Solution to Problems 12 and 13 in Michael Taylor's volume 3 in PDE

Alon Brook-Ray

December 22, 2020

Abstract

Solutions to problems 12 and 13 in chapter 16 of volume 3 of PDE textbook by Michael Taylor.

Contents

1 Problem 12 1
2 Problem 13 4

1 Problem 12

Definition 1. We define Schwartz class as $\mathcal{S}(\mathsf{R}^n) := \{ \varphi \in C^\infty : q_N(\varphi) < \infty, \text{ for } N = 0, 1, 2, \ldots \}$, where $q_N(\varphi) := \sup_{x \in \mathsf{R}^n, |\alpha| \le N} (1 + |x|^2)^N |D^\alpha \varphi(x)|$.

We have:

$$d/dt(u_{\epsilon}, u_{\epsilon}) = 2(\partial_t u_{\epsilon}, u_{\epsilon}) = 2\left(J_{\epsilon}LJ_{\epsilon}u_{\epsilon}, u_{\epsilon}\right) + 2\left(J_{\epsilon}g(J_{\epsilon}u_{\epsilon}), u_{\epsilon}\right)$$
(1)

Since J_{ϵ} is self-adjoint, we get: $2\left(J_{\epsilon}LJ_{\epsilon}u_{\epsilon},u_{\epsilon}\right)=2\left(LJ_{\epsilon}u_{\epsilon},J_{\epsilon}u_{\epsilon}\right)$. Now, we shall use [1, eq. (1.11), page 415], plug $\alpha=0$ into [1, eq. (1.11), page 415] to get:

$$2\left(LJ_{\epsilon}u_{\epsilon}, J_{\epsilon}u_{\epsilon}\right) \le C\|J_{\epsilon}u_{\epsilon}\|_{L^{2}}^{2} \tag{2}$$

Now, we shall use Young's inequality for convolution on the RHS of (2), i.e.

$$||J_{\epsilon}u_{\epsilon}||_{L^{2}} = ||j_{\epsilon} * u_{\epsilon}||_{L^{2}} \le ||j_{\epsilon}||_{L^{1}} ||u_{\epsilon}||_{L^{2}} \le C||u_{\epsilon}||_{L^{2}}$$
(3)

Now we shall estimate the second term in (1), we are using lemmas 1.6 and 1.5 from the previous file:

Combine (??), (2) and (3), to get: $d/dt \|u_{\epsilon}\|_{L^{2}}^{2} \leq C \|u_{\epsilon}\|_{L^{2}}^{2}$. For $d/dt \|\nabla u_{\epsilon}\|_{L^{2}}^{2} \leq C \|\nabla u_{\epsilon}\|_{L^{2}}^{2}$ We have:

$$d/dt(\nabla u_{\epsilon}, \nabla u_{\epsilon}) = 2(\nabla \partial_t u_{\epsilon}, \nabla u_{\epsilon}) = 2(\nabla J_{\epsilon} L J_{\epsilon} u_{\epsilon}, \nabla u_{\epsilon}) + 2(\nabla J_{\epsilon} g(J_{\epsilon} u_{\epsilon}), \nabla u_{\epsilon})$$
(4)

Notice that:

$$\begin{split} 2 \bigg(\nabla J_{\epsilon} g(J_{\epsilon} u_{\epsilon}), \nabla u_{\epsilon} \bigg) &\underset{J_{\epsilon} \text{ commutes with } \nabla}{=} 2 \bigg(J_{\epsilon} \nabla g(J_{\epsilon} u_{\epsilon}), \nabla u_{\epsilon} \bigg) \\ &\underset{J_{\epsilon} \text{ is self-adjoint}}{=} 2 \bigg(\nabla g(J_{\epsilon} u_{\epsilon}), J_{\epsilon} \nabla u_{\epsilon} \bigg) \\ &= 2 \bigg(g'(J_{\epsilon} u_{\epsilon}) J_{\epsilon} \nabla u_{\epsilon}, J_{\epsilon} \nabla u_{\epsilon} \bigg) \\ &\underset{Cauchy-Schwartz \text{ inequality}}{\leq} C \|J_{\epsilon} \nabla u_{\epsilon}\|_{L^{2}} \|g'(J_{\epsilon} u_{\epsilon}) J_{\epsilon} \nabla u_{\epsilon}\|_{L^{2}} \\ &\leq C \|J_{\epsilon} \nabla u_{\epsilon}\|_{L^{2}}^{2} \sup_{v} |g'(v)| \\ &\underset{v}{\leq} C \|\nabla u_{\epsilon}\|_{L^{2}}^{2} \end{split}$$
we used $|g'| \overset{\leq}{\leq} C$, and (3)

In eq. (4), the first term becomes: $2\left(\nabla(J_{\epsilon}LJ_{\epsilon}u_{\epsilon}), \nabla u_{\epsilon}\right) = 2\left(\nabla(LJ_{\epsilon}u_{\epsilon}), J_{\epsilon}\nabla u_{\epsilon}\right) = 2\left(LJ_{\epsilon}\nabla u_{\epsilon}, J_{\epsilon}\nabla u_{\epsilon}\right) + 2\left([\nabla, L]J_{\epsilon}u_{\epsilon}, J_{\epsilon}\nabla u_{\epsilon}\right).$

The first term is bounded by $C\|\nabla u\|_{L^2}^2$, as can be inferred by the next reference [1, eq. (1.11), page 415].

