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Abstract. We construct a symmetric tensor in

R208 ⊗ R208 ⊗ R208 ⊗ R208

with real rank 761 and real symmetric rank 762.

1. Introduction

Let V be a finite dimensional vector space over a field F. A tensor t ∈ V ⊗ . . .⊗V
is called decomposable if one can write t = v1⊗ . . .⊗vd with v1, . . . , vd ∈ V , and t is
called symmetric if it is invariant under the braiding isomorphisms corresponding
to the permutations of {1, . . . , d}. The rank of a tensor t is the smallest number
r for which t can be written as the sum of r tensors decomposable over F, and,
similarly, the symmetric rank of a symmetric tensor σ is the smallest number s
such that σ is the sum of s symmetric tensors decomposable over F.

The earliest appearance of tensor rank is attributed to the work of Hitchcock [36]
from 1927, and subsequent studies displayed growing interest to this concept in
pure and applied mathematics. Rank decompositions are reported to bear prac-
tical importance in machine learning, biomedical engineering, signal processing,
psychometrics, and chemometrics [17, 18, 22, 21, 28, 39, 44, 46, 62]. Being a nat-
ural measure of algebraic complexity, tensor rank appears in the study of fast
matrix multiplication and other algorithmic problems involving arithmetic cir-
cuits [7, 26, 37, 50, 53, 56, 63]. The symmetric counterpart of this technique is
equivalent to the so-called Waring decompositions of homogeneous polynomials [6],
and it finds additional applications in matrix multiplication [15], parametrized algo-
rithms [51], and independent component analysis [11, 18, 21]. A significant progress
has been made with the approach of algebraic geometry, in which both the symmet-
ric and non-symmetric ranks are natural objects of study [1, 4, 10, 40, 41, 43, 49].

2. Comon’s conjecture

Do there exist symmetric tensors with different rank and symmetric rank? Many
researchers recognize this as a famous question and a central and guiding problem
in the field [14, 31, 33, 48, 64, 65]. It is usually termed Comon’s conjecture as
Pierre Comon posed it in 2004 at the Workshop on Tensor Decompositions in Palo
Alto [19, 38] and reiterated it in several further notable publications [20, 21, 45].

Conjecture 2.1. The rank of a symmetric tensor over R or C equals its symmetric rank.

This paper gives a counterexample to the real case of Conjecture 2.1. Together
with the counterexample in [58], which is valid over the complex numbers, this
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gives a full negative solution to Conjecture 2.1. The proof of [58] is quite compli-
cated although restricted to three-way tensors in a certain special family, and its
generalizations to tensors outside that family or to tensors of higher order remain
unclear. Following the publication of [58], there has been a considerable interest
to the real case of Comon’s conjecture, which was discussed in subsequent stud-
ies [14, 27, 32, 45, 47, 54, 55, 65, 66, 69] but remained open. As we will see later,
our current approach is different from [58], and, in fact, we build a framework that
potentially allows one to construct a family of counterexamples to the real version
of Comon’s conjecture for tensors of any even order d > 4. We complete this task
for d = 4 and prove the following theorem.

Theorem 2.2. There exists a symmetric tensor

τ ∈ R208 ⊗ R208 ⊗ R208 ⊗ R208

such that τ has real rank 761 and real symmetric rank 762.

We proceed with a short survey of related work. First of all, we note that the
rank or symmetric rank can be different over R and C even if the initial tensor
is real [5, 21], so there are no a priori relation between the validity of the real
and complex versions of Comon’s conjecture. In fact, the complex version was
invalidated with a particular example of a real symmetric tensor with different
complex rank and complex symmetric rank, but that example does not seem to
allow any obvious transformation to disprove the real version as well [58]. The
setting of complex numbers is preferable for those researchers who work in algebraic
geometry [3, 8, 33, 40], but several authors discuss Comon’s conjecture from the
point of view of applied mathematics and choose R as the ground field [45, 47,
52, 66, 68]. It is well recognized that the tensor decomposition problem is more
complicated to handle over the reals [21, 55, 57], but the general perspective allows
one to consider the real and complex versions together [16, 29, 30, 35, 55, 67, 69].

An early progress on Comon’s conjecture came from the foundational paper
by Comon, Golub, Lim, Mourrain [21], who proved the equality of the rank and
symmetric rank for tensors of symmetric rank at most two. Also, the authors
of [21] confirmed Conjecture 2.1 for generic elements in the family of the symmetric
tensors of a fixed symmetric rank whose order and dimension are sufficiently large.
Chiantini, Ottaviani, Vannieuwenhoven [16] improved their result and gave a weaker
condition on the rank, order, and dimension of a generic tensor which necessarily
satisfies Comon’s conjecture. One instance of the result in [16] is that, for a generic
element τ of the family of the symmetric tensors in Rn ⊗ Rn ⊗ Rn ⊗ Rn satisfying

(2.1) srk τ 6 0.5n2 − 0.5n,

we have rk τ = srk τ . Further, Ballico and Bernardi [3] proved Comon’s conjecture
for tensors of border rank at most two; they used complex numbers but the cor-
responding result is valid over R as well. More generally, Zhang, Huang, Qi [67]
checked the validity of Conjecture 2.1 for tensors whose rank does not exceed the
order. A partial generalization of this result to the case of arbitrary characteristic
was obtained by Zheng, Huang, Song, Xu [69], and also they provided another suf-
ficient condition for the validity of Comon’s conjecture in terms of the dimension of
the fiber space of a tensor. Friedland [29] proved Conjecture 2.1 for tensors whose
rank does not exceed the flattening rank plus one. We note that the results of [29]
and [67] invalidate a solution attempt of Loperfido [47], who claimed to construct
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a symmetric tensor with real rank three and real symmetric rank four. Seigal [55]
used the result of [29] to show that any tensor of order three and rank at most
six satisfies Conjecture 2.1, and she generalized this result to tensors of rank seven
with respect to C. Several particular examples of tensors of rank seven were also
considered, and, in particular, the symmetric tensors realizing the ternary forms

(2.2) x1(x1x2 + x23 + x24) and x1(x21 − x22 − x23 − x24)

were shown to have real rank and real symmetric rank seven [55]. The tensors
in (2.2) satisfy the complex version of Comon’s conjecture as well, but, curiously, the
second of these tensors has complex rank and complex symmetric rank six [13, 55].
Further sporadic families recently shown to satisfy Conjecture 2.1 include the two
Coppersmith–Winograd tensors [42], which correspond to the polynomials

x(y21 + . . .+ y2q ) and x(xz + y21 + . . .+ y2q )

of symmetric ranks 2q + 1 and 2q + 3, respectively. Landsberg and Micha lek [41]
showed that the ranks of these tensors equal their symmetric ranks. We mention
one further example of the tensor of the 3× 3 permanent

x1y2z3 + x1y3z2 + x2y1z3 + x2y3z1 + x3y1z2 + x3y2z1,

which has rank 16 [25] and symmetric rank 16 [60]. Li, Usevich, Comon [45]
proved the so-called orthogonal analogue of Comon’s conjecture, and Friedland
and Lim [30] established the continuous analogue of Comon’s conjecture by show-
ing that the nuclear norm of a symmetric tensor equals its symmetric nuclear norm.
Zhang, Ling, Qi [68] proved that the best symmetric rank-one approximation of a
symmetric tensor is its best rank-one approximation, which was regarded as a step
towards Conjecture 2.1. Other related results include the works [4] and [33], but
their sufficient conditions on the validity of Conjecture 2.1 are restricted to the
complex case and do not seem to admit an easy generalization to R.

We recall that the border rank of a tensor τ is the smallest r for which τ is a
limit of a sequence of tensors with rank r. The border rank analogue of Comon’s
conjecture is the question of the equality between the border rank and symmetric
border rank. This question is open both in the real and complex cases [8, 42, 55], but
the positive answer is known for tensors of border rank at most two [3, 29], complex
cubic surfaces and real cubic surfaces of subgeneric rank [55], the Coppersmith–
Winograd tensors [41], the 3×3 determinant [23, 24], and the 3×3 permanent [25].

The rest of this paper is devoted to the proof of Theorem 2.2. Although the tensor
τ in Theorem 2.2 belongs to the range (2.1), the results in [16] do not invalidate
our counterexample because they relate to the setting of generic tensors. We begin
our consideration in Sections 3 and 4, which specify our notation and survey the
relevant definitions and basic techniques, which include the standard substitution
method of proving lower bounds on ranks of tensors. In Section 5, we introduce
a particular family of 2 × . . . × 2 tensors that we use later in our construction,
and we discuss their relevant properties. In Section 6, we define the concept of
a monomial emulator family of tensors, and we give a construction of a potential
counterexample assuming the existence of such families. Section 7 presents several
basic properties of linear substitutions of monomial emulator families. Sections 8–
10 give a detailed proof that the presented construction is indeed a counterexample,
again assuming the existence of monomial emulators. Finally, Section 11 gives an
explicit construction of a monomial emulator and completes the argument.
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3. Tensors and decompositions

In what follows, we restrict ourselves to work over the real field R. We do not
use complex numbers anymore, so every scalar value is supposed to be in R, every
tensor product is taken over R, every linear space is R-linear and finite dimensional.
A family ϕ of vectors in a linear space is linearly dependent if ϕ is linearly dependent
over R, and the notation spanϕ stands for the R-linear span of ϕ.

