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Fractional Dynamics and Hamiltonian Time Crystals 

Ervin Goldfain 

Abstract 

In condensed matter theory, Hamiltonian time crystals (HTC) are time-dependent solutions of the 

equation of motion that develop in a minimum energy configuration. A subset of HTC’s includes periodic 

trajectories that spontaneously break time-translation invariance and occur at a local minimum of the free 

energy. Recent studies suggest that HTC’s may be realized as novel topological structures formed by knotted 

molecules. In this brief note we show that fractional dynamics of harmonic oscillators may replicate the 

properties of HTC’s outside the realm of traditional condensed matter applications.  
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Time crystals are temporal analogs of ordinary crystals which explicitly break space 

translation symmetry in solid-state physics [1-2]. At first sight, HTC’s can be discarded 

on straightforward theoretical grounds. One invokes the argument that, on any compact 

closed manifold, the minimum of the Hamiltonian ( , )a aH p q , ( 1,2,...,a N ) is a critical 

point where Hamilton’s equation reads  
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Because critical points are defined by vanishing derivatives of H , (1) implies that these 

points are necessarily time independent. However, there are legitimate counterarguments 

against this point of view. In particular, HTC’s can be shown to exist under these 

conditions [1-2]: 

a) Hamilton’s equation has symmetries that lead to conserved Noether charges, 

b) HTC’s spontaneously break time-translation invariance, 

c) HTC’s are both a minimum of the energy and a time-periodic trajectory generated 

by linear combination of conserved charges.     

Moreover, [2] argues that HTC’s may be topologically implemented using closed molecule 

strings dubbed “knotty molecular motors”.  

The purpose of this (exceedingly) brief note is to indicate that fractional dynamics of 

harmonic oscillators has the potential of complying with conditions a)-c) outside the 

traditional framework of condensed matter theory.  To this end, consider the fractional 

Lagrangian describing the behavior of harmonic oscillators endowed with memory 

effects [3] 

 2 2 2

0

1 1
( )

2 2
tL D x x     (2) 

 2

1 0( )t tD D x x      (3) 

subject to the initial conditions (0) 0x   and 1'(0) (0) 1tx D x  . Here, tD  is the fractional 

time operator defined in section 5.1 of [3], (0,1]   stands for the order of differentiation 

and   for the oscillator frequency. It can be shown that (3) generates solutions that 

generalize the exponential function of ordinary differential equations and may be 
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interpreted as defining quasi-periodic trajectories [5-6]. It can be also shown that the 

fractional Noether theorem detailed in [3] extrapolates the standard conservation law to 
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If we limit the discussion to the so-called minimal fractal manifold set by 
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 [4], the integral in (4) nearly cancels out and one recovers the 

expression of the standard oscillator energy given by 
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It is apparent that turning off the non-negative contribution of the integral in (4) 

automatically implies that (5) sets the lowest bound of (4).  

These observations point out that (2) – (5) are likely to meet all conditions a) – c) outside 

the realm of conventional condensed matter applications and molecular knots. 
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