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Abstract

Solutions to problems 12 and 13 in chapter 16 of volume 3 of PDE
textbook by Michael Taylor.
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1 Problem 12

Definition 1. We define Schwartz class as S(R™) = {p € C* : gn(p) <
oo, for N =0,1,2,...}, where gn{p) = suPgern joj<n (1 + ||} | D> ()]

We have:

df dt(ue, te) = 2(Fhtie, Ue) =2 (JELJeuE,uE) + Z(Jeg(Jeue), ue) (1)

Since J. is self-adjoint, we get: 2 (JeLJeue,ué) = 2(LJEuE, Jete |-

Now, we shall use [1, eq. (1.11), page 415] , plug @ = 0 into [1, eq. (1.11),
page 415] to get:

Q(L.Luf, quf) < Ol Jeuclis (2)
Now, we shall use Young’s inequality for convolution on the RHS of (2), i.e:

[ Jewellzz = llde * uclizz < llFellallucll L2 < Cllue|z2 ()

1



Now we shall estimate the second term in (1), we are using lemmas 1.6 and
1.5 from the previous file:

Combine ('g), (2) and (3), to get: dfdt||uel|3. < C
For d/dt||Vuc||3, < ClVuc||2, We have:

Uue||2.

d/dt(Vue, Vue) — 2(Vyu,, V) = B (VJGLJguE, Vue) +2 (VJEg(Jgue), Vue)

(4)
Notice that:
2 € ethe); € = € elle ),y €
(VJ g(J “ ) i ) Je commutes with V 2 (J Vg(J el Vab )
= 2 EMEJy v E €
Je is self-adjoint (VQ(J'U ) JVu )
=2 (g'(J’ﬁuE)JﬁVuE, JFVuG)
i CllTeVue| 12| (Jeue) Je Vue|| 2

Cauchy-Schwartz incquality

<C

JeVue|72 sup |g'(v)]

< CllVue|Z»
we used |g'| < €, and {3) (%

Ineq. (4), the first term becomes: 2 (V(JCLJEUE), Vue) = (V(LJeue), JEVUE) =

2 (LJEVH.C, JEVuE) +2 ([V, L|Jeue, JFVue) ;

The first term is bounded by C||Vul|3., as can be inferred by the next ref-
erence [1, eq. (1.11), page 415).

The second term can be seen to be bounded by the same bound, by the next
equation:

(V, LM eue, JVul) = > (VA;95(Jew), JVue)

= /ZZZ(Jfam(uﬁ)i)(amafk)aj(Js(ue)k)

7 4L,k m
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So we get by Cauchy-Schwartz that this is less or equals to: C‘]!Vque”%z
where the constant C' depends on bounds on derivatives of entries of the



matrix A; which are smooth functions. Now we know from the fact that J.
commutes with V we have: [VJucll?s = || JeVue|22, and from (3) it follows
that this is less than: C|Vuc||?,.

From the two inequalities: d/dt||ucl|2, < Cllucli2; and d/dt|Vu[2, <
C‘HVuEHLz, now add both inequalities to get: d/dt||uc||?: < Clluel3n-
Thus, |[ul|3, < Aexp(Ct) for a positive constant A.

Since ”‘U.F”%{l < Aexp(Ct), the bound exists for all time ¢, thus also our
solution u, € H! exists for each time, ¢.This follows from the ODE contin-
uation theorem, which says that a solution to an ODL exists as long as the
norm of the solution is finite. So we need to show that ||F(u)|z2 < h(llu| 12)
for some continuous function h.

IF(uo)llz2 = | JeLue + Jeg(Jeue)| 2 (ﬁ
< ||]€LJ€UGHL2 + ”Jﬁg(JﬁuE)“LZ

In (4), we know that || Jeg(Jeue)llz2 < l7ell71 supyern 19 (0)][lullzz < Cllull 2.
As for the first term in the RHS after the inequality sign in (4): ||JeLJeu |2 <
el 1 Ldeuell 2. Now, we only need to estimate the second factor:

|\ Ldeue|l2 =

ZAka,,,.k f (e — 8))e ult, s)ds)

< ZHAHleE e ™ g (e ())”Llﬁ““L?

young’s inequality for convolution

L2

&

j:r:k (f_l(‘ - S))c"”_lu(t, s)ds)