Remark 3.1. In fact, the only property of the ground field required by the construc-
tion of our counterexample and our proof of its correctness is that R(

√
−3) 6= R.

Let I, I1, . . . , Id be a family of finite non-empty indexing sets. We define RI as
the linear space of vectors whose coordinates are labeled with elements in I. The
tensors of the format I1 × . . .× Id or, simply, the I1 × . . .× Id tensors

(3.1) RI1 ⊗ . . .⊗ RId

can be thought of as d-way arrays of numbers labeled with d-tuples of indexes in
I1 × . . . × Id. These tensors are said to have order d and size |I1| × . . . × |Id|. A
tensor in (3.1) is called decomposable if it can be represented as v1 ⊗ . . .⊗ vd.

Definition 3.2. The rank rk τ is the smallest number r such that a given tensor
τ can be written as the sum of r decomposable tensors.

If the indexing sets I1, . . . , Id are all equal, then every permutation π of {1, . . . , d}
defines the braiding isomorphism of (3.1) as the mapping T → T ′ with the formula

T ′(i1| . . . |id) = T (iπ1 | . . . |iπd) .

A tensor σ in (3.1) is symmetric if it is invariant under any such isomorphism.

Remark 3.3. Every symmetric decomposable tensor is a scalar multiple of v⊗. . .⊗v
for some vector v. In the case of the reals, this description further reduces to either

−v ⊗ . . .⊗ v or v ⊗ . . .⊗ v

because every positive real number admits a d-th root.

Definition 3.4. The symmetric rank srkσ is the smallest number s such that a
given symmetric tensor σ is the sum of s symmetric decomposable tensors.

4. Substitutions and adjoined slices

We proceed with a discussion of several basic techniques related to the substitu-
tion method of tensor rank computation [37, 41, 58, 59].

Definition 4.1. In this section, the letter T denotes (3.1). For any δ ∈ {1, . . . , d},
we write Tδ to denote the same tensor product but with the δ-th factor removed.

Definition 4.2. Let τ ∈ T and δ ∈ {1, . . . , δ}. Assume j is an index in the set Iδ
as in (3.1). The j-th δ-slice of τ is the tensor τ ′ ∈ Tδ defined as

τ ′(i1|i2| . . . |iδ−1|iδ+1| . . . |id−1|id) = τ(i1|i2| . . . |iδ−1| j |iδ+1| . . . |id−1|id).

This notion allows the following straightforward characterization of tensor ranks.

Observation 4.3. The rank of a tensor τ ∈ T is the smallest integer r such that
there exist r decomposable tensors whose linear span contains every 1-slice of τ .
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Proof. According to Definition 3.2, we have rk τ 6 r if and only if there exist vectors
u1, . . . , ur and decomposable tensors σ1 . . . , σr such that

(4.1) τ = u1 ⊗ σ1 + . . .+ ur ⊗ σr,
which is equivalent to the condition that, for every index j ∈ I1, the j-th 1-slice of
τ is a linear combination

u1jσ1 + . . .+ urjσr

in which the scalar uij corresponds to the j-th entry of the vector ui in (4.1). �

Of course, the symmetry allows one to replace the mention of the 1-slices in Ob-
servation 4.3 by the δ-slices with any δ ∈ {1, . . . , d}. We proceed with a multilinear
analogue of elementary transformations of matrices in conventional linear algebra.

Definition 4.4. Let w be a tensor in T . For any δ ∈ {1, . . . , d}, we take a set
Wδ ⊂ Tδ which is a linear subspace. We define

wmod (W1, . . . ,Wδ)

as the set of all tensors that can be obtained from w by the following sequence of
transformations:

(Mod-1) for every 1-slice ω1 of w, add some element of W1 to ω1,

(Mod-2) for every 2-slice ω2 of what obtained, add some element of W2 to ω2,

. . .

(Mod-d) for every d-slice ωd of what obtained, add some element of Wd to ωd.

We note in passing that the operations (Mod-1), . . ., (Mod-d) commute.

Definition 4.5. If the subsets Wδ are as in Definition 4.4 but do not necessarily
form linear spaces, then we define

wmod (W1, . . . ,Wδ) as wmod (spanW1, . . . , spanWδ).

The substitution method is based on the following statement, which is easy to
deduce from Observation 4.3. We omit the proof but refer the reader to Lemma B.1
in [2], Lemma 2 in [37], Proposition 3.1 in [41], Theorem 4.4 in [55] for related
results. We recall that span∅ is the zero subspace.

Lemma 4.6. Let τ be a tensor in T , and assume that the 1-slices of τ are indexed
with the labels 1, 2, . . . , a, 1′, 2′, . . . , b′, which means that

I1 = {1, 2, . . . , a, 1′, 2′, . . . , b′}
in (3.1). Let W ′ be the linear span of the 1-slices of τ with indexes 1′, . . . , b′. Then

rk τ > dimW ′ + min rk τ mod (W ′,∅, . . . ,∅),

and the equality holds if W ′ admits a basis consisting of decomposable tensors.

Now we are ready to present a multidimensional generalization of the slice ad-
joining technique, which was used in [58, 59] for three-way tensors.

Definition 4.7. Let τ be a tensor in T . For any δ ∈ {1, . . . , d}, we consider a
finite set Wδ ⊂ Tδ. We recall that the format of the tensors in Wδ is

(4.2) I1 × I2 × . . .× Iδ−1 × Iδ+1 × . . .× Id−1 × Id,
where Iδ′ is the indexing set of the δ′-slices of τ . We define

A = Adjoin (τ,W1, . . . ,Wd)
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as the tensor of the format

(I1 ∪W1)× . . .× (Id ∪Wd),

assuming that the label of any tensor in Wδ does not repeat any label in Iδ. The
entries of A are defined as follows:

(Adj-0) A(i1| . . . |id) = τ(i1| . . . |id) if iδ ∈ Iδ for all δ ∈ {1, . . . , d};
(Adj-δ) for any δ ∈ {1, . . . , d} and any w ∈ Wδ, the w-th δ-slice of A equals w

when restricted to the entries in (4.2) and has zeros at all the positions outside (4.2).

We say that A is obtained by adjoining the slices (W1, . . . ,Wd) to τ .

Definition 4.8. Assume that

I1 = . . . = Id and W1 = . . . = Wd

in the setting of Definition 4.7, and, additionally, assume that the tensor τ and
every tensor in W1 are symmetric. Then the symmetrical adjoining of W1 to τ is

(4.3) SAdj (τ,W1) := Adjoin (τ,W1, . . . ,W1).

We note that the tensor (4.3) is symmetric.

Remark 4.9. If a tensor τ represents a homogeneous polynomial f of degree d, and
tensors in W correspond to homogeneous polynomials g1, . . . , gm of degree d − 1,
then the tensor SAdj (τ,W ) represents the polynomial

f + y1g1 + . . .+ ymgm,

where y1, . . . , ym are variables different from any of those in f, g1, . . . , gm.

The following is a corollary of Lemma 4.6.

Lemma 4.10. We have

rk Adjoin (τ,W1, . . . ,Wd) > min rk τ mod (W1, . . . ,Wd) +

d∑
δ=1

dim spanWδ,

and the equality holds if every tensor in W1 ∪ . . . ∪Wd is decomposable.

5. A relevant family of 2× . . .× 2 tensors

In order to proceed with a counterexample, we need to specify some further
notation that we use in the rest of the paper. We recall that, although our main
result is stated for tensors of order four, the presented framework is more general,
and, as said above, it potentially allows one to construct a counterexample to the
real version of Comon’s conjecture for tensors of any even order different from two.

Remark 5.1. We use the symbol d to denote a fixed even number > 4.

An explicit counterexample follows from the d = 4 version of our results, and this
case is valid over a general family of fields as explained in Remark 3.1. We proceed
with some further notation, and, since our construction requires a particular family
of symmetric 2× . . .× 2 tensors, we need to specify the corresponding indexing set.

Definition 5.2. We use the symbols e and ε to denote the elements of

B = {e, ε},
which is an indexing set of cardinality two.
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We proceed with one general observation on 2× . . .× 2 tensors.

Remark 5.3. In Observation 5.4 below, we use the fact that

ad−1 = bd−1 implies a = b

for real numbers a and b. We note that the version with d = 4 is true over fields as
in Remark 3.1, because, otherwise, the conditions a3 = b3 and a 6= b imply(

a+ b

a− b

)2

=
(a− b)(a+ b)2

(a− b)3
=

a3 + a2b− ab2 − b3

a3 − 3a2b+ 3ab2 − b3
=

a2b− ab2

−3a2b+ 3ab2
= −1

3
,

and hence −3 should be a square.

Observation 5.4. Let B and C be two (d− 1)-way B × . . .× B tensors such that

B(e| . . . |e) = C(e| . . . |e) 6= 0 and B(ε| . . . |ε) = C(ε| . . . |ε) 6= 0.

If B and C are decomposable and B − C is symmetric, then B = C.

Proof. The multiplication of B and C by the same non-zero scalar does not change
the validity of the formulation, so we can assume that

B =

(
1

b1

)
⊗ . . .⊗

(
1

bd−1

)
and C =

(
1

c1

)
⊗ . . .⊗

(
1

cd−1

)
with

(5.1) b1 · b2 · . . . · bd−1 = c1 · c2 · . . . · cd−1 6= 0.