The second term can be seen to be bounded by the same bound, by the next equation:

$$\begin{split} ([\nabla, L]J_{\epsilon}u_{\epsilon}, J_{\epsilon}\nabla u_{\epsilon}) &= \sum_{j} (\nabla A_{j}\partial_{j}(J_{\epsilon}u_{\epsilon}), J_{\epsilon}\nabla u_{\epsilon}) \\ &= \int \sum_{j} \sum_{i,k} \sum_{m} (J_{\epsilon}\partial_{m}(u_{\epsilon})_{i})(\partial_{m}a_{ik}^{j})\partial_{j}(J_{\epsilon}(u_{\epsilon})_{k}) \end{split}$$

So we get by Cauchy-Schwartz that this is less or equals to: $C\|\nabla J_{\epsilon}u_{\epsilon}\|_{L^{2}}^{2}$ where the constant C depends on bounds on derivatives of entries of the

matrix A_i which are smooth functions. Now we know from the fact that J_{ϵ} commutes with ∇ we have: $\|\nabla J_{\epsilon}u_{\epsilon}\|_{L^{2}}^{2} = \|J_{\epsilon}\nabla u_{\epsilon}\|_{L^{2}}^{2}$, and from (3) it follows that this is less than: $C \|\nabla u_{\epsilon}\|_{L^{2}}^{2}$.

From the two inequalities: $d/dt \|u_{\epsilon}\|_{L^2}^2 \leq C \|u_{\epsilon}\|_{L^2}^2$ and $d/dt \|\nabla u_{\epsilon}\|_{L^2}^2 \leq C \|u_{\epsilon}\|_{L^2}^2$ $C\|\nabla u_{\epsilon}\|_{L^{2}}^{2}$, now add both inequalities to get: $d/dt\|u_{\epsilon}\|_{H^{1}}^{2} \leq C\|u_{\epsilon}\|_{H^{1}}^{2}$.

Thus, $||u_{\epsilon}||_{H^1}^2 \leq A \exp(Ct)$ for a positive constant A. Since $||u_{\epsilon}||_{H^1}^2 \leq A \exp(Ct)$, the bound exists for all time t, thus also our solution $u_{\epsilon} \in H^1$ exists for each time, t. This follows from the ODE continuation theorem, which says that a solution to an ODE exists as long as the norm of the solution is finite. So we need to show that $||F(u)||_{L^2} \le h(||u||_{L^2})$ for some continuous function h.

$$||F(u_{\epsilon})||_{L^{2}} = ||J_{\epsilon}LJ_{\epsilon}u_{\epsilon} + J_{\epsilon}g(J_{\epsilon}u_{\epsilon})||_{L^{2}}$$

$$\leq ||J_{\epsilon}LJ_{\epsilon}u_{\epsilon}||_{L^{2}} + ||J_{\epsilon}g(J_{\epsilon}u_{\epsilon})||_{L^{2}}$$

In (4), we know that $||J_{\epsilon}g(J_{\epsilon}u_{\epsilon})||_{L^{2}} \leq ||j_{\epsilon}||_{L^{1}}^{2} \sup_{v \in \mathbb{R}^{n}} |g'(v)|||u||_{L^{2}} \leq C||u||_{L^{2}}.$ As for the first term in the RHS after the inequality sign in (4): $||J_{\epsilon}LJ_{\epsilon}u_{\epsilon}||_{L^{2}} \leq$ $||j_{\epsilon}||_{L^1}||LJ_{\epsilon}u_{\epsilon}||_{L^2}$. Now, we only need to estimate the second factor:

$$\begin{aligned} \|LJ_{\epsilon}u_{\epsilon}\|_{L^{2}} &= \left\| \sum_{k} A_{k} \partial_{x_{k}} \left(\int j(\epsilon^{-1}(\cdot - s)) \epsilon^{-n} u(t, s) ds \right) \right\|_{L^{2}} \\ &= \left\| \sum_{k} A_{k} \left(\int j_{x_{k}} (\epsilon^{-1}(\cdot - s)) \epsilon^{-n-1} u(t, s) ds \right) \right\|_{L^{2}} \\ &\leq \sup_{\text{young's inequality for convolution}} \sum_{k} \|A_{k}\|_{L^{\infty}} \epsilon^{-1} \|\epsilon^{-n} j_{x_{k}} (\epsilon^{-1}(\cdot))\|_{L^{1}} \|u\|_{L^{2}} \end{aligned}$$

