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Abstract: In this paper, we will discuss the Laplace transform from
the viewpoint of the division by zero calculus with typical examples. The
images of the Laplace transform are analytic functions on some half complex
plane and meanwhile, the division by zero calculus gives some values for
isolated singular points of analytic functions. Then, how will be the Laplace
transform at the isolated singular points? For this basic question, we will be
able to obtain a new concept for the Laplace integral.

Recall that David Hilbert:

The art of doing mathematics consists in finding that special case which
contains all the germs of generality.

Meanwhile,

Oliver Heaviside: Mathematics is an experimental science, and definitions
do not come first, but later on.
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1 Introduction

In this paper, we will discuss the Laplace transform from the viewpoint of the
division by zero calculus with typical examples. The images of the Laplace
transform are analytic functions on some half complex plane and meanwhile,
the division by zero calculus gives some values at isolated singular points of
analytic functions. Then, how will be the Laplace transform at the isolated
singular points? For this basic question, we will be able to obtain a new
concept for the Laplace integral. At the isolated singular points, of course,
the Laplace transform (integral) does not exist in the usual sense and so the
problem is delicate and new.

2 Division by zero calculus — definition

We would like to consider some values for isolated singular points for ana-
lytic functions. The very typical problem is to consider some value of the
fundamental function W = 1/z at the origin. We found that its value is zero.
When the result is written as

it will have a serious sense, because it looks like the division by zero that
has a mysteriously long history ([1, 3, 20, 32, 33, 34]). However, note that
0 x 0 # 1. We showed that our result gave great impacts widely with over
1100 items. For example, look the papers cited in the reference.

The essence is stated as follows:

For any Laurent expansion around z = a,

flz) = _Z Co(z—a)"+Co+ Y _Cu(z—a)", (2.1)

n=—0o0

we will define

For the correspondence (2.2) for the function f(z), we will call it the
division by zero calculus. By considering derivatives in (2.1), we can
define any order derivatives of the function f at the singular point a; that
is,

f™(a) =nlC,.



With this assumption, we can obtain many new results and new concepts.

Typically, we found a beautiful and important circle by this division by
zero calculus, see [14] and [18].

However, for this assumption we have to check the results obtained whether
they are reasonable or not. By this idea, we can avoid any logical problem.
— In this viewpoint, the division by zero calculus may be considered
as an axiom.

3 Examples
1. For the Laplace transform of the function
tn_l —at
L n=1,23,..,
(n—1)!
we have
1
(s +a)"

Then, for s = —a, by the division by zero calculus (DBZC), we have

L
(s +a)"

(—a) =0.

Then, how will be the corresponding Laplace transform

OOtn—le—at ot [e’¢] tn—l
/0 =1 dt_/o TSI

? Note that this integral is zero, because infinity may be represented
by 0. For many geometrical examples and analytical meanings, see the
papers cited in the references. For example [2, 6, 19, 27].

Conversely, from this argument for the general function for any positive
k



that is the Laplace transform of the function

tk_le_at,
we can derive the result
I'(k)
(s+ a)k (=a) =0.

Indeed, since this result is not defined by DBZC for general positive k,
this result now was derived here, by this logic.

. For the Laplace transform of the function

—at bt

eb;e’ a < b
—a
we have
1
(s+a)(s+0b)
Then, for s = —a, by DBZC, we have
1 1

(8+a)(s+b)<_a) T -

Then, the corresponding Laplace transform

oo ,—at __ ,—bt 1 o0
/ ua“tdt = / (1 — e_(b_“)t) dt
0 b—a b—a J,

b
(b—a)?’

that is right.

. For the Laplace transform of the function

—at __ —bt
ae be b

<b
a—>b @

we have s

(s+a)(s+b)
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Then, for s = —a, by DBZC, we have

S b
(s—l—a)(s—i—b)(_a) T h—ay?

Then, the corresponding Laplace transform

> aem % —be ¥ 1 o0
— %t = — be~ =0t gt
/0 e b /0 (a — be=o)

a —

(b—a)*
that is right.

. For the Laplace transform of the function

1
—sinh at
a

we have
1

(s —a)(s+a)
Then, for s = a, by DBZC, we have

1 1
Gaera T e

Then, the corresponding Laplace transform

i > _ ,—2at __L
2a J, (1 ¢ )dt_ 4a?’

that is right.

. For the Laplace transform of the function
cosh at

we have s

(s—a)(sta)
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Then, for s = a, by DBZC, we have

s 1
(s —a)(s+a) (@) = 1o

Then, the corresponding Laplace transform

l > —2at _
2/0 (1+e™)di= 1,

that is right.
. For the Laplace transform of the function

1
— (at — sin at)

a3
we have
1
s2(s?2 +a?)
Then, for s = 0, by DBZC, we have
1 1

T T

Then, the corresponding Laplace transform

> 1
— at —sinat) e Vdt = ——,
5| (ot =—sinan .

that is right. However, here note that

> 1
/ sin atdt = —,
0 a

in the sense of distribution theory.

. For the Laplace transform of the function
1
?(1 — cosat),

we have
1

s(s? +a?)’
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Then, for s = 0, by DBZC, we have

1

Then, the corresponding Laplace transform
L[ —ot

— (1 — cosat)e™dt = 0,
a= Jo

that is right.

. For the step function u(t), the Laplace transform of the function u(t—k)

is given by

Then, by DBZC, we have

Then, its Laplace transform is

/ ldt = [t]° = —k,
k
that is right. Note that oo = 0.

. The Laplace transform of the function (t — k)u(t — k) is given by

1 —ks
—26 .
S

Then, by DBZC, we have

<S—12€"“) o)==

Then, its Laplace transform is

0 t2 :|OO k?
b=k = o k| =2
[ o=m=[z-x], -5

that is right.



10. For the Laplace transform of the function

11.

1 -3¢ 3%
we have
5242
s(s+1)(s+2)
Then, for s = 0, by DBZC, we have

5242 3
s(s+1)(3+2)<0) Y

Note that by the theory of Oliver Heaviside we can calculate the inverse
Laplace transform of the form

that is for polynomials p(s), q(s).

Then, the corresponding Laplace transform

/O (1—3e"+3e ) dt = —g,

that is right.

For the Laplace transform of the function

— — logt,

we have

1
—log s.
s

(élog s) (0) = 0.

Note that by the general definition of the division by zero calculus for
differentiable functions, this result is derived also in this way

(Z1065) (0 = togsy0) = (5 ) 0) =0

S

Then, for s = 0, we have
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([300).

In general, we obtain

1
(S—klogs> (0)=0, k>0.

Of course, we can derive many and many examples.

4 Remark

For the Dirac delta distribution d, we have

d(w) = l/ cos wtdt.
0

™

Then we see that

9(0) = 0.
By taking derivative, we have
/ 1 > .
§(w)=— —t sin wtdt.
m™Jo
Hence,
§'(0) = 0.

In general, we obtain that

§M0)=0, n=0,1,2,3,...

5 Conclusion

We are interesting in some definite statement for the relation of
the division by zero calculus and Laplace integrals.
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