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A. Abstract.

If a variable is replace by its square and subsequently enlarged by a constant during a number of iteration—steps
in quaternion—space, a network of (3) sets will be built gradually. As long as for the iteration—constant certain
conditions are fulfilled, the network will consist of: an unbounded set (escape—set) with trajectories escaping to
infinity during course of the iteration, a bounded set (prisoner—set) with trajectories tending to a sink—point and
a further bounded one (JULIA—set) with a fixed—point as repeller having a repulsive effect on all points of both
the other sets. The iteration will continue until the attracting sink—point of prisoner—set and the repelling fixed—
point on JULIA—set have been found. This situation is reached if predecessor— and successor—state of the
iteration became equal. The fixed—point—condition provisionally formulated in general terms of quaternions,
can be separated into (3) sub—conditions. When heeding the HAMILTONian—rules for interactions of the
imaginary sub—spaces of the quaternion—space, each sub—condition will be appropriate for one imaginary sub—
spaces and independently debatable. Knowledge of fixed—points from this fundamental network will one enable
to study the structure of a connected JULIA—set.

The Iteration will start from (1) on real—axis, this is not a restriction on generality because an appropriate
scaling on real—axis can always be archived this way. It will become obvious, that the fixed—points in prisoner—
and JULTA—set will depend on the iteration—constant only. Thus (16) different constants chosen appropriately
will enable to arrange (16) fixed—points of JULIA—sets in the square—points of a hyper—cube and thereby
together with the JULIA—sets to built a related JULIA—network. The symmetry—properties of this related
JULIA—network can be studied on base of a hyper—cube’s symmetry—group extended by some additional
considerations.
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1. Introduction.

In the following attention is applied to the results of an iteration, which takes place in quaternion—space (a space
of hyper—cubes with its space—elements) a layout of this is given next:

Each hyper—cube:

e Issurrounded by (8) cubes each one with (6) surfaces. Thus all together, cubes will have (48) surfaces.
e Because the cubes will share surfaces, only (24) surfaces will have to be counted effectively.

The quaternion—space is spanned by a real unit—vector (e) vertical to a tripod of imaginary unit—vectors
{1~j~d}. Among these reference—vectors the HAMILTONian rules must hold:

11 e? = (=i?) = (=j%) = (—d?) =1
[ij = (=ji) =d] A [id = (—dj) = i] A[di = (—id) = j].
Any point in the space is given by:
e Q=eQu+iQ+jQ;+dQs = (Q = quaternion—variable} A ( [Q¢"Q;"Q2" Q3] = real components).

A sequence:

1°2. [Q — Q*+(N = Ny+iN;+jN,+dN; )’+N - ... = (N =constant) A ([Ng"N;"N,"N;] =
real components)

iteratively executed is to considered next, where by observing the HAMILTONian rules (1~1.) the followmg
relations between Q and Q? must hold:

Derivation 1°1.

Q =eQp+iQ +jQ,+dQ;

[ leads ts|

®+-e

= (eQo+iQ+jQ,+dQ;)°

Q? ’“82Q H7Q %+ Q 2 +d Q5%+
12QoQ1+52QoQx+d2Q Q5+
1(JQ:1Qx+dQ,Qs3)+ ® o
J(1Q:Q+dQ,Q;3)+
d(iQ5Q:+jQ3Q,)

[leadsta| & | with| I3k

F=(iN = () = () =1

Q% = Q*—Q:*—Q,>—Qs*+
12Q;Qo+j2Q2Qo+d2Q;Qp+ @
dQ;Q,—jQ:Q;—dQ,Q; +iQ,Q3+jQ3Q—-1Q3Q,

[ teads to | 4

Q% = Q*+i2Q,Q—Q.*+
Qo +j2QaQ0—Q2%+ ®
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Qo’+d2Q3Q—Q3°—2Q,’
[ teads to| A
Q% = (Qo+iQ1)*+(Qo+iQ2)*+(Qo+dQ3)°—2Q,” e d
[leadsta| & | with| 2
[Q; = Qo +iQu] A [Q; = Qo+i Q2] A [Qu = Qo+d Q5] @
Q = (Qo+1Q1)+(Qp+iQ2)+(Qo+dQ5)—2Q, B

Without restriction on generality due to a free choice of an appropriate scaling on the e—axis, (Qg =1) can be
assumed in (1°2.) and thus one may further write:

173. [(P=Q+Q;4+Qs;—2) — (P2 = Qi2+Qj2+de_2)+N]2+N — ... = Nj=DN;+N;o+Ngy

This iteration will run until its predecessor— and successor—state become equal. When certain restrictions on
(N) are observed, a network of (3) connected sets will be generated:

e An unbounded escape—set with trajectories escaping to infinity in execution—time of the iteration,
e A bounded prisoner—set with trajectories tending to a sink—point while the iteration is going on and

e A bounded JULIA—set with a fractal structure formed by points acting as repellers against all points of both
the other sets.

At the moment iteration stops, (2) fixed—points have been generated:

e Arepeller—point (Hjy) on JULIA—set and
e A attractive sink—point (H,) in prisoner—set.

From sequence (1~3.) the following condition for the fixed—points must hold:

° Qi2+Qj2+Qd2_Qi_Qj_Qd+N0+iN1+jN2+dN3 =0.

This will result in the (2) fixed—point—solutions (Hj;,) with their components:
o [H; — QJA[H; — Q]A[H; Q.

Thus equation (1~3.) can now be re—written as:

o H +H+H,*—H; —H; —H,+No+iN;+jN,+dN;3 = 0,

under (N = N;o+N;o+Nyo) can be separated into:

1“4. Hi Z—Hi+Ni0+iN1 = 0
1A5. sz—Hj""‘NjO‘l"sz = 0
1°6. Hdz——Hd+ng+dN3 =0.