Note that $\int_{\mathbb{R}^n} \frac{dx}{(1+|x|^2)^N} = \omega_n \int_0^\infty \frac{r^{n-1}}{(1+r^2)^N} dr < \infty$, whenever N > n/2 (where ω_n is a constant that depends on n). Then, if N > n/2 and $j \in \mathcal{S}(\mathbb{R}^n)$, then we get:

$$||j_{x_k}||_{L^1} \le \int_{\mathbb{R}^n} q_N(j)(1+|x|^2)^{-N} dx$$

$$= Cq_N(j) < \infty$$

Thus, $\epsilon^{-1} \| \epsilon^{-n} j_{x_k}(\epsilon^{-1}(\cdot)) \|_{L^1} \le C/\epsilon$.

Now, inserting this into (4), we get: $||LJ_{\epsilon}u_{\epsilon}||_{L^{2}} \leq \sum_{k} ||A_{k}||_{L^{\infty}} C/\epsilon \cdot ||u_{\epsilon}||_{L^{2}}$. So by combining everything together we get:

$$||F(u_{\epsilon})||_{L^{2}} \leq \sum_{k} ||A_{k}||_{L^{\infty}} C/\epsilon \cdot ||u_{\epsilon}||_{L^{2}} + C||u_{\epsilon}||_{L^{2}} = h(||u_{\epsilon}||_{L^{2}})$$

Now, we shall show Lipschitz criterion is satisfied. Take two points $t, s \in I = [t_1, t_2]$, and estimate:

$$\begin{aligned} \|u(t,\cdot) - u(s,\cdot)\|_{L^{2}} &= \|\int_{s}^{t} \partial_{t'} u(t',x) dt'\|_{L^{2}} \\ &= \|\int_{s}^{t} (J_{\epsilon} L J_{\epsilon} u_{\epsilon}(t') + J_{\epsilon} g(J_{\epsilon} u_{\epsilon}(t')) dt'\|_{L^{2}} \\ &\leq |t - s| \sup_{t' \in I} \|(J_{\epsilon} L J_{\epsilon} u_{\epsilon}(t') + J_{\epsilon} g(J_{\epsilon} u_{\epsilon}(t'))\|_{L^{2}} \\ &= |t - s| \sup_{t' \in I} \left(\|(J_{\epsilon} L J_{\epsilon} u_{\epsilon}(t')\|_{L^{2}} + \|J_{\epsilon} g(J_{\epsilon} u_{\epsilon}(t'))\|_{L^{2}} \right) \mathcal{A}_{(A)} \end{aligned}$$

The first term inside the sup in (4), is less or equal $C\|\nabla u_{\epsilon}(t')\|_{L^2}$, since A_j is a bounded matrix and J_{ϵ} as well is a bounded operator on L^2 and ∇ includes all the spatial derivatives of L; and also from above we know that: $C\|\nabla u_{\epsilon}\|_{L^2} \leq C_0 \exp(Ct')$ for positive constants C, C_0 , and this is smaller than $C_0 \exp(Ct_2)$. The second term is estimated as follows: from what we've seen above it's less than $C\|g(J_{\epsilon}u_{\epsilon})\|_{L^2}^2$, which is again smaller than $C\|u_{\epsilon}\|_{L^2} \sup |g'| \leq C_1 \exp(Ct')$, for C_1, C positive constants, which is less than $C_1 \exp(Ct_2)$. From all of the above we'll conclude that: $\|u(t,\cdot) - u(s,\cdot)\|_{L^2} \leq |t-s|c(I)$, where c(I) is a constant that depends on the interval, I.

2 Problem 13

Definition 2. The space $L^{\infty}(C,B)$, where C is a subset of \mathbb{R} and B is a Banach space, is defined as the set of all functions $f:C\to B$ which their supremum norm is finite, $\|f\|_{L^{\infty}(C,B)}:=\sup_{x\in C}\|f(x)\|_{B}<\infty$;

Lip(C,B) is the space of functions $f:C\to B$ which their Lipschitz's norm is finite, $\|f\|_{Lip(C,B)}:=\sup_{x,y\in C,x\neq y}\frac{\|f(x)-f(y)\|_B}{|x-y|}<\infty.$ When $s\in \mathbb{Z}_+$, M is a manifold and N is another manifold, we define the

When $s \in \mathbb{Z}_+$, M is a manifold and N is another manifold, we define the space $C^s(M; N)$ as the space of functions $f: M \to N$ such that $f, f', \ldots, f^{(s)}$ are continuous functions; and $C^{\infty}(M; N)$ as the space of functions which are differentiable in all orders inside M.

