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Abstract

Denote by D0,1(R) the class of all (cumulative) distribution functions on R
with zero mean and unit variance; if F ∈ D0,1(R), we are interested in the asymp-

totic behavior of the function sequence (x 7→ nF (x/
√
n))n∈N. We show that

infF∈D0,1(R) lim infn→∞ nF (x/
√
n) ≥ Φ(x) for all x ∈ R, which in particular would

be a result obtained for the first time regarding the growth order of an arbitrary

standardized distribution function on R near the origin.
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1 Introduction

A distribution function on R is by definition precisely an increasing (in contrast with

“strictly increasing”), right-continuous function R→ [0, 1] whose limit at minus infinity

is 0 and whose limit at plus infinity is 1. Let D0,1(R) denote the class of all distribution

functions on R with zero mean and unit variance, i.e. the class of all standardized

distribution functions on R. If F ∈ D0,1(R), the asymptotic behavior of the function

sequence (x 7→ nF (x/
√
n))n∈N is unclear: For every real x > 0, the real sequence

(F (x/
√
n))n is decreasing; but the decreasing speed seems intangible.

It turns out that the standard Gaussian distribution function Φ : x 7→
∫ x
−∞

1√
2π

e−t
2/2 dt on R is a pointwise bound (in x) of the limit inferior of the function sequence

(x 7→ F (x/
√
n))n for every F ∈ D0,1(R). We then obtain a result gaining an under-

standing of the growth order of the standardized distribution functions on R near the

origin.

Moreover, our main result is informative also in obtaining a further interesting,

unexpected bound regarding the “tail order” of the standardized distribution functions
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on R, and in checking whether a distribution function on R belongs to D0,1(R). Here and

throughout, the term “tail order” is employed in a figurative, poetic sense (and hence

the presence of the quotation marks) for communicational convenience, which need not

coincide with some established notion connoted by “tail order” such as in Hua and Joe

[1].

Our main result is the following

Theorem 1. If D0,1(R) is the class of all distribution functions on R with zero mean

and unit variance, then

inf
F∈D0,1(R)

lim inf
n→∞

nF (x/
√
n) ≥ Φ(x)

for all x ∈ R.

2 Results

We begin by giving the consequences of Theorem 1; some of them may be theoretically

interesting, and others may be potentially useful regarding applications.

2.1 Consequences

There is a pointwise “equi-”bound for the elements of D0,1(R):

Proposition 1. For every F ∈ D0,1(R) we have

lim
x→∞

lim inf
n→∞

nF (x/
√
n) ≥ 1.

Proof. If F ∈ D0,1(R), we have by Theorem 1 the inequality

lim inf
n→∞

nF (x/
√
n) ≥ Φ(x)

for every x ∈ R. The evident passage to the limit gives the desired inequality.

The standardized distribution functions on R cannot decrease nor increase to the

origin too fast:

Proposition 2. If F ∈ D0,1(R), then for every x ∈ R and every ε > 0 we have

F (x/
√
n) 6= o(n−(1+ε))

as n→∞.
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Proof. If there are some x ∈ R and some ε > 0 such that F (x/
√
n) = o(n−(1+ε)) as

n→∞, then

nF (x/
√
n) = o(n−ε)

as n→∞; and so

nF (x/
√
n)→ 0

as n→∞. But then

nF (x/
√
n) < Φ(x)/2

for all sufficiently large n, and hence F /∈ D0,1(R) by Theorem 1.

Further, Theorem 1 may be applied to check the D0,1(R)-membership of any given

distribution function on R:

Proposition 3. If F : R→ [0, 1] is a distribution function, and if there is some x ∈ R
such that

lim inf
n→∞

nF (x/
√
n) < Φ(x),

then F /∈ D0,1(R).

Proof. If F : R → [0, 1] is a distribution function, and if F ∈ D0,1(R), then Φ(x) ≤
lim infn→∞ nF (x/

√
n) for all x ∈ R by Theorem 1, contradicting the other assumption.

The following is a possible theoretical situation where Proposition 3 may be helpful:

Example 1. Let f : R→ [0,+∞[ be an L1 function with respect to Lebesgue measure;

suppose F : x 7→
∫ x
−∞ f is a distribution function on R with mean zero. If it is cumber-

some to compute the variance of F , but if, for instance, it is relatively easy to find that

there is some real x ≥ 0 such that

F (x/
√
n) <

1

3n

for all sufficiently large n, then

lim inf
n→∞

nF (x/
√
n) ≤ 1

3
<

1

2
≤ Φ(x).

By Proposition 3 we may proceed to conclude that

F /∈ D0,1(R).

3



2.2 Proof of Main Result

We now give

Proof (of Theorem 1 ). For every distribution function F on R, there is some sequence

of independent identically distributed (i.i.d.) random variables X1, X2, . . . such that

F is the common distribution function of each Xi. This, as well-known, follows by

considering the natural projections on RN and the product probability measure, of the

F -identified probability measure over R, on the Borel sigma-algebra of RN. (For a short,

simple, and elegant proof of the existence of product probability measure given arbitrary

probability measures, we refer the reader to Saeki [2].)

Given any F ∈ D0,1(R), choose a sequence of i.i.d. random variables X1, X2, . . .

having F as their common distribution function. Denote by P the product probability

measure over RN obtained from F .

Since, letting n−1/2 be the principal square root 1/
√
n of 1/n for every n ∈ N, we

have

P
(
n−1/2

n∑
i=1

Xi ≤ x
)

= P
( n∑
i=1

Xi ≤ x
√
n

)

≤
n∑
i=1

P
(
Xi ≤ x/

√
n

)
= nP

(
X1 ≤ x/

√
n

)
= nF (x/

√
n)

for all x ∈ R and all n ∈ N, the classical Lindeberg-Lévy central limit result (e.g.

Theorem 3, Section 3, Chapter III, Shiryaev [3]) implies that

lim inf
n→∞

P
(
n−1/2

n∑
i=1

Xi ≤ x
)

= Φ(x)

≤ lim inf
n→∞

nF (x/
√
n)

for all x ∈ R.

Given any x ∈ R, the argument above holds for all F ∈ D0,1(R); and therefore we

obtain

inf
F∈D0,1(R)

lim inf
n→∞

nF (x/
√
n) ≥ Φ(x)

for all x ∈ R. This completes the proof.
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