2. About the Structure of a connected Quaternion-JULIA-Set.

Searching for the fixed—points of an appropriate network (escape—, prisoner— and JULIA—set) seems to be a
good way to enter the discussion on the structure of a connected JULIA—set. For further discussions an
invariance of forward— and backward—iterations relative to the repelling fixed—point is of major interest.
Instead trying to find the fixed—points directly their projections in complex planes ([e~i] A [e~i] A [e~d])
(obtained via solutions of equations (1~4.—1"6.)) are used preliminary in order to specify them indirectly.

2.1. Fixed-Points from Interation (1 ~3,) of Sequence (1"\1,) .

Frome.g. [1 A 2] it is known, that a network with complex escape— prisoner— and JULIA—set can be obtained,
when a sequence like:

2.1°1. ([h = ehg+ih ] =h?+[€ = elg+il,])2+£—((h®+£)?+£)?+£—... <« ([h=variable] A [£ = constant]).
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is executed recursively and the iteration finally stops due to equality of its predecessor— and successor—state.
This complex network will have properties comparable with the network specified from (1~3.) with the
exception, it only exists in complex plane. For this complex network it ihas become obvious, there is a structural
dichotomy. Depending on the constant (€) both prisoner— and JULIA—set may behave differently:

e For a specific £—set, the complex prisoner— and JULIA—set are connected (each on consists of one piece only)
and the prisoner—set possesses a fixed—point as sink, while the JULIA—set has a fixed—point as a
repeller for the prisoner— and escape—set as well.

e Incase of an alternate £—set, prisoner— and JULIA—set will become CANTOR—sets, which means, they
appear completely disconnected.

B. B. MANDELBROT [3] had the idea of picturing this dichotomy in a set of parameters (£) varying in the
complex plane. This leads directly to the MANDELBROT—set:

maginary

He coloured each point in the plane of £—values black or white depending on whether the associated JULIA —sets
respectively turned out to be one piece or dust.

What now a question about the characters of the complex solutions from equations (1~4.—1~6.) is concerned, it
must be identified, that they are subjected to the same dichotomy as those in case of (2.1~1.). Solutions of (1~4.—
176.) only will become fixed—points, if the complex components (N;o+7N;) A (N;o+7N2) A (Ny+dN;3) within
(1~3.) are extracted from the black part of the MANDELBROT—set.

2.1.1. Conditions to find Components of Fixed-Points .

Under these conditions (1~4.) leads to the preliminary solutions:

o Hueq = Yet%(1—4N;—i4N,])*%.

This can be further evaluated by settings:

e 1—-4N;(—i4N, = (u—ix)? = u?—i2ux+x?

leads via a fourth—degree—equation for (u), to the following solutions of (u) and (x):

e u-= ﬂ:«%"’2Ni0+«(%—2Ni0)2—4N12»y2»%
o x=+2N;/(%—2N;+{(%—2N;)*—4N?)*)*

finally to:
2.1.1°1.  Hjgq = Yt {%—2N;o+{(5—%N;0) >~ YN 2) Y EFIN, /{¥2—2N;o+{(¥2—2N;( ) 2—4N, 2)*)* .

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (P) at
the locations of H;j45;. This derivation can be calculated in the same way as for the real case. A fixed—point is
attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling if (>1). Therefore
one obtains:

e |2H;y| > 1 — H;y, is repeller and thus a point on corresponding JULIA —set.
e |2H;;| <1 — H;p, is attractor and thus a sink in the corresponding prisoner—set.

More details about the derivations can be found in the scheme (2.1.1~1.):
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Derivation 2.1.1"1.

H,’Z_H,‘"'Ni(]""iNl = 0

[leads ta |

H"[]_&zl = ]7/2:!:1/2«1"4:1q,‘0‘—‘f‘lNl»l/ﬁ

[leads ta | & | with |

1—4N;,—i4N; = (u—ix)? = u?— i 2ux+x2

@+~ e

Hi[l&m = Vz:t]/zu:Ffl/zX

[ where [

[ leads ta |

|2H ;| = [(14u)®+x*]*

|2Hﬂ2]|: [( 1"'“)2+X2]%

® >0 =@ =0 =6

1~4Ni0 = u2 +X2

(4N; = 2ux) — (2N;/u=x)

o >0

1-4N;q = u’+4N,*/u®

u?—(1—4N;)u’+4N,2 =0

e <o

[ leads to |

u? = %—2N ;o +{(%—2N,,)>—4N,2)*

| leads to|

u = (% —2N,o+{(2—2N,o)°—4N, 2)*)*

®+=0+=0

[ leads to|

x = +£2N; /(% —2N,o+{(%—2N,0) *—4N,*)*)*

®+~0

[ leads ta |

-0 >0

Hi[1&2] =%
+
(%—"N;o+{(—%N ;o) 214N, 2)*)*
:F
iN, /{%—2N;o+{(Y2—2N,0)*—4N, 2)")*

[u>0] — [0 < [2H;;y)| = (1+|u]) [1+4N*/u?(1+[u])?]* > 1]

[u> 0] — [0 < |2H;;y| = (1—|u])[1+4N,*/u®(1—[u])*]* < 1]

> ®

[u<0] — [0 > {—|2H;py| = —(Ju|-1)[1+4N,*/u?(1+]u])*]*) < ~1]

[u<0] - [0 > {—|2H;p5| = —(Ju]+1)[1+4N,*/u*(1—|u])*]") > —1]

[ leads ta |

0<|2H;y|>1

0<|2H;5l <1

[leads ta |

H;;1; : Component associated with repeller-point on quaternion-JULIA-set

o« 0+« 0>

H iz Component associated with sink-point in quaternion-prisoner-set

o =0 =0

Similarly (1~5.) will lead to the preliminary solutions:
L Hj[]_&2] = ]/211/2((1—4Nj0"“j4N2»%.
This can be further evaluated by settings:

e 1-4N;—j4N, = (v—jy)? = v’—j2vy+y>

leads via a fourth—degree—equation for (v), to the following solutions for (v) and (y):

e V= :}:((1/1."—21\11'()'|'«(]/2_21\Ij0)2"'4‘1\122))1)&»5é
o y=£2N,/(%—2N;o+{(¥2—2N;0)2—4AN,2)*)*

finally to:

2. ]_ . 1A2. Hj[l&Z] = ]/2:]:«1/8—1/2Nj0+(((1/8—]/2Nj0)2"‘%Nz2))%))%:‘:sz/((]/2—2Nj0+(((]/2—2Nj0)2—4N22»%»%.