Now we define αi as the (d − 1)-tuple with the ε at the i-th place and the e’s
everywhere else, and, by the symmetry of B − C, we have

B(αi)− C(αi) = B(αj)− C(αj)

for all i, j ∈ {1, . . . , d− 1}. This means that

bi − ci = bj − cj ,
so there exists a number a such that ci = bi+a for all i. If a = 0, then the conclusion
of the lemma is immediate, so we can assume that a 6= 0. Now we consider, for any
distinct i and j, the (d − 1)-tuple βij with the ε’s at the i-th and j-th places and
the e’s everywhere else. The symmetry of B − C implies

B(βij)− C(βij) = B(βik)− C(βik)

for all pairwise distinct i, j, k ∈ {1, . . . , d− 1}. This shows that

bibj − (bi + a)(bj + a) = bibk − (bi + a)(bk + a)

and hence bj = bk. So we see that b1 = . . . = bd−1 and c1 = . . . = cd−1, and the
equality in (5.1) implies b1 = c1 in view of Remark 5.3. �

The 2× . . .× 2 tensors used in our construction are as follows.

Definition 5.5. We use the symbol U to denote the d-way B × . . .× B tensor

U(α1| . . . |αd) =


1, if α1 = . . . = αd = e,

−3, if α1 = . . . = αd = ε,

0, otherwise.

In other words, one can define U as the tensor representing the mapping of the
d-form xd − 3yd. The following tensors represent binary monomials.
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Definition 5.6. Let a and b be positive integers. The monomial tensor µa,b is the
B × . . .× B tensor of order a+ b such that

µa,b(α1| . . . |αa+b) =

{
1, if e appears exactly a times in (α1, . . . , αa+b),

0, otherwise.

Definition 5.7. We use the symbol M to denote the set of tensors

{µ1,d−2, µ2,d−3, . . . , µd−3,2, µd−2,1},
where d is a fixed positive integer as in Remark 5.1.

Now we can explain the main idea of our construction. We look at the set

(5.2) U mod (M, . . . ,M),

and, since the corner entries of any tensor in M are zero, we note that the mod
operation in (5.2) does not change the corner entries of U . In other words, the
(e, . . . , e) and (ε, . . . , ε) entries of any tensor in (5.2) remain equal to 1 and −3,
respectively, and this implies that the set (5.2) contains no tensor of symmetric
rank one. To see this, we recall that a such a tensor is a scalar multiple of

ω ⊗ . . .⊗ ω with ω ∈ RB

and hence the ratio of its corner entries should be a d-th power in R. As said above,
a tensor in (5.2) has this ratio equal to −1 : 3, so it cannot be an even power in R.
We proceed with a proof that, nevertheless, the set (5.2) admits a rank-one tensor
if we do not impose the symmetry assumption.

Remark 5.8. Before we proceed, let us consider the d× d matrix S defined as

Sij =

{
0, if i = j,

1, if i 6= j.

We note that the matrix S + I has rank one, where I is the d× d identity matrix,
and hence −1 is an eigenvalue of S with multiplicity at least d− 1. Since the trace
of S is zero, the remaining eigenvalue is d− 1, which means that S is non-singular
over the reals. In the relevant case of d = 4, it is non-singular over any field of
characteristic different from three, and, in particular, over a field as in Remark 3.1.

Lemma 5.9. Let V be a d-way B × . . .×B tensor which can have a non-zero at a
position α = (α1| . . . |αd) only if the index e appears exactly once in α. Then

(5.3) V ∈ Omod (M, . . . ,M),

where O is the d-way B × . . .× B zero tensor.

Proof. We are going to show a stronger result that

V ∈ Omod (µ1,d−2, . . . , µ1,d−2),

where µ1,d−2 is the tensor as in Definition 5.6. In order to do this, we add, for
every δ ∈ {1, . . . , d}, a copy of µ1,d−2 multiplied by a scalar sδ to the ε-th δ-slice of
O. Denoting σ = s1 + . . .+ sd, we express the entries of the resulting tensor U as

U(e|ε|ε| . . . |ε) = σ − s1,
U(ε|e|ε| . . . |ε) = σ − s2,
. . .

U(ε|ε| . . . |ε|e) = σ − sd,
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and all the other entries of U are zero. The resulting mapping (s1, . . . , sd) → U
is injective because the corresponding d× d matrix is non-singular by Remark 5.8.
This shows that the image of (s1, . . . , sd)→ U is precisely the space of all possible
choices of the tensor V as in the formulation of the lemma. �

Lemma 5.10. Let V be a d-way B × . . . × B tensor which can have a non-zero
number at a position α = (α1| . . . |αd) only if either

(1) the index e appears exactly once in α, or
(2) the index ε appears exactly once in α.

Then the condition (5.3) holds.

Proof. The property of being an element of the set in (5.3) is additive, so it suffices
to prove it separately for tensors V1 and V2, each of which can have a non-zero
entry at a position α = (α1| . . . |αd) only if one corresponding condition (1) or
(2) is satisfied. Lemma 5.9 implies V1 ∈ Omod (M, . . . ,M) immediately, and the
corresponding inclusion for V2 follows by switching the roles of e and ε. �

Lemma 5.11. The set (5.2) contains a rank-one tensor.

Proof. We note that the d-way B × . . .× B tensor U ′ defined as

U ′(α1| . . . |αd) =

{
1, if α1 = e,

−3, if α1 = ε

is rank-one, so it suffices to check that U ′ − U belongs to the set in (5.3). In order
to do this, we subtract all the elements of M from the e-th 1-slice of U ′ − U , and
we add the same elements multiplied by three to its ε-th 1-slice. The only non-zero
entries of the resulting tensor are at (e, ε, . . . , ε) and (ε, e, . . . , e), so it satisfies the
assumptions of Lemma 5.10 and hence belongs to the set in (5.3). �

6. A family of counterexamples

So we see that the set

U mod (M, . . . ,M)

contains a tensor of rank one but does not contain a symmetric tensor of rank one.
In view of Lemma 4.10, one can try constructing a counterexample immediately
as SAdj (U ,M), but this approach may not work because the tensors in M are
not decomposable, and hence the conclusion of Lemma 4.10 may not apply with
equality. Our further strategy is to replaceM by a family of decomposable tensors
that, on the one hand, contain M in their linear span and, on the other hand, are
sufficiently ill behaved to disallow any other linear combination to be helpful for
constructing alternative rank decompositions. Since the original familyM consists
of monomial tensors, we decided to refer to its possible replacements as monomial
emulators. We work on this idea with the concept of the clone of a tensor introduced
in [58, 59] for three-way tensors, and the current discussion requires the development
of the approach of [58, 59] to the case of higher orders. First of all, we need to
introduce a new indexing set related to the one in Definition 5.2.

Definition 6.1. We use the letter c to denote a fixed integer > 2.

Definition 6.2. We define the new indexing sets

E = {e1, . . . , ec}, E = {ε1, . . . , εc}, B = E ∪ E .
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Definition 6.3. Let q be a positive integer, and let T be a q-way B× . . .×B tensor.
The clone of T is the q-way B× . . .× B tensor Tc whose entries are defined as

Tc
(
1αi1

∣∣2αi2 ∣∣ . . . ∣∣qαiq) = T
(
1α|2α| . . . |qα

)
for all 1α, . . . , qα ∈ B and i1, . . . , iq ∈ {1, . . . , c}.

Definition 6.4. Let q be a positive integer, and let A be a family of q-way B×. . .×B
tensors. Then the notation Ac stands for the set of clones of all tensors in A.

We proceed with one general property of the class of clone tensors.

Lemma 6.5. Let P be a q-way decomposable B× . . .× B tensor in which

(1) all entries of the E × . . .×E block are equal to the same non-zero number,
(2) all entries of the E × . . .× E block are equal to the same non-zero number.

Then P is a clone.

Proof. We have

B =

(
v1E
v1E

)
⊗ . . .⊗

(
vqE
vqE

)
,

and we can note that, for any fixed i, j ∈ {1, . . . , q}, the entries of viE are all equal
because of the item (1), and the entries of vjE are equal because of the item (2). �

Now we can present a list of properties that we need to impose on a monomial
emulator family to get a counterexample in the fashion described above. The exis-
tence of such families is a non-trivial question, and we postpone its consideration
to Section 11, where we give an explicit example of a monomial emulator for d = 4.

Remark 6.6. In the following Definition 6.7, the notations TE and TE stand for,
respectively, the E× . . .×E and E × . . .×E blocks of a q-way B× . . .×B tensor T .
If F is a family of such tensors, then FE and FE denote the set of all corresponding
blocks of the tensors in F . Also, we write I(E, q) and I(E , q) for, respectively, the
q-way E × . . .× E and E × . . .× E tensors with all entries equal to one.