Theorem 2.1. Let A_j be a $K \times K$ matrix, smooth in its arguments and symmetric, $A_j = A_j^*$. Suppose g is smooth in its arguments, with values in R^K s.t g(0) = 0, $|g'(u)| \leq C$. Then there exists a unique solution $u \in L^\infty_{loc}(\mathsf{R}, H^1(M)) \cap Lip_{loc}(\mathsf{R}, L^2(M))$, (where $M = \mathsf{T}^n$) to the PDE: $u_t = Lu + \mathsf{T}^n$

g(u), and initial condition u(0) = f, where $f \in H^1(M)$, and the operator L is defined by: $L(t, x, u, D_x)u = \sum_j A_j(t, x) \frac{\partial}{\partial x_j} u$.

Proof. Suppose u_1, u_2 solve the PDE above, i.e $u_t = Lu + g(u), u(0) = f$. Take $w = u_1 - u_2$, then w satisfies: $w_t = Lw + h(w, u_2)$, where $h(w(x,t), u_2(x,t)) = g(w(t,x) + u_2(t,x)) - g(u_2(t,x)), w(0) = 0$. Since w(0) = 0 we must have $||w(0)||_{L^2}^2 = 0$. Notice that

$$(h(w(t), u_2), w(t)) \leq \|w(t)\|_{L^2} \|h(w(t), u_2(t))\|_{L^2}$$

$$= \|w(t)\|_{L^2} \|h(w(t), u_2(t)) - h(0, u_2(t))\|_{L^2}$$

$$= \|w(t)\|_{L^2} \|\int_0^1 w(t)h_w(rw(t), u_2(t))dr\|_{L^2}$$

$$= \|w(t)\|_{L^2} \|w(t)\|_{L^2} \|\int_0^1 h_w(rw(t), u_2(t))dr\|_{L^2}$$

$$\leq \|w(t)\|_{L^2} \|w(t)\|_{L^2} \|\int_0^1 h_w(rw(t), u_2(t))dr\|_{L^\infty}$$

$$\leq \|w(t)\|_{L^2} \|w(t)\|_{L^2} \sup_{v \in \mathbb{R}^n, x \in M} |h_w(v, u_2(x, t))|$$

$$= \|w(t)\|_{L^2} \|w(t)\|_{L^2} \sup_{v \in \mathbb{R}^n, x \in M} |g'(v + u_2(x, t))|$$

$$\leq C \|w(t)\|_{L^2} \|w(t)\|_{L^2}$$

Notice the following: $\partial_t(w, w) = 2(w_t, w) = 2(\sum_j A_j \partial_{x_j} w, w) + 2(h(w, u), w)$. we get: $2(\sum_j A_j \frac{\partial}{\partial x_j} w, w) = -\sum_j \int w^* \cdot \frac{\partial A_j}{\partial x_j} \cdot w dx$ by the following calculation:

$$(A_j \frac{\partial}{\partial x_j} w, w) = \int w^* \cdot A_j \cdot \partial_{x_j} w dx = \int w^*_{\text{integration by parts}} - \int w^*_{x_j} \cdot A_j \cdot w dx - \int w^* \cdot \frac{\partial}{\partial x_j} A_j \cdot w dx$$

by the fact that the transpose of a number equals the number, we get that: $w_{x_j}^* \cdot A_j \cdot w = (w_{x_j}^* \cdot A_j \cdot w)^* = (w^* \cdot A_j \cdot w_{x_j})$. Now, use the Cauchy-Schwarz

inequality: $2(A_j\partial_{x_j}w,w) \leq 2\sum_j \|A_j(t,\cdot)\|_{C^1} \leq C(t)\|w(t)\|_{L^2}^2$, where we used the fact that $A_j(x,t)$ is C^{∞} -smooth in its arguments x,t, the variables x are defined on T^n which is compact; thus $A_j(x,t)$ and its derivatives are bounded by a function of t only. Gathering everything together we get: $\partial_t \|w(t)\|_{L^2}^2 \leq C_1(t)\|w(t)\|_{L^2}^2$ by integration and using Gronwall's inequality lemma we get that $\|w(t)\|_{L^2}^2 \leq \|w(0)\|_{L^2}^2 \exp\left(\int_0^t C_1(s)ds\right) = 0$; thus

w(t)=0 and we have uniqueness. Now, for the existence part. Arzela-Ascoli theorem states the following:

Theorem 2.2. Let \mathcal{F} be an equicontinuous family of functions from a separable space X to a metric space Y. Let $\{f_n\}$ be a sequence in \mathcal{F} such that for each $x \in X$ the closure of the set $\{f_n(x): 0 \leq n < \infty\}$ is compact. Then there is a subsequence $\{f_{n_k}\}$ that converges pointwise to a continuous function f, and the convergence is uniform on each compact subset of X. [3, page 169]

 u_{ϵ} is bounded in $L^{\infty}(I, H^1(M)) \cap Lip(I, L^2(M))$ (this follows from Problem 12), it has a weak limit point by Alaoglu theorem:

Theorem 2.3. (Alaoglu Theorem) For a real Banach space X, the closed unit ball: $\mathcal{D}(X^*) = \{f \in X^* : ||f|| \leq 1\}$, where X^* is the dual to X, is compact in the weak-* topology. [4]

(where X in this theorem is $H^1(M)$ which is a Banach space, we are looking at this space since the function $u_{\epsilon}: I \to H^1(M)$; and the dual to $H^1(M)$ is the space of bounded linear functionals $F: H^1(M) \to \mathbb{R}$). So there exists $u \in L^{\infty}_{loc}(I, H^1(M)) \cap Lip_{loc}(I, L^2(M))$ such that $u_{\epsilon} \rightharpoonup v$ Furthermore, by Arzela-Ascoli theorem, there's a subsequence: $u_{\epsilon_k} \to u$ in $C(I, L^2(M))$, where in the theorem of Arzela-Ascoli we pick $f_n = u_{\epsilon_k}$ where $\epsilon = \epsilon(n)$, i.e ϵ depends on n, X = I and $Y = H^1(M)$. Since $u_{\epsilon_k} \rightharpoonup v$ as well, we must have that v = u in $L^2(M)$. (The proof of the last claim is a simple observation that if we take $w \in L^2(M)$ then $< u - v, w > = \int_M (u - u_{\epsilon_k})w + \int_M (u_{\epsilon_k} - v)w$, the second integral converges to zero since $u_{\epsilon_k} \rightharpoonup v$, and the first integral converges to zero as well since $u_{\epsilon_k} \to u$, we have $|\int_M (u - u_{\epsilon_k})w| \le \sup_{x \in M} |u - u_{\epsilon_k}| \cdot C \cdot ||w||_{L^2(M)} \to 0$.)

Definition 3. A sequence of functions f_n in L^2 is said to converge weakly to a function f in L^2 provided: $\lim_{n\to\infty} \int f_n g = \int fg \ \forall g \in L^2$

While $\partial_t u_{\epsilon_k} \rightharpoonup \partial_t u$ weakly, since

in our case here the sequence $u_{\epsilon} \in H^1$ so both u_{ϵ} , $\nabla u_{\epsilon} \in L^2$, the claim that justifies that $\partial_t u_{\epsilon_k} \rightharpoonup \partial_t u$ weakly is since $u_{\epsilon_k} \in L^{\infty}(I, H^1(M)) \cap Lip(I, L^2(M))$, we have $\partial_t u_{\epsilon_k}$ is bounded in $L^{\infty}(I, L^2(M)) \cap Lip(I, L^2(M))$, $(\partial_t u_{\epsilon_k})$ is bounded since the weak derivative of a Lipschitz continuous function (which is u_{ϵ_k}) is bounded, the bound on the weak derivative is the Lipschitz constant). (This last fact follows from Theorem 4 in [6, pages 294-295] which we will adapt here for our case).

Theorem 2.4. (Characterization of $W^{1,\infty}$) Assume U is bounded and ∂U is Lipschitz. Assume that $f: U \to \mathbb{R}$, then:

f is loacally Lipschitz continuous in U

if and only if:

$$f \in W_{loc}^{1,\infty}(U)$$

Proof. First suppose that f is locally Lipschitz continuous. Fix $i \in \{1, \ldots, n\}$, then for each $V \subset\subset W \subset\subset U$, pick $0 < h < dist(V, \partial W)$, and define $g_i^h(x) := \frac{f(x+he_i)-f(x)}{h} \ (x \in V)$. Now, $\sup_{h>0} |g_i^h| \leq Lip(f|_W) < \infty$. Then according to weak compactness in L^p where $1 we have: a sequence <math>h_j \to 0$ and a function $g_i \in L^\infty_{loc}(U)$ such that:

$$g_i^{h_j} \rightharpoonup g_i$$
 weakly in $L_{loc}^p(U)$

for all $1 . But if <math>\phi \in C_c^1(V)$, we have:

$$\int_{U} f(x) \frac{\phi(x + he_i) - \phi(x)}{h} dx = -\int_{U} g_i^h(x) \phi(x + he_i) dx.$$

We set $h_j = h$ and let $j \to \infty$ to get:

$$\int_{U} f \phi_{x_i} dx = -\int_{U} g_i \phi dx$$

Hence g_i is the weak partial derivative of f with respect to x_i for i = 1, ... n and thus $f \in W_{loc}^{1,\infty}(U)$.