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (P) at
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the locations of Hj(;44)- This derivation can be calculated in the same way as for the real case. A fixed point is
attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling, if it is (>1). This
leads in the actual cases to:

e |2H;;| > 1 — Hjjy, is repeller and thus a point on corresponding JULIA —set.
e |2H;y| <1 — H; is attractor and thus a sink in the corresponding prisoner—set.

More details about the derivations can be found in the following scheme (2.1.1~2.):

Derivation 2.1.1"2.

[leads to|

H j[1&2] = ]/2ﬂ:]/2«1—4Nj0—j4N2))%

] [leadsta | & | with|

o e

1—4N;0—j4N, = (v—jy)? = v’ —j2vy+y?

H;ne9 = YatVavEjey

Pl
[ where |

[ leads ta|

|2H;y| = [(1+v)*+y?]*

>0 +~6 +«=o=0
®

[2H 15| = [(1—v)*+y?]*

1—4Nj0 - V2+y2

o>0

(4N; =2vy) — (2N, /v=y)

1—‘4Nj0 = V2+4N22/V2

Aﬂi

o <o

V4—"( 1—4Nj0)vz+4N22 = 0

[ leads to |

V2 = %‘—2Nj0+<((]/2—2Nj0)2—4N22»%

| leads to |

o+ 0 =0

v = +(%2—2N;o+{(V2—2N;() *—4N,%)*)*

[ teads ta |

=0

y = £2Np/(%—2N;0+{(%—2N;) *—4N, ) *)*

-0 >0

[ leads ta |

Hjjie2) = %2
+
(—YeN;o+{(Vo—"2N;0) *— %N, %) *)*
q:
JNo/ «%_ZNJ‘0+<((1/2—2N1'0)2_4N22»%))%

[v>0] — [0 <|2H;;| = (1+|v])[1+4N,>/v?(1+|v|)?]”* > 1]

[v> 0] — [0 < |2H;p)| = (A—|v])[1+4N,*/v*(1-|v])*]* < 1]

> o

[v < 0] — [0 > {—[2H;;y| = —(|v|-1)[1+4N,?/v*(1+]v])*]*) < ~1]

[v < 0] — [0 > {—[2H;py| = —(Iv|+1)[1+4N,*/v*(1-|v])*]*) > ~1]

[ teads ta|

0 <|2Hjy|>1

0<|2H;| <1

[ leads to |

o+« o+ 0>

H;(4, : Component associated with repeller-point on quaternion-JULIA-set

® =0 =0

H; (5, : Component associated with sink-point in quaternion-prisoner-set

And last not least condition (1~6.) will lead to the preliminary solutions:
® Hdu&z] = ]}/2:t1/2<(1—4Ndo—d4N3))%.
This can be further ev aluated by settings:

o 1-4N,—d4N; = (w—dz)? = w’—d2wz+z>
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leads via a fourth—degree—equation for (w), to the following solutions for (w) and (z):

L ] W = :':((]/2_sz0+(((]/2—2Nd0)2—4N32)>%))%

o z=+2N;/(Va—2N 4o+{(Y2—2N,0 ) —4N;7)*)*

finally to:

2.1.1°3.  Hypga = Yt (U—YaN o +{(%—YN 1) VAN, 2) ) Fd Ny /(Va—2N yo+{(2—2N 4o ) 2— AN 2) %) %,

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (P) at
the locations of H 4j149)- This derivation can be calculated in the same way as for the real case. A fixed— point is
attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling, if it is (>1). This
leads in the actual cases to:

e |2Hgy| > 1 — Hypy, is repeller and thus a point on corresponding JULIA—set.
e |2H 4| < 1 — Hyp is attractor and thus a sink in the corresponding prisoner—set.

More details about the derivation can be found in the following scheme (2.1.1°3.):

Derivation 2.1.1"3.
H,>—H 4N +dN; =0 &
[ teads to| d
H j149) = Y24£%2{1—4N ;o—d4N )" ® e
[leadsto | & | with| ¥
1-4N,—d4N; = (w—dz)? = w’—d2wz+2° ® o o
H 10 = Y2tewFdY2z ® L . | ®
[ where | g -
[ leads to | 4|
12H ) = [(14+w)2+22]* ® . e
A AT
[2H )| = [(1—w)*+27]" ® : ®
1—4N,, = w2422 @
A
(4N; = 2wz) — (2N3/w = z) ® @
1-4N, = w?+4N,2 /w? @
A% A
w'—(1-4N o) w>+4N;% = 0 @ ®
[ leads ts] 4 LR .
w2 = %—2N,+{(%2—2N ) ?>—4N,2)* ® ‘
[ leads to| 4
w (% —2N 10+{(*2—2N )2 —4N;2)*)* e o e
[ teads to | $ A
7 = £2N3/{%—2N 4o+{(¥%2—2N 49)>—4N,2)*)* ® ©
| leads ta| 4
Hd[l&:2] =V
+ ‘
(a—"2N 4o +{(Ss—2N 40) 2 —aN 3 2) %)% L]
q:
dN; /(%—2N4o+{(—2N 40)*—4N;2)*)*
[w > 0] — [0 < |2H 4] = (1+|w|)[1+4N32/w?(1+]w])]* > 1] )
[w>0] — [0 < [2H,p5| = (1—|w])[1+4N3*/w?(1—|w|)?]* < 1] ®
AN | A
[w < 0] = [0> (—[2H | = —([w|=1)[1+4N,?/w(1+[w])?]") < —1] ®
[w < 0] = [0 > (~|2H | = —(Jw|+1D)[1+4N,/w?(1—|w])]%) > —1] e
[ leads to | E2R
0 <|2H,y| >1 o
0<|2H,pm| <1 | ®
[ teads ta | 44
H 11, : Component associated with repeller-point on quaternion-JULIA-set ( &
Hdg : Component associated with sink-point in quaternion-prisoner-set ®

Udo E. Steinemann, About Structure of a connected Quaternion-Julia-Set and Symmetries of a related JULIA-Network, 1/10/2020.