Definition 6.7. A finite set W of symmetric B × . . . × B tensors (of order d − 1)
is called a monomial emulator if the following conditions are satisfied:

(1) W is linearly independent,

(2) every tensor in W is decomposable,

(3) spanW contains the clone of every tensor in M,

(4e) I(E, d) is the only rank-one tensor in I(E, d) mod (WE , . . . ,WE),

(4ε) I(E , d) is the only rank-one tensor in I(E , d) mod (WE , . . . ,WE),
(5e) I(E, d− 1) is the only rank-one tensor in spanWE + I(E, d− 1),

(5ε) I(E , d− 1) is the only rank-one tensor in spanWE + I(E , d− 1),

(6) if a tensor u⊗ . . .⊗u belongs to spanW, then the following sets are disjoint:

uE ⊗

RE ⊗ . . .⊗ RE︸ ︷︷ ︸
d−1 times

 and I(E, d) mod (WE , . . . ,WE).

Now we are ready to construct a counterexample to Comon’s conjecture assum-
ing that we are given a monomial emulator family as a black-box. The following
notation for such families is to be used in the rest of our paper.
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Definition 6.8. We use the symbol W to denote a monomial emulator family.

Definition 6.9. We use the symbol S to denote the tensor

(6.1) S = SAdj (Uc,W),

where Uc is the clone of the tensor U as in Definition 5.5.

Remark 6.10. Following the conventions of Definitions 4.7 and 4.8, we assume that
no tensor in W is indexed with a label in the set B. So the d-way product

RB∪W ⊗ . . .⊗ RB∪W

is the tensor space containing S.

The rank of S can be computed immediately.

Lemma 6.11. We have rkS = d |W|+ 1.

Proof. Since the familyW is linearly independent by the item (1) of Definition 6.7,
we have |W| = dimW. Also, the tensors in W are decomposable by the item (2)
of Definition 6.7, so we can apply the equality case of Lemma 4.10 and get

(6.2) rkS = min rk Uc mod (W, . . . ,W) + d |W|.

Now we use the definition of the clone to see that

(6.3) (U mod (M, . . . ,M))c ⊆ Uc mod (Mc, . . . ,Mc),

and the item (3) of Definition 6.7 shows a further inclusion

(6.4) Uc mod (Mc, . . . ,Mc) ⊆ Uc mod (W, . . . ,W).

A comparison of (6.3) and (6.4) gives the inequality

min rk Uc mod (W, . . . ,W) 6 min rk U mod (M, . . . ,M),

in which the right-hand side is at most one by Lemma 5.11. This implies

(6.5) min rk Uc mod (W, . . . ,W) 6 1,

and we also have the opposite inequality

(6.6) min rk Uc mod (W, . . . ,W) > 1

by the item (4e) of Definition 6.7. Now the proof is complete, because the condi-
tions (6.2), (6.5), (6.6) imply the desired conclusion. �

Now let us check the inequality srkS 6 rkS + 1.

Lemma 6.12. We have srkS 6 d |W|+ 2.

Proof. The B× . . .×B block of S is the clone of the rank-two tensor U . Subtracting
this block from S, we get the tensor SAdj (O,W), and hence the inequality

srkS 6 2 + srk SAdj (O,W) 6 2 + s|W|

follows from Remark 4.9, where s is the symmetric rank of xyd−1 considered as a
tensor. It remains to observe an easy fact that s = d, see also [3, 12, 21, 67]. �
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7. Substitutions of monomial emulators

In order to proceed with the proof that srkS = rkS + 1, we need some further
information on the monomial emulator families introduced in Definition 6.7. This
section collects several basic properties of monomial emulators that can be obtained
by linear transformations from families similar to those in Definition 6.7.

Observation 7.1. Let W ′ be a family that satisfies all the assumptions in Defini-
tion 6.7 except possibly the condition (1). If spanW ′ admits a basis V consisting
of decomposable tensors, then every such V is a monomial emulator.

Proof. The validity of the conditions (1) and (2) in Definition 6.7 for V is immediate.
The remaining conditions appeal to V only via spanV, so they are true since they
hold for W ′ and spanV = spanW ′ by the assumptions of the lemma. �

In what follows, a family as in Definition 6.7 is called a monomial emulator on
its span. If V and W are monomial emulators with spanV = spanW, then

(7.1) S = SAdj (Uc,W) and S ′ = SAdj (Uc,V),

which are the tensors constructed as in Definition 6.9, differ by an invertible linear
transformation of the variables of the corresponding homogeneous polynomials. Let
us give a formal description of the tensorial version of this mapping.

Definition 7.2. Let V,W be monomial emulators on the same space. Assume

v =
∑
w∈W

swv w

is an expression of any v ∈ V as a linear combination of W. We set

Λ :

RB∪W ⊗ . . .⊗ RB∪W︸ ︷︷ ︸
d times

→
RB∪V ⊗ . . .⊗ RB∪V︸ ︷︷ ︸

d times


as the mapping that acts in the d steps below. Here, the notation ϕδw stands for
the w-th δ-slice of the tensor obtained at the completion of the δ− 1 of these steps:

(Step 1) Adjoin, as the 1-slice, for any v ∈ V, the linear combination∑
w∈W

swv ϕ1w

and remove the w-th 1-slices of the resulting tensor for all w ∈ W,

. . .

(Step d) adjoin, as the d-slice, for any v ∈ V, the linear combination∑
w∈W

swv ϕdw

and remove the w-th d-slices of the resulting tensor for all w ∈ W.

Remark 7.3. The mapping Λ is linear and acts on decomposable tensors as

v1 ⊗ . . .⊗ vd → (I ⊕ S)v1 ⊗ . . .⊗ (I ⊕ S)vd,

where I is the B× B unity matrix, and S is the V ×W matrix (swv ).

Remark 7.4. We have Λ(S) = S ′ in the notation of (7.1) and Definition 7.2.
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Observation 7.5. The mapping Λ in Definition 7.2 preserves the rank and sym-
metric rank, so we have rkS = rkS ′ and srkS = srkS ′ for the tensors as in (7.1).

We proceed with one useful notational convention.

Definition 7.6. Let I1, J1, . . . , Iq, Jq be finite indexing sets such that It ⊆ Jt for
all t ∈ {1, . . . , q}. Let AJ be a J1 × . . .× Jq tensor with

• the I1 × . . .× Iq block equal to a tensor A,
• all the entries outside the I1 × . . .× Iq block zero.

We say that AJ is obtained by padding A to the format J1× . . .×Jq. If the formats
of A and AJ are clear, we say that AJ is the appropriate padding of the tensor A.

Remark 7.7. The w-th δ-slice of the tensor A in Definition 4.7 is a padding of w.

We finalize the section with one more property of the mapping Λ.

Observation 7.8. Let Λ be the mapping as in Definition 7.2 and δ ∈ {1, . . . , d}.
Assume that the δ-slices of a d-way tensor

T ∈ RB∪W ⊗ . . .⊗ RB∪W

are collinear to the padded version of an element w of a monomial emulator W.
Then the δ-slices of Λ(T ) are also collinear to the appropriately padded w.

Proof. The δ′-th step of Definition 7.2 does not affect T unless δ′ = δ, and the δ-th
step preserves the δ-slices of T up to collinearity because T is decomposable. �

8. Symmetric decompositions of S

The three forthcoming sections are intended to complete the proof that S is a
desired counterexample. We recall that, according to Lemmas 6.11 and 6.12,

rkS = d|W|+ 1 and srkS ∈ {rkS, rkS + 1},

and we are going to show that the correct value of srkS is rkS + 1. We argue by
contradiction, that is, we are going to show that the equality srkS = d|W| + 1 is
impossible. In Sections 8–10, we assume that there exists a decomposition

(8.1) S = Ψ0
1 + Ψ0

2 + . . .+ Ψ0
md + Ψ0

md+1,

where the summands of the right-hand side are symmetric decomposable tensors
as in Remark 3.3, and we also write m = |W|. Our argument requires one more
definition, which allows us to develop a technique in [58] for higher order tensors.

Definition 8.1. Let δ 6 q be positive integers. Assume that t = (t1, . . . , tr) and
t′ = (t′1, . . . , t

′
r) are two rank decompositions of a q-way tensor τ , which means that

rk τ = r, the tensors in both t and t′ are decomposable, and

r∑
i=1

ti =

r∑
i=1

t′i = τ.

We say that t′ is obtained from t by a δ-transformation if the δ-slices of every tensor
in t′ belong to the linear span of the δ-slices of the tensors in t.

Observation 8.2. For any i, let σi be a non-zero δ-slice of a tensor ti in a rank
decomposition (t1, . . . , tr). Then the tensors (σ1, . . . , σr) are linearly independent.
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Proof. Otherwise, we would be able to cover the δ-slices of t1 + . . . + tr with a
subspace spanned by less than r decomposable tensors, which implies, according to
Observation 4.3, that the rank of t1 + . . .+ tr is less than r. �

Observation 8.3. If t, t′ are rank decompositions of one tensor, then the conditions

• t′ is obtained from t by a δ-transformation and
• t is obtained from t′ by a δ-transformation

are equivalent.

Proof. Each of these conditions, taken separately from the other one, implies that
the linear span of the δ-slices of the tensors in either t or t′ is a subspace of the cor-
responding linear span of the other decomposition. According to Observation 8.2,
these linear spans should have the same dimension and hence coincide. �

Observation 8.4. Let V = V ⊗ . . .⊗V be a q-fold tensor product of a linear space
V , and let π be the braiding isomorphism of V induced by a permutation that fixes a
number δ ∈ {1, . . . , q}. Let t and t′ be rank decompositions of one tensor in V. If t′

can be obtained from t by a δ-transformation, and if also π(t) = t, then π(t′) = t′.