Note that f., mj)_N“ B 0 fooo H’ﬁ;—}ﬁdr < 00, whenever N > n/2 (where
w,, is a constant that depends on n). Then, if N > n/2 and j € S(R™), then
we get:

liallzr < [ ax()(1+1af) Vda 4

= Cgn(j) < o0

Thus, eHlea, (1 ()12 < CFe.
Now, inserting this into (4), we get: ||LJeuellrz < Dok |AkllneC/e - |Juel|r2-
So by combining everything together we get:

IF(u)llze < 3 Akl C/e - uclize + Clluclze = A(luclz2) (/\fg
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Now, we shall show Lipschitz criterion is satisfied. Take two points ¢,s €
I = [t1,ts] , and estimate:

t
lutt, ) — s, Mgz = | f Byt x)dt || 12

f
- f (JLTue(t') + Jeg(Jeue(t)))dt'|| .
< [t s sup || (JeLcuc(t') + Jeg(Jeue )] 2
el

= o= sl sup (L)
t'el

2 + ”JCQ(JEUE(t,))HLz)ﬁi
LV

The first term inside the sup in (4), is less or equal C||Vu.(t')||z2, since
A; is a bounded matrix and J¢ as well is a bounded operator on L? and
V includes all the spatial derivatives of L; and also from above we know
that:C||Vue||z2 < Cpexp(Ct) for positive constants C, Cy, and this is smaller
than Cpexp(Ctz). The second term is estimated as follows: from what
we've scen above it’s less than C|lg(Jcuc)||22, which is again smaller than
Clltte|| 2 sup |¢'| < Cyrexp(Ct'), for C1,C positive constants, which is less
than Cjexp(Ctz). From all of the above we'll conclude that: |lu(t,-) —
u(s, )|z < |t — s|e(I), where ¢() is a constant that depends on the inter-
val, .

2 Problem 13

Definition 2. The space L°(C, B), where C is a subset of R and B is a
Banach space, is defined as the set of all functions f : C — B which their
supremum norm is finite, ”f”Loo(G’B} =sup,cc || f(2)|B < o0;

Lip(C, B) is the space of functions f : C — B which their Lipschitz’s norm

iS ﬁnite, ”f“L‘Lp{C,B) = Sup:z,yEC',a::,;éy Elf(ﬂ‘im:fy(ill HB < 00

When s € Z;, M is a manifold and N is another manifold, we define the
space C°(M; N) as the space of functions f : M > N such that f, f/,..., f(®)
are continuous functions; and C°(M; N) as the space of functions which are
differentiable in all orders inside M.

Theorem 2.1. Let A; be a K x K matrix, smooth in its arguments and
symmetric, A; = A}. Suppose g is smooth in its arguments, with values
in R¥ st g(0) = 0, |¢’(u)] < C. Then there exists a unique solution u €
L (R, HY(M)) N Lipoe(R, L2(M)),(where M = T") to the PDE: u; = Lu+



g(u),and initial condition u(0) = f, where f € H!(M), and the operator L
is defined by: L(t,z,u, Dz)u = }; A;(t, m)ggj—u

Proof. Suppose uy, us solve the PDE above, i.e u; — Lu + g(u), u(0) =
f. Take w = w3 — ug, then w satisfiess w; = Lw + h(w,us), where
h(w(z,t), us(x, 1)) = g(w(t, z) + ua(t, z)) — glua(t, ), w(0) = 0.

Since w(0) = 0 we must have [w(0)||%, = 0. Notice that

(h(w(t), uz), w(t)) = lw(@)l 2 IR (#), ua () 2

Cauchy-Schwartz inequality

N SN 7O P OB OB CRRON

1
= [wOlz2l | 0O o), ua(e)dr|
< I @llw@lzsl [ o) vl

< lw®lr2llw®lize  sup  |hw(v, ua(z,1))]
vER™ xeM

= w®lzllw@liz  sup |g'(v 1 uz(z,2))]

vER® zeM
< Cllw(®)|| g2 |w(®)] 2 4
N

Notice the following: d;(w, w) = 2(wy, w) = 2(3; A;0z,w, w)+2(h(w, u), w).
we get:2(3; A; —a—%w,w) — 2 Jw % wdzx by the following calculation:

0 " f / 0
- Aj - O, wdx = - x A -wdr — ~ s il
( 33 v u]) _/ v o ij . integration by parts wx:’ jrwaw 'UJ 8273 Swar
by the fact that the transpose of a mumber equals the number, we get that:
wy -Ajw = (W, -Aj~w)* (w*-Aj-wy,). Now, use the Cauchy-Schwarz

_7
inequality: 2(A4;0.;w,w) § 223‘ 14;(¢, )l < CE)|lw(t)]|F2, where we
used the fact that A;(z,t) is C™-smooth in its arguments z,, the variables
z are defined on T™ which is compact; thus A;(z,t) and its derivatives are
bounded by a function of ¢ only. Gathering everything together we get:
Aellw(t)||2. < CL(t)|lw(t)||?. by integration and using Gronwall’s inequality
lemma we get that ||Jw(t)||2, < [lw(0)]|2; exp (f; C1(s)ds) = 0; thus

since w(0) =0
w(t) = 0 and we have uniqueness. Now, for the existence part.

Arzela-Ascoli theorem states the following:



Theorem 2.2. Let F be an equicontinuous family of functions from a sep-
arable space X to a metric space Y. Let {f,} be a sequence in F such that
for cach z € X the closure of the sct {fn(z) : 0 < n < oo} is compact.
Then there is a subsequence { f,, } that converges pointwise to a continuous
function f, and the convergence is uniform on each compact subset of X.
[3, page 169]

u, is bounded in L>=(I, HY(M))N Lip(I, L2(M)) (this follows from Prob-
lem 12), it has a weak limit point by Alaoglu theorem:

Theorem 2.3. {Alaoglu Theorem) For a real Banach space X, the closed
unit ball: D(X*) = {f € X* : ||f|| < 1}, where X* is the dual to X, is
compact in the weak-* topology. [4]

(where X in this theorem is H'(M) which is a Banach space, we are
looking at this space since the function u. : I — H(M); and the dual
to H'(BM) is the space of bounded linear functionals F' : H'(M) — R).
So there exists u € L3 (I, HY(M)) N Lipyoe(I, L*(M)) such that u. — v
Furthermore, by Arzela-Ascoli theorem, there’s a subsequence: Ue, — U In
C(I, L2(M)),where in the theorem of Arzela-Ascoli we pick fn = wue, where
¢ = €(n), i.e ¢ depends on n, X = I and ¥ = H'(M). Since u,, — v
as well, we must have that v = w in L?(M).(The proof of the last claim
is a simple observation that if we take w € L?(M) then < u — v,w >=
Jar(w — ue )w + [3,(ue, — v)w, the second integral converges to zero since
ue, — v, and the first integral converges to zero as well since ue, — u, we
have | fy; (1 — te, 0] < SuDcg [~ ti| - € - 0] 21y — 0.

Definition 3. A sequence of functions f, in L? is said to converge weakly
to a function f in L? provided: lim, .o [ fng = [ fg Vg € L?

While Opue, — Opu weakly, since

in our case here the sequence u, € H! so both u., Vu, € L2, the claim
that justifies that Guu., -~ O weakly is since u.,, € L™®(I,H'(M)) N
Lip(I, L*(M)), we have 8y, is bounded in L* (I, L*(M))NLip(I, L*(M)),(Osue,
is bounded since the weak derivative of a Lipschitz continuous function
(which is u.,) is bounded, the bound on the weak derivative is the Lips-
chitz constant).(This last fact follows from Theorem 4 in [6, pages 294-295]
which we will adapt here for our case).

Theorem 2.4. (Characterization of W) Assume U is bounded and U
is Lipschitz. Assume that f: U — R, then:

f is loacally Lipschitz continuous in U



if and only if:
fewr™()

loc

Proof. First suppose that f is locally Lipschitz continuous. Fix: € {1,...,n},
then for each V CC W cC U, pick 0 < h < dist(V,0W), and define
gie) v ﬂwﬂ (z € V). Now, sup,-|g?| < Lip(flw) < co. Then
according to weak compactness in LP where 1 < p < 0o we have: a sequence
h;j — 0 and a function g; € L2 (U) such that:

gf'j — g; weakly in L (U)

for all 1 < p < co. But if ¢ € CL(V), we have:

f flx) & + i) = W) dx = ~/ gf‘(x)(i)(r + he;)dz.
U U

h

We set h; = h and let j — oo to get:

f¢z,dx=— [ giddx
U U

Hence g; is the weak partial derivative of f with respect to z; fori=1,...n
and thus f € W(U).
Conversely, suppose [ € VV;;:O(U). Let B <C U be any closed ball

contained in U. Then by properties of mollifiers we know that:

sup || Df|lpee(m) < o0
U<e <eg
for ¢g > O sufficiently small where f° = 5. % f is the usual mollification.
Since f¢ € C* we have f(z) — f<(y) = j;,l Df(y+t(x — y))dt - (x — y) for
z,y € B; whence, | f¢(z) — f(y)| £ C|z—y|. The constant C is independent
of € now as € — 0 we get that | f(z)— f(y)| < C|z—y|. Hence f|p is Lipschitz
continuous for each ball B CC U, and so f is locally Lipschiz continuous in
U. O

so by Alaoglu theorem dyu,, — w weakly in L> (I, L*(M))NLip(I, L*(M))
for some w

and then by uniqueness of the limit Jyue, — w in L®°(I, L2(M)) (there
is uniqueness since L>(I, L2(M) is a Hausdorfl space)

we get: w = Oyu, since u,, — u in C(I,L*(M)) ). For the last assertion
we need to state the Dominated Convergence Theorem and prove another
claim which will prove our assertion that w = Jyu.



Theorem 2.5. (Dominated Convergence Theorem) Let {f,} be a sequence
of real-valued measurable functions on a measure space (9,2, ). Suppose
" the sequence converges pointwise to a function f and is dominated by some
integrable function g in the sense |f,(z)| < g(z) for all n and for all z € S,
then f is integrable and limy, .o [ fo(z)dz = [ f(z)dz. [5, page 26]

Theorem 2.6. If {u,, (¢)} C L?(M) where M is a compact manifold, and
assume that the sequence converges uniformly in C(I, L?(M)) to u where
I C R is compact, assume also that diu, (t) — w, then w = du.

Proof. We shall prove the claim (2.6). Take some v € L?(M), write down:

< w—ou(t),v >= /M(’w(m)—ﬁtuek (t))v(z)dx+ /M(Bt'u,e-k(t)—Btu(t))v(:t;)dw.
| (1)

The first integral above in the RHS of (2) tends to zero as & > oo since
Oiue, — w; as for the second integral we shall use the Dominated Con-
vergence Theorem. Since wug, (t) —» u(t) in C(I,L?(M)) we must have:
S @ (e, (8) —u(t)yvdaz = 8y [ (e, (t)—u(t))vda; now since u,, (t) is bounded
above by a constant that depends on ¢, this constant function is an integrable
function since our domain of integration is a compact manifold, namely M,
we get by the Dominated Convergence theorem that [, u., vdr — [, uvdz
as k — oo, where we have taken the measure to be vdz. In this case we get
by the next chain of equalities that the second integral in (2) tends to zero
as well:

ko0

lim n Or (e, (t) — u(t))vdr = khI}c}o Oy /M(ue_k (t) — u(t))vdz

=0; lim / (e, () — u(t))vdz
k—oo Jor
:8t0 =

This ends the proof of the claim, since we get that < w — Gyu,v >=0 Vv €
L2(M), thus w = Byu. 1

Jeptte,, converges in L? norm to u, since we have: ||J,u — u|2 — 0 and
also [lue, — ul|p2z — 0, by the triangle inequality we must have: ||J uc, —
u“LZ < ”Jfkufk - Jﬂfc“'”L2 i3 ”Jﬁku - 'LL[ILz < “jt’knblll'u'fk - r“’”Lz E5 “Jfku -
ullzz — 0 (since ||j. ||z is bounded, and from the above we know that:
llue, —ullzz — 0). To show this we need to show that ||J,u— ul|z2 — 0 is
fulfilled, for this we have the next claim to prove.