2.1.2. Fixed-Points as Quaternion-Points.

(H) as a quaternion can generally be written in a form like:

o H = [(ap’+a,’+ax’+a;5”)"]-exp{O(ia, +jar+da,)/(a,’+ar’+as?)*)}
= T-exp{nO}
= T.exp{i¥,+jV,+d P}
= (t1-exp{i ¥,})-(ta-exp{j¥2})-(t5-exp{d ¥3})
= ty(cos{ ¥ }+isin{ T }) -ta(cos{ T }+isin{P,}) -ta(cos{ ¥} +dsin{T;}).

Because (H;jyg9) A Hjj40 A Hyjpq0)) may be expressed as (2.1.171. — 2.1.1"3.), this will further lead to:

o t,(cos{®¥,}+isin{¥,}) =
H;102 = {a{5—YaN;o+{ (YN ;0) 14N *) ) }Fi {Ny / (%—2N;0+{(V2—2N;0) *—4N, 2) #)*}
o ty(cos{T,}+jsin{¥,}) =
Hj102) = {a(%—aN;0+{ (5—%N;0) 2N 2 )V} {N, /{Va—2N ;0 +{(a—2N;0)*—4N, %) ) *}
o ty(cos{¥s}+dsin{¥;}) =
H 12 = {Vo2(5—1N g +{(5—1aN40) *— 4 N3?) ")} Fd{N3 / (Vo—2N 30 +{ (Y2—2N 40 ) *—4N;2)*)*}.

Thus the fixed—points for JULIA— and prisoner—set will become:

2.1.2°1.  Hpyy = Hpy-Hyp - Hygpy—2
= {Ya+{%—"eN;o+{(—"2N;0)* AN 2)*)*}—i {N /{2 —2N;0+{(%2—2N;0 ) *— 4N %) *) *}-
{Ve (YN ;0 +{(5—"2N;0)*— AN, %) *)*}—j{N,/ «%“2Njo+«(1/2—2Njo)2—4}\I 22Y4)*}-
{%+(A—YaN 1o +{(%—YeN40) *—AN3?) ") *} —d{ N3 /{V2—2N yo+{ (Y2—2Ny0 ) *—4N,2) ) *} -2
2.1.2°2.  Hp = HppoHjpgp H ypp—2
= {Va—("—"aN;o+{(%—"2N;0)*— AN 2) Y} +i {N1 /(%—2N;o+{(2—2N;) *—4N, %) #)*} -
{Va—(—%eN;o+{(5—"aN;0) > —YaN, ) ") }j (N /(Ve—2N;0+{(Y2—2N;0) >—4N, %) #)*} -
{%—(%—"aN 1o +{(%—"2N o) >~ N3?)*)*}H-d{N3 /(o—2N go+{(2—2N ) *—4N3) ) *} 2.

2.3.The fractal Structure of the JULIA-Set.

A JULIA—set is a complete invariant fractal with respect to forward— and backward—iteration. A j—th pre—
image (in a backward—iteration) and a k—th image (in a forward—iteration) starting from the repeller (Hy,,
given by equation 2.1.2~1.) are to be obtained by:

2.3~1. Images: R*Y = H;;>+N, R®*? = [ROV]24N,...., R = [REED]24N, ...
2.3°2. Pre-images: R,.,"" = +(H;;—N)*, R;.,"? = £(R,., “"-N)* ..., R,V = £(R,., “*V-N)*,......

Because (Hp;) is a point of the JULIA—set, R ) and RC? cannot in the basin of attraction of infinity
otherwise the initial point (Hj;;) would have to be part of the escape—set too. On the other hand, both kinds of
images cannot be in the interior (the prisoner—set), because then (H;) would then have to be from prisoner—set
too, what again is not the case. Thus R *® and R must be from the boundary (the JULIA—set). The reason for
all this can also be found in the continuity of the quadratic transformation. Arbitrarily close to the images and
pre—images there are escaping— and prisoner—points and the continuity of iteration implies, neighbourhood
relation must hold for the whole set of transformation points. This finally leads to a JULIA—set being invariant
with respect to forward— and backward—transformation as well.

The total, unlimited set of images and pre—images from the repellers on JULIA—set determines the fractal
structure of the JULIA—set.

3. Symmetries of a related JULIA-Network.

It is obvious from equations (2.1.2~1.) and (2.1.2"2.), the fixed—points (H;4) of the network (escape—
prisoner— and JULIA—set) obtained from iteration (1~3.) depend on selection of (N) only. Thus (16) different
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choices of (N’s) chosen appropriately from the black part of the MANDELBROT—set will define (16) different
fixed—points (Hjy) for JULIA—sets as square—points of a hyper—cube. This hyper—cube together with the
JULIA—sets belonging to each of the square—points will represent a related JULIA—network. The symmetry—
properties of this JULIA—network is to be obtained on base of a hyper—cube’s symmetry—group extended by
some additional considerations.

The symmetry—group of a cube can be derived from the symmetry—group of a square. With this knowledge in
mind all hints are provided to further obtain the symmetry—group of a hyper—cube. The symmetry—group of a
hyper—cube with additional considerations will then finally lead to the symmetry— properties of the related
JULIA—network.

3.1.The Symmetries of a Square.

The symmetry—group of a square can best be described by the group—table below, consisting of (64)
permutations of the square—points (contained in the entries of the table) obtained when (8) operations act on

the square. The (8) operations consist of:

The identity—operation (id) to reinstall the starting configuration,

(4) flip—operations (f;~f,~f3"f,) with respect to indicated directions.