Proof. Since δ is fixed by the permutation, its braiding isomorphism acts separately
on every δ-slice, and the δ-slices of the tensors in t are invariant under π by the
condition π(t) = t. Since t′ is obtained from t by a δ-transformation, the δ-slices in
t′ are spanned by those in t, and hence they are invariant under π as well. �

The δ-transformations are quite powerful for tensors with many rank-one slices,
and they lead to the following improvement of Lemma 4.6.

Lemma 8.5. Let τ be a tensor. Assume that the linear span of the δ-slices of
τ contains a linearly independent set L consisting of rank-one tensors. Then, for
any rank decomposition t = (t1, . . . , tr) of τ , there is a δ-transformation of t which
contains, for any ` ∈ L, a tensor whose δ-slices are collinear to `.

Proof. For any i, we pick a non-zero δ-slice of a tensor ti and denote it by σi. Since
t is a decomposition of τ , we have

L ⊂ span{σ1, . . . , σr}.
Since L is linearly independent, it can be extended by r− |L| appropriately chosen
tensors in {σ1, . . . , σr} so that the resulting family forms a basis of span {σ1, . . . , σr}.
This basis consists of rank-one tensors, and it can be lifted to a desired decompo-
sition as in the proof of Observation 4.3. �

Now we want to apply Lemma 8.5 repeatedly to the 1-slices of the symmetric
decompostion (8.1), then to the 2-slices of the resulting expression and so forth.
The following procedure goes by the induction on δ ∈ {1, . . . , d}, and we think of
the decomposition (8.1) as the starting point corresponding to δ = 1.

Procedure 8.6. We assume S0 = S and, for any δ ∈ {1, . . . , d}, we have

(8.2) Sδ−1 = Ψδ−1
1 + Ψδ−1

2 + . . .+ Ψδ−1
(d−δ+1)m + Ψδ−1

(d−δ+1)m+1

as a rank decomposition. As justified by Remark 8.8 below, we can apply Lemma 8.5
to (8.2) with W in the role of L, and the corresponding δ-transformation results in

(8.3) Sδ−1 =
∑
w∈W

Ψδ
w +

(
Ψδ

1 + Ψδ
2 + . . .+ Ψδ

(d−δ)m + Ψδ
(d−δ)m+1

)
,
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where all the summands are decomposable, and, moreover, we know that the δ-
slices of Ψδ

w are collinear to the appropriately padded w. We define the tensor Sδ
inductively as the sum of the terms in the brackets in (8.3), which gives

(8.4) Sδ = Ψδ
1 + Ψδ

2 + . . .+ Ψδ
(d−δ)m + Ψδ

(d−δ)m+1

and completes the inductive definition of the tensors S0, . . . ,Sd and the summands
in the corresponding decompositions of the forms (8.3) and (8.4).

Three remarks on Procedure 8.6 are in order.

Remark 8.7. The decomposition (8.4) may not be determined uniquely by (8.3),
and hence the outcome of Procedure 8.6 is uniquely identified neither by a given
tensor S0 nor by its decomposition (8.1). Every possible outcome of Procedure 8.6
is said to be a realization of this procedure on an input of the form (8.1).

Remark 8.8. The tensor Sδ differs from Sδ−1 by the sum of tensors whose δ-slices
are collinear to padded w’s, and hence the δ-slices of Sδ − Sδ−1 have zero entries
at all the positions outside B× . . .× B. Therefore,

(8.5) the w-th δ′-slices are the same in Sδ−1 and Sδ if δ′ 6= δ and w ∈ W.

In particular, the w-th δ-slice of Sδ−1 is the padded w, which justifies the inductive
application of Lemma 8.5 when we pass from (8.2) to (8.3) in Procedure 8.6.

Remark 8.9. Let δ ∈ {1, . . . , d}, and let V be a monomial emulator on spanW.
Then, for all v ∈ V, there exist tensors Ξδv such that∑

w∈W
Ψδ
w =

∑
v∈V

Ξδv

and every δ-slice of Ξδv is collinear to the padded v. Now we replace the tensors
Ψδ
w by the tensors Ξδv in the decomposition (8.3), and we apply the mapping Λ

as in Definition 7.2 to the decompositions obtained from (8.3) and (8.4) after this
replacement. In view of Observation 7.8, the resulting decompositions can be ob-
tained from S ′ = SAdj (Uc,V) as a realization of Procedure 8.6.

Lemma 8.10. For any w ∈ W and δ ∈ {1, . . . , d}, the tensor Ψδ
w is a unique

summand in (8.3) which has a non-zero w-th δ-slice.

Proof. We note that both

(1) the total of the w-th δ-slices of the summands in (8.3), and
(2) a non-zero δ-slice of Ψδ

w

are collinear to the padded version of w. Therefore, the sum of (1) with an appro-
priate multiple of (2) is zero, and the assertion follows from Observation 8.2. �

Lemma 8.11. For w ∈ W and integers j, δ, δ′′ satisfying

1 6 δ′′ 6 δ 6 d and 1 6 j 6 (d− δ)m+ 1,

the w-th δ′′-slice of Ψδ
j is zero.

Proof. If δ′′ = δ, the statement follows by Lemma 8.10, so the w-th δ′′-slice of Sδ′′ is
zero for all w ∈ W. For δ′′ < δ, we conclude, as in the assertion (8.5) in Remark 8.8,
that the w-th δ′′-slices of Sδ are zero, and hence the corresponding slices should be
zero in the tensors in the rank decompositions of Sδ by Observation 8.2. �
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Lemma 8.12. For any δ′ ∈ {0, . . . , d− 2}, the tensors

Ψδ′

1 , . . . , Ψδ′

(d−δ′)m+1

are invariant under the braiding isomorphisms of RB∪W⊗ . . .⊗RB∪W corresponding
to the permutations of {δ′ + 1, δ′ + 2, . . . , d}.

Proof. Follows from Observation 8.4 by the induction on δ′. �

We are going to finalize the section with a description of the tensor Sd = Ψd
1,

which appears as the δ = d case of (8.4). One auxiliary lemma is needed.

Lemma 8.13. If Z is the restriction of the tensor

d∑
δ=1

∑
w∈W

Ψδ
w

to its B× . . .× B block, then Z ∈ Omod (W, . . . ,W).

Proof. For any fixed δ, the B× . . .× B block of∑
w∈W

Ψδ
w

belongs to

Omod (∅, . . . ,∅,W,∅, . . . ,∅),

where the appearance of W corresponds to the δ-th place. �

Lemma 8.14. The tensor Ψd
1 is the padding of the clone of a B × . . . × B tensor

P ′ satisfying P ′(e| . . . |e) = 1 and P ′(ε| . . . |ε) = −3.

Proof. According to Lemma 8.11, the w-th δ′′-slices of Ψd
1 are zero for all w ∈ W and

δ′′ ∈ {1, . . . , d}, which means that Ψd
1 is the padding of a B× . . .×B tensor P . Since

the padding operation preserves decomposability, the tensor P is decomposable. In
view of the equations (8.3) and (8.4), we see that

(8.6) Ψd
1 = S −

d∑
δ=1

∑
w∈W

Ψδ
w

and the restriction of (8.6) to the B× . . .×B blocks gives the equality P = Uc−Z,
where Z is the tensor as in Lemma 8.13. We get

P ∈ Uc mod (W, . . . ,W),

and since P is decomposable, we can apply the items (4e) and (4ε) of Definition 6.7.
We get that the E×. . .×E and E×. . .×E blocks of P are equal to the corresponding
blocks of Uc, which means that these blocks are the clones of the 1× . . .× 1 tensors
equal to 1 and −3, respectively. Now we see that P is a clone by Lemma 6.5. �

9. Backtrack analysis of Procedure 8.6

As explained above, Lemma 8.14 gives a description of the last step of the de-
composition (8.4), that is, a description of the δ = d case. As we can see in the
lemma below, this result allows us to figure out which decomposition appeared at
the previous step, that is, to reveal the δ = d− 1 case in (8.4).
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Lemma 9.1. We consider non-zero tensors

(9.1) ψd−11 , . . . , ψd−1m+1

each of which is collinear to the d-slices of the corresponding tensor Ψd−1
j in the

decomposition (8.4). Then there exists one padded clone among the tensors (9.1),
and the unpadded versions of the m others form a monomial emulator on spanW.

Proof. The decomposition (8.4) with δ = d− 1 is related to

(9.2) Sd−1 =
∑
w∈W

Ψd
w + Ψd

1

by a d-transformation. Those summands in (9.2) which correspond to some w ∈ W
have their d-slices collinear to the paddings of the corresponding w’s; the d-slices
of the remaining tensor are collinear to a padded clone σ as in Lemma 8.14. The
possible candidates for the d-slices of the tensors in the decompositions obtained
from (9.2) by the d-transformations are rank-one tensors of the form

ψ =
∑
w∈W

λww + λσσ

with scalar λw and λσ. Let us consider separately two possible cases.
Case 1. If λσ 6= 0, then the conditions (5e) and (5ε) of Definition 6.7 show that

each of the E× . . .×E and E × . . .×E blocks of ψ consists of equal numbers, which
are the same as those located at the corresponding positions in the tensor λσσ.
Using Lemma 6.5, we conclude that ψ is a clone itself, and by the symmetry of w
the tensor ψ−λσσ is symmetric. Therefore, we have ψ = λσσ from Observation 5.4.