Theorem 2.7. Let ¢ > 0 with [, @(¥)dy =1, ¢ (z) = 1/*¢(z/€). Sup-
pose f € LP(R™), 1 < p < oc. Then:

lim [|f % e — fz» =0
e—(

Proof. |f % e~ f| = | [qu(f(z —y) — f(2))pe(y)dy|. By Minkowski integral
inequality, which says the following:
Suppose (S1, p1), (S2, ) are two measure spaces, and F : §1 x S» — R is

measurable, then: [, | [y, F(z,v)dm (@) duz)]"” < [, (fy, |F (2 0)Pdpia(y)) " dps ()
I e fls <1 [ 1@ =3) = F@)lplo)dylus
< [ W@ =9) - 1@ lpady

Set: T = [ o511/ (@ =) = F@)ll1o(aay pey)dy, and 1T = [ _ [ f(z —

Y}~ F(z) || Lr(dx) Pe(y)dy. The translation operator y — f(z—y) is continuous
from R™ to LP(R") for 1 < p < oo. So given 1 > 0 there exists § > 0 s.t:

If(z —y) — F@)lzrany < VYl < 6.

Thus with such a 4, I < nﬁylséwe(y)dy < 7 Jon we(y)dy = 7. From
the fact that: | f(z —y) — f(@)llzr(az) < 2/|fllze, it follows that: IT <

N Fllzr Sy 2 W)y = 2l o5 2W/)dy = 2 leo f 1oy Slu)dy —
0 as e 0. Thus, ||f*@:— fllze — 0. O

Thus, we apply the theorem on p = 2 we must have ||J, v —ul|f2 — 0,
and from the above argumentation indeed ||Je e, — ul/zz2 — 0. Since
the derivative of g, is bounded by C, we have a Lipschitz constant C 5.t
l9(Je e, ) — g(w)] < Clde e, — uf, we get that:||g(Je, ue.) — g(u)|lgz <
CllJe e, — ullzz — 0; thus we have: g(J u.) — g(u) in C(R, L%(M))
norm.And also we have:

Ie.9(Jeyue,) — gl < 1J09(Jo.ue) — Jo.9(u)llrz + 1 Je.9(w) — g(u) |2
=lJe L llg(Je.ue.) = g(w)llzz + 1 Je,9(w) — g(uw)liz — 0
Where in the above last chain of inequalities the first term converges to zero

as we have seen above it since [[je, |1 < oo and ||g(Je ue,) — g(u)flzz — 0
as shown above, and ||J., g(u) — g(u)||z2 — O follows from theorem (2.7).

Definition 4. A continuous operator, 7': A — A, at a point xg; where A is
a Banach space, is an operator that is continuous in some topology. There is



the strong continuity by the norm of A4, i.e limy_,z, ||T(xz)—T(z9)||4a = 0, and
there’s also weak-topology continuity, by the inner product, i.e: < T'(z) —
“T(xg),v >4 0Vv € A as z — xzp.

L is a weak-topology continuous operator from the space H!(M) —
L2(M)

by the fact that L = } ;. A;(¢,2)0;, we want to show weak convergence
of L operator, where u — ug . Take v € L? then: | < L(u) — L(ug),v > | =
[ 225 A305(u — uo)v| < Ca(t) 3o.1 < 85(u — up),v > | — 0 as u — ug in
H'(M). Where we used the fact that A;(x,t) is smooth in its arguments in a
compact manifold T™ and thus A; is bounded by a constant that depends on
t (just as in the uniqueness part of this problem); so by the weak convergence
of u — ug in H'(M) we have: | < 8;j(u — ug),v > | — 0.

Then by the weak continuity of L J, LJ, u,, — Lu weakly (since
LJgue, — Lu = v weakly, and if we denote by: v, = LJ u., we also
have J,, v, — Lu = v from what was proven above),

so by the fact that Qf;%-; = JeLJoue + Jeg(Jeue),u(0) = f and u,, is a
subsequence of u, that satisfy the same PDE and gathering all the limits we
get that: Oy, — Oyu weakly , Jo, LJ, ue, — Lu weakly , J;, g(Je e, ) —
g(u) in L? norm,and thus by the fact that strong convergence implies weak
convergence, we also have here weak convergence:J,, g(Je, uc, ) — g(u). By
the uniqueness of the limit, which means that since Oyue, = Jo, LJc ue, +
Je,9(Jep e, ) and dyue, — Syu weakly; and also Jo, LJ., e, + Jer 9(Je te, ) =
Lu + g(u) weakly, thus we must have equality between the limits, i.e, O;u —
Lu + g(u).

And since u,, (0) = f in the weak limit we have: f = u¢, (0) — u(0) =
Q) == . O
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