Conversely, suppose $f \in W^{1,\infty}_{loc}(U)$. Let $B \subset\subset U$ be any closed ball contained in U. Then by properties of mollifiers we know that:

$$\sup_{0 < \epsilon < \epsilon_0} \|Df^{\epsilon}\|_{L^{\infty}(B)} < \infty$$

for $\epsilon_0 > 0$ sufficiently small where $f^{\epsilon} = \eta_{\epsilon} * f$ is the usual mollification. Since $f^{\epsilon} \in C^{\infty}$ we have $f^{\epsilon}(x) - f^{\epsilon}(y) = \int_{0}^{1} Df^{\epsilon}(y + t(x - y))dt \cdot (x - y)$ for $x, y \in B$; whence, $|f^{\epsilon}(x) - f^{\epsilon}(y)| \le C|x - y|$. The constant C is independent of ϵ now as $\epsilon \to 0$ we get that $|f(x) - f(y)| \le C|x - y|$. Hence $f|_{B}$ is Lipschitz continuous for each ball $B \subset C$, and so f is locally Lipschiz continuous in U.

so by Alaoglu theorem $\partial_t u_{\epsilon_k} \rightharpoonup w$ weakly in $L^{\infty}(I, L^2(M)) \cap Lip(I, L^2(M))$ for some w

and then by uniqueness of the limit $\partial_t u_{\epsilon_k} \rightharpoonup w$ in $L^{\infty}(I, L^2(M))$ (there is uniqueness since $L^{\infty}(I, L^2(M))$ is a Hausdorff space)

we get: $w = \partial_t u$, since $u_{\epsilon_k} \to u$ in $C(I, L^2(M))$). For the last assertion we need to state the Dominated Convergence Theorem and prove another claim which will prove our assertion that $w = \partial_t u$.

Theorem 2.5. (Dominated Convergence Theorem) Let $\{f_n\}$ be a sequence of real-valued measurable functions on a measure space (S, Σ, μ) . Suppose the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense $|f_n(x)| \leq g(x)$ for all n and for all $x \in S$, then f is integrable and $\lim_{n\to\infty} \int_S f_n(x) dx = \int f(x) dx$. [5, page 26]

Theorem 2.6. If $\{u_{\epsilon_k}(t)\}\subset L^2(M)$ where M is a compact manifold, and assume that the sequence converges uniformly in $C(I, L^2(M))$ to u where $I\subset \mathbb{R}$ is compact, assume also that $\partial_t u_{\epsilon_k}(t)\rightharpoonup w$, then $w=\partial_t u$.

Proof. We shall prove the claim (2.6). Take some $v \in L^2(M)$, write down:

$$\langle w - \partial_t u(t), v \rangle = \int_M (w(x) - \partial_t u_{\epsilon_k}(t)) v(x) dx + \int_M (\partial_t u_{\epsilon_k}(t) - \partial_t u(t)) v(x) dx. \tag{4}$$

The first integral above in the RHS of (2) tends to zero as $k \to \infty$ since $\partial_t u_{\epsilon_k} \rightharpoonup w$; as for the second integral we shall use the Dominated Convergence Theorem. Since $u_{\epsilon_k}(t) \to u(t)$ in $C(I, L^2(M))$ we must have: $\int_M \partial_t (u_{\epsilon_k}(t) - u(t)) v dx = \partial_t \int_M (u_{\epsilon_k}(t) - u(t)) v dx$; now since $u_{\epsilon_k}(t)$ is bounded above by a constant that depends on t, this constant function is an integrable function since our domain of integration is a compact manifold, namely M, we get by the Dominated Convergence theorem that $\int_M u_{\epsilon_k} v dx \to \int_M uv dx$ as $k \to \infty$, where we have taken the measure to be v dx. In this case we get by the next chain of equalities that the second integral in (2) tends to zero as well:

$$\lim_{k \to \infty} \int_{M} \partial_{t} (u_{\epsilon_{k}}(t) - u(t)) v dx = \lim_{k \to \infty} \partial_{t} \int_{M} (u_{\epsilon_{k}}(t) - u(t)) v dx$$
$$= \partial_{t} \lim_{k \to \infty} \int_{M} (u_{\epsilon_{k}}(t) - u(t)) v dx$$
$$= \partial_{t} 0 = 0$$

This ends the proof of the claim, since we get that $\langle w - \partial_t u, v \rangle = 0 \ \forall v \in L^2(M)$, thus $w = \partial_t u$.

 $J_{\epsilon_k}u_{\epsilon_k}$ converges in L^2 norm to u, since we have: $\|J_{\epsilon_k}u-u\|_{L^2} \to 0$ and also $\|u_{\epsilon_k}-u\|_{L^2} \to 0$, by the triangle inequality we must have: $\|J_{\epsilon_k}u_{\epsilon_k}-u\|_{L^2} \leq \|J_{\epsilon_k}u_{\epsilon_k}-J_{\epsilon_k}u\|_{L^2} + \|J_{\epsilon_k}u-u\|_{L^2} \leq \|j_{\epsilon_k}\|_{L^1}\|u_{\epsilon_k}-u\|_{L^2} + \|J_{\epsilon_k}u-u\|_{L^2} + \|J_{\epsilon_k}u-u\|_{L^2} \to 0$ (since $\|j_{\epsilon_k}\|_{L^1}$ is bounded, and from the above we know that: $\|u_{\epsilon_k}-u\|_{L^2} \to 0$). To show this we need to show that $\|J_{\epsilon_k}u-u\|_{L^2} \to 0$ is fulfilled, for this we have the next claim to prove.