Case 2. If λσ = 0, then ψ belongs to spanW. Using the result of Step 1 with
Observation 8.2, we conclude that at most one tensor in (9.1) can satisfy λσ 6= 0, and
hence there are at leastm tensors that fall into Case 2. Since dim spanW = m, there
are exactly m tensors that remain for Step 2, and, according to Observation 8.2,
they form a basis of spanW. In other words, those m tensors in (9.1) which satisfy
λσ = 0 are a monomial emulator on spanW as in Observation 7.1. As explained in
Step 1, the remaining tensor in (9.1) is a padded clone. �

Our further strategy is to use Lemma 9.1 to describe the δ = d− 2 case of (8.3),
which in turn can be used to characterize the δ = d − 3 case, and eventually we
are going to climb back to the decomposition (8.1) with this type of argument. In
order to make this intuition precise, we need one more auxiliary definition.

Definition 9.2. Let I be a finite indexing set and w ∈ I. The w-skeleton of a
q-way I × . . .× I tensor T is the set of all q-way I × . . .× I tensors T ′ such that

T (i1| . . . |iq) = T ′(i1| . . . |iq) whenever w ∈ {i1, . . . , iq}.

In other words, the w-skeleton of a given tensor T is obtained if we void all the
entries of T in which the index w does not appear in any coordinate. Now we can
point out a property relevant for our method of the backward δ-transformations.

Claim 9.3. Let δ ∈ {0, . . . , d−1}. For any w ∈ W, there exists an indexing family

τ(δ, w) ⊂ {1, . . . , (d− δ)m+ 1}
of cardinality d− δ such that

(1) for distinct w and ω, the sets τ(δ, w) and τ(δ, ω) are disjoint,
(2) if t /∈ τ(δ, w), then the w-skeleton of Ψδ

t is zero,
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(3) if t ∈ τ(δ, w) and δ > 1, then

Ψδ
t ∈ u⊗ . . .⊗ u︸ ︷︷ ︸

δ times

⊗RB∪W ⊗ . . .⊗ RB∪W︸ ︷︷ ︸
d−δ times

with u 6= 0 being a vector such that u⊗ . . .⊗u is collinear to the padded w.

A detailed discussion of Claim 9.3 is given separately in Section 10. Now let us
confirm that this claim is sufficient to compute the symmetric rank of S.

Lemma 9.4. The δ = 0 case of Claim 9.3 implies that srkS = rkS + 1.

Proof. For the fixed value δ = 0, the family τw := τ(0, w) in Claim 9.3 has cardi-
nality d and depends only on w. For any w ∈ W, we define

(9.3) Φw =
∑
t∈τw

Ψ0
t

to rewrite the equality (8.1) as

(9.4) S = Ψ0
π +

∑
w∈W

Φw,

where π is the unique element of the set {1, . . . ,md + 1} that does not belong to
τw with any w. By the conclusion (2) of Claim 9.3, the tensor Φw has the same
w-skeleton as S, and hence the padded w’s are adjoined to Φw as the w-slices as in
the construction of Definition 4.7. The equality (9.3) implies rk Φw 6 d, and this
is possible, according to Lemma 4.10, only if the B × . . . × B block of Φw belongs
to Omod (w, . . . , w) and hence to Omod (W, . . . ,W). Since the B× . . .× B block
of S is the tensor Uc as in Definition 6.9, we use the equality (9.4) to get that

Ψ0
π ∈ Uc mod (W, . . . ,W).

According to the items (4e) and (4ε) of Definition 6.7, this means that each of the
E × . . . × E and E × . . . × E blocks of Ψ0

π consists of equal numbers, which are in
turn equal to those located at the corresponding positions in Uc. So we see that Ψ0

π

• is a symmetric d-way tensor,
• has 1 at the (e1, . . . , e1) position,
• has −3 at the (ε1, . . . , ε1) position,

so we get a contradiction because d is even and −3 is not a square. �

Therefore, the two statements are now sufficient to disprove the real case of
Comon’s conjecture: Claim 9.3 and the existence of monomial emulators. In the
forthcoming Section 10, we deal with Claim 9.3, and the subsequent Section 11
completes the argument with an explicit example of a monomial emulator.

10. On the validity of Claim 9.3

Our proof of Claim 9.3 requires an additional assumption.

Assumption 10.1. The monomial emulator obtained in Lemma 9.1 coincides with
the monomial emulator W that was used in Definition 6.9.

It is not immediately clear whether Assumption 10.1 forces any loss of generality
or not, so we decided to formulate several results of this section in the ad hoc way.
We return to the unconditional versions of the relevant results in the end of the
section, which concludes with the proof of the validity of our counterexample.
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Lemma 10.2. Assumption 10.1 implies Claim 9.3 with δ = d− 1.

Proof. Let w ∈ W. Using the notation of Lemma 9.1, we define

τ(d− 1, w) = {j},

where j is such that ψd−1j is collinear to the padded w. The conditions (1) and (3) in

Claim 9.3 are now immediate, and the condition (2) follows by Observation 8.2. �

Before we consider the remaining cases of Claim 9.3, we describe the summands
of the decomposition (8.3) assuming the correctness of this claim for some δ.

Lemma 10.3. If Claim 9.3 is true for δ = δ′ ∈ {1, . . . , d− 1}, then the w-skeleta

of the δ′-slices of the tensors Ψδ′

j with j ∈ τ(δ′, w) are linearly independent.

Proof. The decompositions (8.3) and (8.4), taken with δ ∈ {δ′, . . . , d}, allow one to

construct two further rank decompositions of Sδ′ as

(10.1) Ψδ′

1 + . . .+ Ψδ′

(d−δ′)m+1 = Ψd
1 +

(
d∑

i=δ′+1

∑
w∈W

Ψi
w

)
.

We fix an arbitrary w ∈ W and proceed by restricting (10.1) to the w-skeleta. By
the assertion (2) of Claim 9.3, the non-zero w-skeleta at the left-hand side of (10.1)
do only appear at the summands with the index in τ(δ′, w). Therefore,

(10.2) the w-skeleton of the sum of Ψδ′

j over all j ∈ τ(δ′, w)

equals the w-skeleton of the right-hand side of (10.1). Further, the tensor Ψi
w has

• the w-th i-slice equal to the padded w, by Lemma 8.10,
• zero w-th j-slices whenever j 6= i, by the decomposability,

and since Ψd
1 is a padding of a B× . . .× B tensor by Lemma 8.14, we have that

(10.3) the w-skeleton of

d∑
i=δ′+1

bw ⊗ . . .⊗ bw︸ ︷︷ ︸
i−1 times

⊗ ew ⊗
bw ⊗ . . .⊗ bw︸ ︷︷ ︸

d−i times

 ,

equals the w-skeleton as in (10.2), where bw is a vector for which the padding of w
is collinear to bw⊗ . . .⊗bw, and ew is the vector with a one at the w-th position and
zeros everywhere else. In the notation of Definition 4.7, the tensors in (10.3) have
the w-th i-slices adjoined with any i ∈ {δ′ + 1, . . . , d}, and hence the tensors with
the w-skeleton as in (10.3) should have rank at least d− δ′ by Lemma 4.10. Since
the sum in (10.2) contains exactly d− δ′ terms, this sum is a rank decomposition,
and if the w-skeleta of the δ′-slices of these terms were linearly dependent, we would
get a contradiction to Observation 8.2. �

Now we are ready to prove Claim 9.3 for δ between 1 and δ − 2. In view of
Lemma 10.2, the only other case that remains uncovered is δ = 0.

Lemma 10.4. Assumption 10.1 implies Claim 9.3 with δ ∈ {1, . . . , d− 2}.

Proof. Lemma 10.2 and the induction allow us to assume that Claim 9.3 is true with
δ + 1 instead of δ. The formulas (8.3) and (8.4) give the two rank decompositions

(10.4) Ψδ
1 + . . .+ Ψδ

(d−δ)m+1 =
∑
w∈W

Ψδ+1
w + Ψδ+1

1 + . . .+ Ψδ+1
(d−δ−1)m+1
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of the tensor Sδ, and, according to Procedure 8.6, these decompositions are related
by a (δ + 1)-transformation. In particular, the (δ + 1)-slices of the tensors on the
left-hand side of (10.4) are linear combinations of the corresponding (δ + 1)-slices
on the right-hand side of (10.4). In the rest of this proof, we write

ψkj for some arbitrarily fixed non-zero (δ + 1)-slice of Ψk
j ,

and we recall that the (δ+ 1)-slices of Ψδ+1
w are collinear to w, where w denotes the

padding of w to the format (B ∪W)× . . .× (B ∪W). Therefore, we have

(10.5) ψδj =
∑
w∈W

λwj w +

Mδ∑
ζ=1

λζjψ
δ+1
ζ

with Mδ = (d− δ − 1)m+ 1 and the families(
λwj
)
w∈W and

(
λζj

)
ζ∈{1,...,Mδ}

consisting of scalars and depending on j ∈ {1, . . . , (d− δ)m+ 1}. Further, we note
that, according to the assertion (2) of Claim 9.3 for δ + 1, the condition

(10.6) λqj 6= 0 for some q ∈ τ(δ + 1, w)

is necessary for the w-skeleton of (10.5) to be non-zero, and, using Lemma 10.3,
we see that the condition (10.6) is also sufficient for this skeleton being non-zero.
Now we use the assertion (3) of the δ+ 1 version of Claim 9.3, and we see that the
w-skeleton of (10.5) equals the w-skeleton of some tensor in

(10.7)

bw ⊗ . . .⊗ bw︸ ︷︷ ︸
δ times

⊗
RB∪W ⊗ . . .⊗ RB∪W︸ ︷︷ ︸

d−δ−1 times

 ,

where bw is a vector for which w is collinear to bw ⊗ . . . ⊗ bw. In fact, every
tensor (10.5) satisfying the condition (10.6) should itself be contained in (10.7) by
the decomposability. According to the item (1) of Definition 6.7, the vectors bw
and bω cannot be collinear for distinct w,ω ∈ W, and hence the decomposability
of (10.5) implies that either the w-skeleton or the ω-skeleton is zero. In other words,
for every fixed j, the condition (10.6) can be valid with at most one w.