(3) right—turning rotations ([r; = 1t/2] A [r, = &] A [r3 = 371t/2]) around the centre of the square,

The permutations within entries (1 — 64) of the group—table have the meaning:

Positions of edge—points after an operation of column(0) having acted on the square

Positions of edge—points after operation of row(0) being performed on top of operation in column(0).

* id r; Iy Iy f, f, fy f,
id 0123 0123 0123 0123 0123 0123 0123 0123
0123 3012 2301 1230 3210 0321 1032 2103
=id =TI, =Ty =I'3 =f1 =f2 =f3 :f4
3012 3012 3012 3012 3012 3012 3012 3012
I 3012 2301 1230 0123 2103 3210 0321 1032
=TI =Ty =T3 :id :f4 :fl =f2 :f3
T 2301 2301 2301 2301 2301 2301 2301 2301
2 2301 1230 0123 3012 1032 2103 3210 0321
=TIy =TI3 :id =TIy =f3 :f4 :fl :f2
T 1230 1230 1230 1230 1230 1230 12340 1230
3 1230 0123 3012 2301 0321 1032 2103 3210
=1'3 =1d =TIy =Ty :fz :f3 =f4 :fl
f 3210 3210 3210 3210 3210 3210 3210 3210
1 3210 0321 1032 2103 0123 3012 2301 1230
:f1 :f2 =f3 :f4 :id =1’1 :I‘2 =r3
f 0321 0321 1 0321 0321 0321 0321 0321
2 0321 1032 2103 3210 1230 0123 3012 2301
=1, =1, =1, =1 =TI3 =id =I; =Ty
f 1032 1032 32 1032 1032 1032 1032 1032
3 1032 2103 3210 0321 2301 1230 0123 3012
:f3 :f4 :fl :f2 =T, =T3 =id =TIy
f 2103 2103 03 2103 2103 2103 2103 2103
4 2103 3210 0321 1032 3012 2301 1230 0123
=f4 :fl :fz :f3 =TIy =Ty =T3 :id
id r; Iy rs
2 | 2 1 0 3
1 3 0 3 2
1 i 2 o 3 0
{ ] { N
{ £ | . N
[ ——— | | N
i | N
\ |
2 9 3 ¢ | : 1
fl fz f3 fl}

The yellow—marked sub—group is the cyclic group of the square.
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3.2. Symmetries of a Cube.

From symmetry—group of a square, (3) symmetry—sub—groups of a cube can be derived by replacing:

e Rotations around centre of square by right—turning rotations (R;"R,"R3) around each of the axes

(AB~CD-EF):
> ([AB L (o*1%2%5")] A[CD L {o"3%:%4*)] A [EF L (4*%5%,"))

e Flip—operations (f;~fy~f3~f,) with respect to directions (black“red~blue~green) respectively replaced by
mirror—operations (m; ~m,~m3~m,) with respect to appropriate mirror—planes:

» (NKLM)—m;—, {0264)—m,—, (GH1J)—m3;— and (1573)—m —plane for rotation in AB—direction
» (OPQR)—m;—, (0167)—my—, (NKLM)—m3;— and (2543)—m,—plane for rotation in CD—direction
» (OPQR)—m;—, (0563)—m,—, (GHIJ)—m3— and (1274)—m —plane for rotation in EF—direction.

Under these conditions one will obtain (3) symmetry—sub—groups of a cube with respect to the directions

(AB~CD ~EF), each one is isomorphic with the symmetry—group of a square.

The first sub—group based on direction (AB) follows immediately with (64) elements, which belonging to

multiplications of operations(column(0)) and operations(row(0)):

* id R, R, Ry m, m, mg m,
id 45 6 7 7456 6 745 567 4 765 4 4 7 6 5476 6547
0123 3012 2301 1230 3210 0321 1032 2103

=id :Rl :R2 —R3 =m; =1, =g =1y
R 7 456 6 745 567 4 45 67 6547 765 4 4765 5476

1 3012 2301 1230 0123 2103 3210 0321 1032

=R, =R, =R, =id =my =m, =m, =mg
AB R 6 745 567 4 45 67 7456 5476 65 47 765 4 4765
2 2301 1230 0123 3012 1032 2103 3210 0321

:RZ :R3 :id ZRI —m3 :m4 =m1 =II12
R 56 7 4 45 6 7 7456 6 7 45 4765 5476 65 47 765 4

3 1230 0123 3012 2301 0321 1032 2103 3210

:R3 =id :RI :R,2 =1m, =mgy =my =my
m 765 4 47 65 5476 6547 4567 7456 6 745 567 4
NKLM 1 3210 6321 1032 2103 4123 3012 2301 123¢0
—ml :mz —m3 —m4 Zid :R]_ —RZ —_—R3
m 4765 5476 6547 765 4 5674 4567 7456 6 745

0264 210321 1032 2103 3210 1230 0123 3012 2301
= My =13 =1my = 1m, ZR3 =id :Rl ‘—‘Rz
m 5476 65 47 765 4 4765 6 745 567 45 67 7456

GHLJ 3 .10 3 2 2103 3210 0321 2301 1230 0123 3012
-—m3 = My = Iy = s =R2 =R3 :id :Rl
m 6547 765 4 476 5476 7456 6 745 567 4 4567

1573 412103 3210 0321 1032 3012 2301 1230 0123

=m, =1m, =1Img = = =R i

6

I
7 B 6
i
4 T h: 1°
3 pi ,.".H 2
: 9
0 L 1
G

3
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A second sub—group based on direction (CD) follows next with (64) elements belonging to multiplications of
operations(column(0)) and operations(row(0)):