Theorem 2.7. Let $\varphi \geq 0$ with $\int_{\mathbb{R}^n} \varphi(y) dy = 1$, $\varphi_{\epsilon}(x) = 1/\epsilon^n \varphi(x/\epsilon)$. Suppose $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$. Then:

$$\lim_{\epsilon \to 0} \|f * \varphi_{\epsilon} - f\|_{L^{p}} = 0$$

Proof. $|f * \varphi_{\epsilon} - f| = |\int_{\mathbb{R}^n} (f(x - y) - f(x)) \varphi_{\epsilon}(y) dy|$. By Minkowski integral inequality, which says the following:

Suppose $(S_1, \mu_1), (S_2, \mu_2)$ are two measure spaces, and $F: S_1 \times S_2 \to \mathbb{R}$ is measurable, then: $\left[\int_{S_2} \left| \int_{S_1} F(x, y) d\mu_1(x) \right|^p d\mu_2(y) \right]^{1/p} \le \int_{S_1} \left(\int_{S_2} |F(x, y)|^p d\mu_2(y) \right)^{1/p} d\mu_1(x) \right)$

$$||f * \varphi_{\epsilon} - f||_{L^{p}} \leq ||\int_{\mathbb{R}^{n}} |f(x - y) - f(x)| \varphi_{\epsilon}(y) dy||_{L^{p}}$$
$$\leq \int_{\mathbb{R}^{n}} ||f(x - y) - f(x)||_{L^{p}(dx)} \varphi_{\epsilon}(y) dy$$

Set: $I = \int_{|y| \le \delta} \|f(x-y) - f(x)\|_{L^p(dx)} \varphi_{\epsilon}(y) dy$, and $II = \int_{|y| > \delta} \|f(x-y) - f(x)\|_{L^p(dx)} \varphi_{\epsilon}(y) dy$. The translation operator $y \to f(x-y)$ is continuous from \mathbb{R}^n to $L^p(\mathbb{R}^n)$ for $1 \le p < \infty$. So given $\eta > 0$ there exists $\delta > 0$ s.t:

$$||f(x-y) - f(x)||_{L^p(dx)} < \eta \ \forall |y| \le \delta.$$

Thus with such a δ , $I < \eta \int_{|y| \le \delta} \varphi_{\epsilon}(y) dy \le \eta \int_{\mathbb{R}^n} \varphi_{\epsilon}(y) dy = \eta$. From the fact that: $\|f(x-y) - f(x)\|_{L^p(dx)} \le 2\|f\|_{L^p}$, it follows that: $II \le 2\|f\|_{L^p} \int_{|y| > \delta} \varphi_{\epsilon}(y) dy = 2\|f\|_{L^p} \frac{1}{\epsilon^n} \int_{|y| > \delta} \varphi(y/\epsilon) dy = 2\|f\|_{L^p} \int_{|y| > \delta/\epsilon} \phi(y) dy \to 0$ as $\epsilon \to 0$. Thus, $\|f * \varphi_{\epsilon} - f\|_{L^p} \to 0$.

Thus, we apply the theorem on p=2 we must have $\|J_{\epsilon_k}u-u\|_{L^2}\to 0$, and from the above argumentation indeed $\|J_{\epsilon_k}u_{\epsilon_k}-u\|_{L^2}\to 0$. Since the derivative of g, is bounded by C, we have a Lipschitz constant C, s.t $|g(J_{\epsilon_k}u_{\epsilon_k})-g(u)|\leq C|J_{\epsilon_k}u_{\epsilon_k}-u|$, we get that: $\|g(J_{\epsilon_k}u_{\epsilon_k})-g(u)\|_{L^2}\leq C\|J_{\epsilon_k}u_{\epsilon_k}-u\|_{L^2}\to 0$; thus we have: $g(J_{\epsilon_k}u_{\epsilon_k})\to g(u)$ in $C(R,L^2(M))$ norm. And also we have:

$$||J_{\epsilon_k}g(J_{\epsilon_k}u_{\epsilon_k}) - g(u)||_{L^2} \le ||J_{\epsilon_k}g(J_{\epsilon_k}u_{\epsilon_k}) - J_{\epsilon_k}g(u)||_{L^2} + ||J_{\epsilon_k}g(u) - g(u)||_{L^2} \le ||j_{\epsilon_k}||_{L^1}||g(J_{\epsilon_k}u_{\epsilon_k}) - g(u)||_{L^2} + ||J_{\epsilon_k}g(u) - g(u)||_{L^2} \to 0$$

Where in the above last chain of inequalities the first term converges to zero as we have seen above it since $||j_{\epsilon_k}||_{L^1} < \infty$ and $||g(J_{\epsilon_k}u_{\epsilon_k}) - g(u)||_{L^2} \to 0$ as shown above, and $||J_{\epsilon_k}g(u) - g(u)||_{L^2} \to 0$ follows from theorem (2.7).