In order to prove Claim 9.3 for the current value of δ, we take τ(δ, w) as the set
of all j for which the tensor (10.5) has a non-zero w-skeleton. Equivalently,

τ(δ, w) is the set of all j for which the condition (10.6) is valid.

In this notation, the tensor (10.5) with j /∈ τ(δ, w) has a zero w-skeleton, and hence
the corresponding tensors Ψδ

j should have zero w-skeleta by Lemma 8.12; this gives
the conclusion (2) in Claim 9.3. Also, the conclusion (1) in Claim 9.3 is immediate
from the last sentence of the previous paragraph. Finally, the form (10.7) of the
tensor (10.5) with j ∈ τ(δ, w) gives the conclusion (3) of Claim 9.3.

It remains to prove that the cardinality of τ(δ, w) is d − δ. As we noted in the
proof of Lemma 10.3, the w-skeleton of (10.4) cannot correspond to a tensor of
rank less than d − δ, so we have |τ(δ, w)| > d − δ. Therefore, we can complete
the proof by showing that the decomposable tensors of the form (10.5) that have
non-zero w-skeleta as in (10.7) cannot span a subspace of dimension greater than



COMON’S CONJECTURE OVER THE REALS 21

d−δ. To this end, we are going to check that their span is contained in the subspace
Hw +Qw with Hw = span{w} and

Qw is the linear span of all ψδ+1
ζ with ζ ∈ τ(δ + 1, w),

and this is sufficient because dim(Hw + Qw) 6 1 + (d − δ − 1) = d − δ. More
precisely, it is enough to show that any decomposable tensor ϕ which has both the
forms (10.5) and (10.7) should belong to Hw+Qw. As said above, the formula (10.6)
cannot hold with any ω different from w, and this implies ϕ = qw+ϕ′ with qw ∈ Qw
and ϕ′ being the padding of a B× . . .× B tensor ϕ′′. Since both ϕ and qw belong
to (10.7), their difference ϕ′ belongs to (10.7) as well, and hence

(10.8) ϕ′ =

bw ⊗ . . .⊗ bw︸ ︷︷ ︸
δ times

⊗ Tϕ
with some tensor Tϕ of the order (d − δ − 1) such that Tϕ is the padding of a
B × . . . × B tensor to the format (B ∪W) × . . . × (B ∪W). If Tϕ was collinear to
bw ⊗ . . . ⊗ bw, then ϕ′ would be collinear to w, and hence it would belong to Hw,
which would imply ϕ ∈ Hw +Qw and conclude the argument. Therefore, it suffices
to reach the contradiction starting at the assumption that

(10.9) Tϕ is not collinear to bw ⊗ . . .⊗ bw,

which means, in view of the formula (10.8), that the tensor ϕ′ is not symmetric,
and hence its non-padded version ϕ′′ cannot belong to spanW in the case of (10.9).
However, the adjoining of ϕ′ as the (δ + 1)-slice to S does not increase the rank
because ϕ′ is a linear combination of the (δ + 1)-slices of the tensors in a rank
decomposition of S. Using Lemma 4.10, we get

rkS = min rk Uc mod (W, . . . ,W,W ∪ {ϕ′′}) + dm+ 1,

and, since rkS = dm+ 1 by Lemma 6.11, we get the property

O ∈ Uc mod (W, . . . ,W,W ∪ {ϕ′′}),

which shows that the sets

Omod (∅, . . . ,∅, ϕ′′) and Uc mod (W, . . . ,W)

have common elements, but this is false by the condition (6) in Definition 6.7. �

The case of δ = 0 in Claim 9.3 does not immediately follow from the argument
in Lemma 10.4. In fact, the left expression in the brackets in (10.7) gets void with
δ = 0, and we cannot use the condition (6) of Definition 6.7 to complete the proof as
in Lemma 10.4. However, we can argue as in Lemma 10.4 to get conditions similar
to (10.5), (10.6) and change the strategy. This requires two additional lemmas.

Lemma 10.5. Let u be a vector in a linear space U . If a symmetric q-way tensor
A ∈ U⊗ . . .⊗U lies in Omod (w, . . . , w) with w = u⊗ . . .⊗u, then A is represented
as either (1) axq or (2) xq−1y + axq for some a ∈ R and linear forms x, y.

Proof. When written with respect to a basis whose first vector equals u, the tensor
A can have a non-zero entry at a position (i1| . . . |iq) only if at least q − 1 of the
values i1, . . . , iq are ones. In this case, we end up with the conclusion (1) if all
entries except (1| . . . |1) are zero, and we get the assertion (2) otherwise. �
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Lemma 10.6. If linear forms `1, . . . , `d−1 ∈ R[x, y, z] are such that

xd−2y + axd−1 ∈ span
{

(`1)d−1, . . . , (`d−1)d−1
}

with a ∈ R, then the dependence of every `1, . . . , `d−1 on z is void.

Proof. Otherwise, we can substitute z with a linear form in x and y so that `1 and
`2 become collinear. This is a contradiction because, according to Lemma 4.10, the
rank of the tensor corresponding to xd−2y + axd−1 cannot be less than d− 1. �

We are ready to proceed with the remaining case of Claim 9.3.

Lemma 10.7. Assumption 10.1 implies Claim 9.3 with δ = 0.

Proof. Similarly to the proof of Lemma 10.4, we get

(10.10) ψ0
j =

∑
w∈W

λwj w +
M∑
ζ=1

λζjψ
1
ζ

with M = (d− 1)m+ 1, where ψkj is an arbitrarily fixed non-zero 1-slice of Ψk
j and(

λwj
)
w∈W and

(
λζj

)
ζ∈{1,...,M}

are families of scalars that depend on j ∈ {1, . . . , dm + 1}. Also, we write w to
denote the appropriate padding of w ∈ W. We continue to argue as in the proof of
Lemma 10.4, and we conclude that the condition

(10.11) λqj 6= 0 for some q ∈ τ(1, w)

holds if and only if ψ0
j has a non-zero w-skeleton, and, for any fixed j, this can

happen for at most one choice of w ∈ W. Similarly to the proof of Lemma 10.4, we
define τ(0, w) as the set of all j for which the condition (10.11) applies. Therefore,
the tensor (10.10) with j /∈ τ(0, w) has a zero w-skeleton, and the corresponding
tensor Ψ0

j has a zero w-skeleton because it is symmetric; this gives the conclu-
sion (2) in Claim 9.3. Also, the corresponding conclusion (1) is valid because the
condition (10.11) cannot hold simultaneously with different w.

Since the conclusion (3) is void for δ = 0, it remains to prove |τ(0, w)| = d
for any w ∈ W. Using the argument in the proof of Lemma 10.4, we see that
|τ(0, w)| > d, so we need to check |τ(0, w)| 6 d. We do this by showing that those
decomposable tensors of the form (10.10) which have non-zero w-skeleta belong to
a subspace of dimension at most d. To this end, we consider a non-zero vector u
such that u⊗ . . .⊗u is collinear to w, and we denote by π ∈ B an arbitrary position
at which u is non-zero. Further, we write g to denote the π-th 1-slice of S, and,
according to Definitions 4.7 and 4.8, this tensor g has a non-zero scalar multiple of
the (d− 2)-way product u⊗ . . .⊗ u symmetrically adjoined as the w-th slice.

Since the only tensors ψ1
ζ with non-zero w-skeleta are those with ζ ∈ τ(1, w),

there exists a linear combination ϕ of these tensors whose w-skeleton equals that
of g. Since the cardinality of τ(1, w) is d− 1 by the δ = 1 version of Claim 9.3, we
have rkϕ 6 d− 1. In view of Lemma 4.10, we have

ϕ ∈ Omod
(
u⊗(d−2), . . . , u⊗(d−2)

)
,

and hence, according to Lemma 10.5, the tensor ϕ represents a polynomial of
the form axd−1 + xd−2y with a ∈ R and some linear forms x, y. According to
Lemma 10.6, the tensors ψ1

ζ with ζ ∈ τ(1, w) correspond to polynomials in x, y as
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well. Therefore, the w-th slices of a tensor ϕ′ as in (10.10) are polynomials in x and
y, and, hence, if these w-th slices are non-zero, the tensor ϕ′ being decomposable
should correspond to a polynomial in x and y itself. Since the space of all binary
homogeneous polynomials of degree (d−1) has dimension d, this implies the desired
conclusion that the space of all possible ϕ′ has dimension at most d. �

We are ready to complete the proof of the main result of Sections 8–10.