* id R]_ Rz R3 my m, ms my
id 1265 5126 6 512 2651 56 21 1562 2156 6 215
1 0374 4037 7403 3740 4730 0473 3047 7304
=id :Rl =R2 =R3 = my = My = Img =My
R 5126 6 512 2651 1265 6 215 56 21 156 2 2156
1 4037 7403 3740 0374 7304 4730 0473 3047
=R; =R, =Rg =id =1my = my =m, =ms
ch R 6 51 2 2651 1265 5126 21586 6 215 56 21 156 2
2 17403 3740 0374 4037 3047 7304 4730 0473
:R2 =R3 =id :R]_ =g =1y = my = my
R 2651 1265 5128 6512 156 2 2156 6 215 56 21
3 13740 0374 4037 7403 0473 3047 7304 4730
:R3 :id :Rl —-_-R2 =y :m3 —m4 =m1
56 21 1562 2156 6 215 1265 5126 6512 2651
opQr | M3 | 47 30 0473 3047 7304 0374 4037 7403 3740
= my =My =13 =y =id =R1 =R2 =R3
156 2 2156 6 215 5621 2651 1265 5126 6 512
0167 My o473 3047 7304 4730 3740 0374 4037 7403
=m, =myg =m, =1my =R;3 =id =R, =R,
2156 6 215 56 21 1562 6512 2651 1265 5126
Nkim | M3 | 3704 7 7304 4730 0473 7403 3740 0374 4037
=mg =My =1, =1m, =R2 =R3 =id =R1
6 215 56 21 156 2 2156 5126 6 512 2651 1265
2543 my 7304 4730 0473 3047 4037 7403 3740 0374
=My = my =m2 :m3 :R]_ :R2 :R3 :ld
7 6 9 SAALLELLELTERTITTEY
4 5 a1 5
R;gpss...a.ugs.uzun.-.:ﬁQ ‘g e
Og;;....- uanu""..(r}) :f
3 2 HE P
0 1 O ;;;;; 1
7 6 A 6
M edossssssrascsncd 5 §
. . i fg’l
4 E §.5£ 4 :xixn:é:!lsn:ﬂsli!‘%“is
C :* D ?%::% D
: 2 § 3 Beccrsanccanse .sa.-;‘iz
YN ‘ %
a i 0@ 1

Finally one obtains a sub—group based on direction (EF) which follows next with (64) elements belonging to
all multiplications of operations(column(0)) and operations(row(0)):

* id R, R, Ry m, m, mg my

id 2673 3267 7326 67 3 2 3762 2376 6 237 7623
015 4 4015 5401 1540 4510 0451 1045 5104

=id =R1 =R2 :R3 = m, = Iy =Ing =my

R 3267 7326 6732 2673 7623 376 2 2376 6 237

1 14015 5401 1540 0154 5104 4510 0451 1045

:Rl :RZ =R3 =id =1y = Iy = My =13

EF R 7326 6732 267 3 3267 6 237 76 23 3762 2376
2 1 5401 1540 0154 4015 1045 5104 4510 0451

ZRZ =R3 =id :R]_ =13 =my = my =1y

R 67 32 267 3 3267 7326 2376 6 237 76 2 3 3762

3 1540 015 4 4015 5401 0451 1045 5104 4510

:R3 =id :Rl :R2 =1y =g =1y = m,

m 376 2 2376 6 237 7623 2673 3267 7326 6 73 2
OPQR 1 4510 0451 1045 5104 015 4 4015 5401 1540
=m1 = 1Ny =m3 =1y :id :Rl :RZ :R3

m 2376 237 7623 3762 67 32 2673 3267 73286

0563 20451 1045 5104 4510 1540 0154 4015 5401
=m, =my =my =m, =Rj3 =id =Ry =R,
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6237 7623 3762 2376] 7T326] 6732 2673 3267
cay | M3 1045 |5104 (4510 |[0451 401 |1540 {0154 |4015
=1mg =my =m, =m, =R, =Ry =id =R,
76 2 3 3762 2376 6 237 3267 7326 6 7 3 2 267 3
1274 | My | 5104 (4510 |[0451 |[1045 015 |[5401 |1540 [0154
=1my = m; =y =Ing _R]_ :Rz :R3 =id
7 8 7 .,ﬁ
'0..
0 ."
4 a5 4 %5
quyn.--u--’.......}ﬂq ?
l‘. e’. v
0‘ Q‘
O"‘""""%""'“’P ./
3 5 2 EX 2
6“‘
0..
0 1 0 1
I 6
7 x4 6
4 B
J: »
‘H 2
h ] -9
3 et 2
0 (‘3 1
E

In addition (4) flip—operations (F;~F"F,~Fg) with respect to the space—diagonals of the cube will have be taken into

consideration. The properties of these operations are summarized in the next table:

id 04152637 02734651 21340 7 64732051 62754031
= id = f5 = fﬁ = f7 = fg
f5 02734651 04152637 64752031 62154037 64132057
=f, =id A =id B
f6 62134057 64752031 0415263'7 02754631 04732651
=f, A =id C D
f’T 64732051 62154037 02754631 04152637 02134657
=f, =id C =id E
f8 627540 1 64132057 04732651 02134657 04152637
=1, B D E =id
7 6 7 6
4 8 4 5
£y
5 A%, fs
3 2 2
[t} 1 1] 1

Thus finally (25) symmetry—operations in total will make up the symmetry—group of a cube.

3.3. Symmetries of a Hyper-Cube.

If one replaces in a cube:

e Each pair of parallel planes involved in one of the rotations (R; V R, V Rj3) by a quadruple of cubes (from
hyper—cube’s structure) with surfaces parallel to a perpendicular common axis of rotation out of

(aB V8V e(),
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e FEach mirror—plane of a cube by a 3—dimensional object with a pair of parallel planes suitable for a further
more mirror—operation,

(3) symmetry—sub—groups of a hyper—cube are obtained, each isomorphic with the symmetry—group of a square
and a symmetry—sub—groups of a cube. Each symmetry—sub—group of the hyper—cube consists of:

¢ Right—turning rotations (R; A Ry A R3), around a (af3 V 4 V e()—axis,
e Mirror—operation (M; A M, A M3 A M) with respect to the appropriate mirror—objects.

