- k?bj is a polynomial in ki, ...,kn, this expression is continuous on
the unit sphere. This expression is positive since every term in the sum is either
positive or zero because of the even exponent in k?bj . And there’s at least one
positive term in the sum, because the sum is over |b] = s; we have the next list
of vectors: (s,0,...,0),...,(0,0,...,0,s) such that whatever k is chosen such



that |k| = 1, we must have that 3k; # 0, and b; = s, b; = 0 for 7 # j, such that
the term k7°-1....-1 is positive. Hence by the theorem that says that every
real-valued continuous function on a compact set achieves its minimum and
maximum value on this set,and when the function is positive, as is the case we
arc dealing with then the minimum value it takes on is positive, which provides
the positive ¢ such that the function is greater than ¢ , there exists a positive
¢ such that Ei Bleslls k?bj > ¢ for |k| = 1, which means that the inequality in
(1.7) holds.
Thus,

> IDPFu)(E)liz2 = of| |k £ (u) (k)] 2
|bj=s

Now the multivariate Faa di Bruno’s Formula is
( http://mathworld.wolfram.com/FaadiBrunosFormula.html):
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To see how this formula is obtained, note the following heuristic explanation.
We apply 35—, D® on F(u),ie Y, | Jﬁ“—F(u). Let’s use color des-

b8 5‘;}33',1
ignation on the partial derivatives. Denote by C-*; the color designators of the

partial derivative B_f,’;'i, where the index j goes from 1 to b;. So we turned D°
P . L .. . . ;

mtosh® =] ?;1 Oz . The first derivative that is applied to F(u(z)) yields
F' (u(m))a_%iilﬁ* for some m. After that, successive derivatives may be applied

Lom
cither to whatever derivative of F currently appears or to one of the derivatives
of u that are already present. Each time a derivative is applied to F' the chain
rule yields a factor of —‘%‘k—, for some k and some m. Hence if F is differenti-
Tm
ated j times and the remaining derivatives are applied directly to the factor of

w then a term FO) (u(z)) [[1_, D" u is obtained. ( where the v*)s have color
designators added).

If for example we apply i dfg to uiup then we get: [d_f;i 8£éu1]uz +
wi[05 07 s + 65 a0y + 01 05

each term has coefficient one because every different way of applying the
derivative operators yiclds a different result.

Once we neglect the color designators, then the last two terms become the
same, and hence the resulted combined term has coefficient two. L.e, coefficients
higher than one arise because neglecting the color designators makes some terms
that used to be different, become the same terms, and combining them yields
a cocfficient equal to the number of terms so combined. If one of the 8., that
appears in D? has a power b; greater than one and those derivatives are dis-
tributed among at least two of the ~(F) then the coefficient ) multiply-

ing FU) (u(z)) H‘}c_l DYy will be greater than one. For example, u;

s Uit



will have a coefficient greater than one, while uy, , u2,,,, Will have coefficient
one.
The reason that some terms have a factor greater than one is that there’s
more than one way to choose which factor of 3, is applied to which factor of
Uy ... U;.
Now, plug the formula for D* ¥ back into (1.6), into C{|| F(u)|| 2 +3 s 1D F(u)]| £2)
and we get the desired result:
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Above the constant C' takes different values from both sides of the inequality. [

Lemma 1.5. Suppose u € H® and v € L™, then there exists a constant C > 0
8.t

(1.9) luv||r2 < Cllullgs||vllze

Proof.

luvilzz = (_/'uQ'vz)”2 < Suplv!(] w2 = |ollze @llze < N+ [yl )allzzlvll o < Cllullss |t

O
Lemma 1.6. For F € C*,u € H® such that F(0) =0

(1.10) [£lzz < Cllullg=  sup  |F'(v)]

[l<Cllull o

Proof. Wehave F(u) = F(u)—0= F(u)—F(0) = _};1_0 LF(ru)dr =u f:;o F'(ru)dr,
50:

1

1
(111)  [[F)le = Eiuf F(ru)dr] > < Cllu|as| / OF’(?‘u)drHLm
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The last inequality is proved in the last lemma above, 1.5.

(1.11) < ||luljms sup sup |[F'(ru(z))
zER™ ref0.1]

Now, we have:

sup sup |[F'(ru(z))| < sup [F' (v(z))]
xzER™ rc[0,1] reR™ SUPye L™ fu| Sefluf grx
< sup  |F(v)]

vERijv|<cllullgs

The first inequality follows since the set: {ru:r € [0,1] v € I*} is a subset of
{v € L™ : |v| < c||lu| g=}; while the second inequality follows from the fact that
the inequality |v| < cllu||g- is satisfied for every x € R™, we see that to find
the supremum of |F'(v(z))] it’s enough to look at the supremum of |F'(v)| in
{v € R: |v] < ¢]jul|g-}, since the supremum doesn’t depend on z, only on the
bounds of v. (|

Lemma 1.7. Under the assumptions of lemmas: 1.3,1.4,1.6 we have:
(1.12)

1) g < c(

wp PO POl )

ol <ollul o b 53 fveRe o<}

Proof. Now, from lemma 1.2 we have: 1 oos 1D* V- D2y 2 <
all)+  +ald)=h

C”“’”"}Is-
So, by the lemmas: (.3,1.4,1.6
|7 ()| =
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The estimate |FU (u(z))|p~ < SUP{yeRrm-fo|<clulns} ' (v)] was proven in
lemma. 1.6, for the case § = 1, but that proof works just as well for j > 1.
O
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