Definition 4. A continuous operator, $T: A \to A$, at a point x_0 ; where A is a Banach space, is an operator that is continuous in some topology. There is

the strong continuity by the norm of A, i.e $\lim_{x\to x_0} ||T(x)-T(x_0)||_A = 0$, and there's also weak-topology continuity, by the inner product, i.e: $\langle T(x) - T(x_0), v \rangle_{A} \to 0 \ \forall v \in A \text{ as } x \to x_0.$

L is a weak-topology continuous operator from the space $H^1(M) \to L^2(M)$

by the fact that $L = \sum_j A_j(t,x)\partial_j$, we want to show weak convergence of L operator, where $u \rightharpoonup u_0$. Take $v \in L^2$ then: $|\langle L(u) - L(u_0), v \rangle| = |\int \sum_j A_j \partial_j (u - u_0) v| \leq C_2(t) \sum_j |\langle \partial_j (u - u_0), v \rangle| \to 0$ as $u \rightharpoonup u_0$ in $H^1(M)$. Where we used the fact that $A_j(x,t)$ is smooth in its arguments in a compact manifold T^n and thus A_j is bounded by a constant that depends on t (just as in the uniqueness part of this problem); so by the weak convergence of $u \rightharpoonup u_0$ in $H^1(M)$ we have: $|\langle \partial_j (u - u_0), v \rangle| \to 0$.

Then by the weak continuity of L $J_{\epsilon_k}LJ_{\epsilon_k}u_{\epsilon_k} \rightharpoonup Lu$ weakly (since $LJ_{\epsilon_k}u_{\epsilon_k} \rightharpoonup Lu = v$ weakly, and if we denote by: $v_{\epsilon_k} = LJ_{\epsilon_k}u_{\epsilon_k}$ we also have $J_{\epsilon_k}v_{\epsilon_k} \rightharpoonup Lu = v$ from what was proven above),

so by the fact that $\frac{\partial u_{\epsilon}}{\partial t} = J_{\epsilon}LJ_{\epsilon}u_{\epsilon} + J_{\epsilon}g(J_{\epsilon}u_{\epsilon}), u_{\epsilon}(0) = f$ and u_{ϵ_k} is a subsequence of u_{ϵ} that satisfy the same PDE and gathering all the limits we get that: $\partial_t u_{\epsilon_k} \rightharpoonup \partial_t u$ weakly, $J_{\epsilon_k}LJ_{\epsilon_k}u_{\epsilon_k} \rightharpoonup Lu$ weakly, $J_{\epsilon_k}g(J_{\epsilon_k}u_{\epsilon_k}) \rightarrow g(u)$ in L^2 norm, and thus by the fact that strong convergence implies weak convergence, we also have here weak convergence: $J_{\epsilon_k}g(J_{\epsilon_k}u_{\epsilon_k}) \rightharpoonup g(u)$. By the uniqueness of the limit, which means that since $\partial_t u_{\epsilon_k} = J_{\epsilon_k}LJ_{\epsilon_k}u_{\epsilon_k} + J_{\epsilon_k}g(J_{\epsilon_k}u_{\epsilon_k}) \rightharpoonup d_t u$ weakly; and also $J_{\epsilon_k}LJ_{\epsilon_k}u_{\epsilon_k} + J_{\epsilon_k}g(J_{\epsilon_k}u_{\epsilon_k}) \rightharpoonup Lu + g(u)$ weakly, thus we must have equality between the limits, i.e, $\partial_t u = Lu + g(u)$.

And since $u_{\epsilon_k}(0) = f$ in the weak limit we have: $f = u_{\epsilon_k}(0) \rightarrow u(0) \Rightarrow u(0) = f$.

References

- [1] Michael Taylor, Partial Differential Equations III: Nonlinear Equations, Springer, 2011.
- [2] Alon Brook-Ray and Steve Schochet, Smooth Functions Vanishing at zero Map H^s with s>d/2 into itself.
- [3] H.I Royden, Real Analysis, 3rd Edition.
- [4] Yuli Eidelman, Vitali Milman and Antonis Tsolimitis, Functional Analysis, 1st Edition.

- $[5]\,$ Walter Rudin, Real and Complex Analysis , 3rd Edition.
- . [6] Lawrence Evans, Partial Differential Equations, 2nd Edition.