The first sub—group based on direction (af) follows immediately with (64) permutations according to all
multiplications of operations(column(0)) and of operations(row(0)):

* id R, R, R M, M, M, M,
EF GH H EF G GH EF F GH E HGFE EHGF F EH G G F EH
MNOP PMNO OPMN N P M PONM MP O NMPO ONMP
'd IJKL LIJK KLIJ JKLI LKJI ILKIJ JI1LK KJIIL
I ABCD DABC C DAB BC DA DCBA ADC B BADC C BAD
:id —R1 —R2 —R3 = 1 —M2 :M3 —M4
H EF G GHEF F GH E EFGH GF EHO HGFE EH G F F EH G
PMNO P MN NOPM MNOP ONMP PONM M P N NMPO
R LIJK KLIJ JKLTI IJKL K J LKIJI ILKJ JILK
1 DABC C DAB BC DA ABCD C BAD DCBA ADC B BADC
("B :Rl :R2 :R3 :id :M4 =M1 =M2 =M3
GHEF F H E EF GH HEFG F EH G GF EH HGFE EH GF
P N NOPM MNOP PMNO NMPO O NMP PONM MPON
R LI JKLTI IJKL LIJK JILK KJIL LKIJI ILKJ
2 C A C DA ABCD D BC BADC C BAD DCBA ADC B
-R =R =id ~R, =M, =M =M, =M,
F GH E EF GH H EF G CHZEF EHGF F EH G GF EH HGTF E
NOPM MNOP PMNO OPMN MPON NMPO ONMP PONM
R JKLI IJKL LIJK KLIJ ILKIJ JILK KJIL LKIJI
3 BC DA ABC D DABC C DAB ADC B BADC C BAD C BA
—-——R3 :id ——-R]_ =R2 ZMZ —M3 —M4 _Ml
HGFE EHGF F EH G GF EH EF GH HEFG GHEF F GH E
PONM MPON NMPO ONMP M NOP PMNO OPMN NOPM
Apv € M LKJI ILKJIJ JILK KJIIL IJKL LIJK KLIJ JKLI
no Lk 1 DCBA ADCB BADC C BAB ABC D DABC CD%B BC DA
:Ml ——MZ —-M3 =M4 Zid —Rl -—-Rz —-R3
EHGF F EH G GF EH HGF E FGHE EF GH HEF G GHEF
MPON NMPO ONMP PONM NOPM MNOP PMNO o M
IKOM M ILKIJ JILK KJIL L K i JK LTI IJKL LIJK KLIJ
AC G E 2 ADC B BADC C BAD DCBA BC DA ABCD D ABC C DAB
=M, =M, =M, =M, =R, —id ~R, ~R,
F EH G GF EH HGTFE EHGF GH EF F GH E EF GH HEF G
NMPO ONMP PONM MPON OPMN NOPM MNOP PMNO
% Q C 3 M JILK KIJIL L KJI I LKIJ KLIJ JK LI IJKL LIJK
XY w B 3 BADC C BAD DCBA ADC B C DAB BCDA ABC D DABC
—M3 =M4 _Ml =M2 ——'Rz —R3 :id '—Rl
GF EH HGFE EHGF F EH G H EF G H F F GH E EF GH
ONMP PONM MPON NMPO PMNO OPMN NOPM M o
JNPL M KJIL LKIJI ILKIJ JILK LIJK KLIJ JKLI IJKL
BF HD 4 C BAD DCBA ADC B BADC DABC C DAB BCDA ABC D
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A second sub—group based on direction (3) follows next with (64) permutations according to all multiplications
of operations(olumn(0)) and of operations(row(0)):

* id R, R, R, M, M, M, M,
B CGF FB C G G FB C C GFB F GCB B F G C CBF G G CB F
JK ON NJK O O NJK K ONIJ NOKJ JNOK K JNO O KIJN
'd M MILP PMIL LPMI MPLI IMPL LIMP PLIM
1 ADHE E ADH HE AD DHE A E HD A AE HD DAE H HDAE
=id =R, =R =R, =M, =M =M, =M,
FB C G G FB C C GFB B CGF G CB F F G CB BF G C CB F G
NJK O o J K KON JK ON O KJN NO J JNOK KINO
R MILP PMIL L M I ILPM PLIM MPLI IMPL LIMP
1 E DH HE DHE A ADHE HDHE E HDA AE H DAE N
’Y§ :R]_ =R2 ——R3 :ld —M4 —M1 = —M3
G FB C CGFB B CGF FB C G CB F G G CB F F GCB B F G C
O NJK K ONIJ JK ON NJKO KJINO O KIJN N JNOK
R PMIL LPMI ILPM MILP LIMP PLIM MPLI IMPL
2 HE AD DHE ADHE E ADH DAE H HDAE E AE HD
=R, -R —id —R, =M, =M, =M, =M,
C GFB B CGTF FB C G G FB C B F G C CBF G G CB F F G CB
K ONJ JK ON NJKO O NJK JNOK KJNO OKIJN NOKJ
R LPMI ILPM MILP PMIL IMPL LIMP PLIM PLi
3 DHE A ADHE E ADH HE AD AE HD DAE H HDAE E HD A
—-—R3 =id _Rl =R2 -——M2 —M3 :M4 :Ml
F G CB B F GC CB F G G CB F B C GF FB C G G FB C CGFB
NOKIJ JNOK KJINO OKIJN JKON NJKO O NJK KONIJ
T TV M MPLI IMPL LIMP PLIM ILPM MILP PMIL LPMI
oTp S 1 E HD A AE HD DAE H HDAE ADHE E ADH HE AD DHE A
_Ml —-M2 —-M3 =M4 =id ""Rl —R2 ——-R3
B F G C CB F G G CB F F G CB C GFB B CGF FB CG G FB C
J NOK KJINO OKJN NOKIJ K ONJ JKON NJIKO O NJK
IJopP M IMPL LIMP PLIM M P LI LPMI ILPM MILP PMIL
ABG H 2 AE HD DAE H HDAE E HD A DHE A ADHE E ADH HE AD
—M2 —M3 =M4 _Ml —R3 =id :Rl —Rz
CB F G G CBF F GCB B FGC G FB C C GFB B CGF FB C G
KJINO O KIJN NOKIJ JNOK O NJK K N JKON NJK O
Apv € M LIMP PLIM MPLI M P L PMIL LPMI ILPM MILTP
moe LK 3 DAE H HDAE E HDA AE HD HE AD DHE A ADHE ADH
—M3 ——M4 —M]_ _MZ —-—Rz —R3 =id :R]_
G CB F F GCB BF G C CB F G FB C G G FB C C GFB B G F
OKJN NOKJ JNOK KJNO NJK O O NJK K ONJ JKON
LKLM M PLIM MPLI IMPL LIMP MILP PMIL LPMI ILPM
DCFE 4 HDAE E HD A AE HD DAE H E ADH HE AD DHE A ADHE
——M4 _Ml —M2 :M3 _Rl = —R3 :ld
a H el
Srrrreanssssersesansaknssassaseaarrinn
¥ EA /F\F
AR & H H
g
B A B
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And finally a sub—group based on direction () with (64) permutations will follow according all multiplications
of operations(column(0)) and operations(row(0)):

* id R, R, R,
ABF E EABF F EAB B F EA
1 N M MIJN N M JNMI
id L K OFP PLKO O P LK K P L
1 DCGH HDC G G HDC CGHD
:id _Rl = —-R3
EABF F EAB B F EA ABF E
MIJN NMIJ JNM IJNM
R PLKO O P LK K OPL LKOP
1 HDC G G HDC CGHD DCGH
eQ =R, =R, =R, =id
F EAB B F E A ABF E EABF
NM JNMI 13J M MIJN
R OPLK K OP L LKOP PLKO
2 G (¢} CGHD DCGH HDC G
:Rz —R3 :id "‘Rl
B F EA ABF E EABF F EAB
JNMI IJNM MIJN NMIJ
R K OPL K P PLKO O P LK
3 CGHD DCGH HDC G G HD C
=R, =id =R, =R,
E FBA F B BA E F FBA E
MNIJI IMN JIMN NJIM
oTUVE M P OKL L P OK KLPO OKLP
omp g 1 HG CD DHG C C DHG G CDH
—M1 —Mz :M3 ——M4
A EFB BA EF FBA E E FBA
IMNIJ JIMN N M MNJI
INQE M L P OK KL P O O KL P P OKL
AF G D 2 DHGC C DHG G CDH HG CD
=M, =Mj, =M, =M,
BA EF FBA E E FBA A EFB
JIMN NIIM MNII IMNIJ
®xec3 M KL PO OKLP P OKL L POK
XY wd 3  CDHG G CDH HGCD DHGC
=M; =M, =M, =M,
FBA B E FBA A EFB BA EF
NJIM MNJI IMNIJ JIMN
JKPM M OKLP P OKL L POK KLPO
BC HE 4 G CDH HGCD DHGC C DHG
=M, =M, =M, =M,
= G
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In addition to these (21) symmetry—operations (8) flip—operations will have be considered, due to the (8)
quaternion— diagonals of the hypercube:

F5 O BMN

Fﬁ O BMN

F7 KL GJ

Together with (200) symmetry—operations for the (8) inner cubes of a hyper—cube, (232) symmetry—
operations in total have to be counted for a hyper—cube and are responsible for its symmetry—group.

Udo E. Steinemann, About Structure of a connected Quaternion-Julia-Set and Symmetries of a related JULIA-Network, 1/10/2020.

@,




3.4. Symmetry-Group of the related JULIA-Network.

The (16) different fixed—points (H;- ;¢ (o,15) by definition from above will form a hyper—cube in quaternion—
space. Thus a probe—point moving from (Hj;- ) to (Hj;- ) by execution of a hyper—cube’s symmetry—
operations will change its (N) fluently from (Np,) to (N;). Due to the fact, that each of the images or pre—
images must follow equations (2.3°1. A 2.3~2) in any position of the probe, they will always be adapted in
relation to the probe’s location. Therefore the probe in essence mediates between the JULIA—sets with fixed—
points (Hjz- ) and (Hp-yy)-

In summery one may say, that the related JULIA—network under the action of any symmetry—operation of a
hyper—cube will remain completely in itself. Thus, related JULIA—network and the symmetry—operations of a
hyper—cube will built a symmetry—group.

4. Summary.

The iteration of sequence (1~3.) in quaternion—space — with restrictions from MANDELBROT—set on the
complex components of its iteration—constant — resulted in a network of (3) sets. An unbounded escape—set
(with trajectories escaping to infinity) accompanied by a set caught in a limited area (prisoner—set, whose
trajectories tended to a sink—point) and the boundary—set of the prisoner—set built by points acting repulsively
on points from escape— and prisoner—set as well.

The iteration stopped if the sink—point of the prisoner—set and a fixed repeller—point on JULIA—set had been
obtained, that is, when equality between the iteration’s predecessor— and successor—state had been reached. A
Quaternion—condition for this stop—event (the fixed—point—condition) could be formulized and — by taking into
account the HAMILTONian rules — could be separated into three sub—conditions (according o the quaternion—
space’s complex subspaces). Every one of these sub—conditions could subsequently be solved independently. On
base of these results it became possible to express the quaternion fixed—points of prisoner— and JULIA—set as
well.

With knowledge of the fixed—repeller—point of a JULIA—set it became possible to describe the structure of the
JULIA—set by the set of images and pre—images, which are obtained from forward— or backward—iteration
relative to the repeller.

Fixed—points and JULIA—set of the network, obtained by iterative execution of sequence (1~3.) will only
depended on the choice of the actual iteration—constant. Therefore, (16) constants appropriately chosen from
black part of the MANDELBROT—set will make it possible to arrange the repeller—fixed—points of the
iteratively obtained JULIA—sets in the square—points of a hyper—cube. Fixed—points and their JULIA—sets
positioned this way will then represent a related JULIA—network. The set of quaternion—points of the related

JULIA—network together with the symmetry—operations of a hyper—cube will form the symmetry—group of the
related JULIA—network.
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