Theorem 10.8. We have srkS = rkS + 1.

Proof. Using the letter V to denote the monomial emulator obtained in Lemma 9.1,
we consider the tensors S and S ′ as in the formulas (7.1). The decompositions
introduced in Remark 8.9 arise from a realization of Procedure 8.6 on S ′, and, as
we apply Lemma 9.1 to this new realization, we take the d-slices of

(10.12) Λ
(
Ψd−1

1

)
, . . . , Λ

(
Ψd−1
m+1

)
in the role of (9.1). According to Lemma 9.1, there exists a monomial emulator V ′
consisting of m tensors collinear to the d-slices of those in (10.12). This V ′ is to be
the same as V because, for every fixed j, the d-slices of the tensors

Ψd−1
j and Λ

(
Ψd−1
j

)
are all collinear by Observation 7.8. Therefore, Assumption 10.1 can be satisfied
by the decompositions of S ′, and hence the conclusion of Lemma 10.7 applies. We
use Lemma 9.4 to get srkS ′ = rkS ′ + 1, and this completes the proof because we
have rkS = rkS ′ and srkS = srkS ′ by Remark 7.5. �

11. A monomial emulator

Since Theorem 10.8 is proved, the existence of monomial emulator families is
the only remaining obstruction towards our counterexample. This section gives an
example of such a family, and we decided to focus on the case d = 4 due to technical
difficulties that arise in the general situation. In order to proceed, we go back to
the setting of Section 6 and define all parameters appearing in Definition 6.7.

Definition 11.1. We take c = 10 for the value as in Definition 6.1. The family W
is going to contain 190 symmetric 20× 20× 20 tensors of the form

u⊗ u⊗ u with u = (uE |uE),
where uE and uE are two vectors of length 10.

If we assume the existence of a monomial emulatorW as in Definition 11.1, then
the tensor S as in Definition 6.9 satisfies

rkS = 4 · 190 + 1 = 761 and srkS = rkS + 1 = 762,

where the conclusion about the rank follows from Lemma 6.11, and the symmetric
rank is computed in Theorem 10.8. According to Definition 6.9, the tensor S is
obtained by the symmetrical adjoining of the slices in W to the symmetric tensor
Uc with 2c slices, and hence S has 2c+ |W| = 210 slices.

Remark 11.2. As we will see in Definition 11.4, the corresponding vectors uE and
uE in Definition 11.1 have the sums of their entries at the even positions equal to the
corresponding sums at the odd positions, which means that the vectors u = (uE |uE)
embed in an 18-dimensional space. This allows one to reduce the number of the
slices of S by two, so we use the number 208 instead of 210 in Theorem 2.2.
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It remains to construct an appropriate familyW, and we begin with a description
of building blocks for the vectors u as in Definition 11.1.

Definition 11.3. For any i ∈ {1, . . . , 5}, we define αi ∈ R10 as the vector with two
ones at the positions 2i− 1, 2i and eight zeros at the remaining places.

We are ready to complete the construction of W.

Definition 11.4. We define W1 as the set of all tensors u⊗ u⊗ u, where u can be
one of the following vectors:

(11.1) (αi + αj |αk), (αi + αj | 0), (3αi | 4αk), (αi| 0), (0 |αk),

where i, j, k ∈ {1, . . . , 5} and i < j. We define W2 as the set of all tensors of the
from uπ ⊗ uπ ⊗ uπ with u as in (11.1), where the mapping π acts as

(11.2) π : (v|w)→ (wσ|vσ),

and σ is the cyclic permutation

σ : (x1 x2 . . . x9 x10) → (x2 x3 . . . x10 x1).

Finally, we set W =W1 ∪W2.

The rest of the paper is devoted to the confirmation of the assumptions (1)–(6)
in Definition 6.7. As said above, this would complete the proof of Theorem 2.2.

Remark 11.5. Observation 7.1 allows us to omit the proof of the assumption (1).

Remark 11.6. The condition (2) is immediate from Definition 11.4.

Lemma 11.7. The assumption (3) in Definition 6.7 is valid.

Proof. As said in Definition 11.4, the linear mapping defined by

(11.3) u⊗ u⊗ u→ uπ ⊗ uπ ⊗ uπ

with π as in (11.2) restricts to a bijection W1 → W2. Also, the mapping (11.3)
sends the clone of the tensor µ2,1 to the clone of µ1,2, so it suffices to check that
the clone of µ2,1 belongs to spanW1. To this end, we check that the tensor

5∑
i,k=1

5∑
j=i+1

(αi + αj |αk)
⊗3 − 1

12

5∑
i,k=1

(3αi | 4αk)
⊗3

has all ones at the E ×E ×E block and all zeros at the E ×E × E block. Also, the
E × E × E and E × E × E blocks can be cleaned up by adding

−5

5∑
i=1

5∑
j=i+1

(αi + αj | 0)
⊗3

+ k2

5∑
i=1

(αi| 0)⊗3 + k3

5∑
k=1

(0 |αk)⊗3

with k2 = 45/4 and k3 = 50/3. �

We proceed with the proofs of the assumptions (4e), (4ε), (5e), (5ε).

Lemma 11.8. The assumptions (5e) and (5ε) in Definition 6.7 are valid.
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Proof. Due to the symmetry, we can only prove (5e). To this end, we take a tensor

w ∈ span WE ,

where WE is the set of all E × . . . × E blocks of the tensors in W. The desired
statement is that we can have

(11.4) I(E, d− 1) + w = u1 ⊗ u2 ⊗ u3
only if w = O, where I(E, q) is the q-way E × . . .×E tensor of all ones. According
to Definition 11.4, the tensor w lies in the linear span of the tensors of the form

(αi + αj)⊗ (αi + αj)⊗ (αi + αj)

with possibly equal i and j, we recall Definition 11.3 and conclude that the condition

(11.5) w(s1|s2|s3) = 0

holds for all tuples (s1, s2, s3) in which every pair of entries differ by at least two.
The application of (11.5) with (s1, s2, s3) equal to

(11.6) (1, 8, 10), (2, 8, 10), . . . , (6, 8, 10)

shows that the tensor (11.4) has ones at the positions in (11.6), and hence the vector
u1 has equal entries at the positions 1, 2, 3, 4, 5, 6. Similarly, we can use (11.5) with

(6, 3, 1), (7, 3, 1), . . . , (10, 3, 1)

to show that the positions 6, 7, 8, 9, 10 of u1 are also equal to each other. Therefore,
all entries of u1 are equal, and the symmetry translates this conclusion to u2 and
u3 as well. Therefore, the tensor (11.4) has all entries equal, and, since its (1, 8, 10)
entry is one, this tensor should coincide with I(E, d− 1). �

Lemma 11.9. The assumptions (4e) and (4ε) in Definition 6.7 are valid.

Proof. Using the symmetry again, we can focus on (4e). We take a tensor

w ∈ Omod (WE , . . . ,WE)

and proceed with a proof that the equality

(11.7) I(E, d) + w = u1 ⊗ u2 ⊗ u3 ⊗ u4
is possible only if w = O. The argument as in Lemma 11.8 shows that

(11.8) w(s1|s2|s3|s4) = 0

whenever every pair of entries in (s1, s2, s3, s4) differ by at least two. Similarly to
the proof of Lemma 11.8, the application of (11.8) with

(1, 6, 8, 10), (2, 6, 8, 10), (3, 6, 8, 10), (4, 6, 8, 10)

shows that the vector u1 has equal numbers at the positions 1, 2, 3, 4. Further, the
application of (11.8) with

(4, 1, 8, 10), (5, 1, 8, 10), (6, 1, 8, 10)

shows that the corresponding positions from 1 to 6 are equal. Finally, we can use

(6, 1, 3, 10), (7, 1, 3, 10), (8, 1, 3, 10)

to prove the same statement for all positions from 1 to 8, and then the tuples

(8, 1, 3, 5), (9, 1, 3, 5), (10, 1, 3, 5)
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allow one to conclude that all entries in the vector u1 are equal, which completes
the argument similarly to Lemma 11.8. �

Now we can focus on the remaining assumption (6) in Definition 6.7. We recall
that the tensors in W have the format (E ∪ E)× (E ∪ E)× (E ∪ E), where

E = {e1, . . . , e10} and E = {ε1, . . . , ε10}.

Definition 11.10. Let w be a tensor in spanW. For any χ ∈ {1, 2, 3} and i ∈
{1, . . . , 9}, the differences between the χ-slices of w with indexes

• ei and ei+1,
• εi and εi+1

are called odd differences of w for odd i and even differences of w for even i.

Observation 11.11. Every odd difference of a tensor in spanW1 is zero. Every
even difference of a tensor in spanW2 is zero.

Proof. This is immediate from Definitions 11.3 and 11.4. �

Lemma 11.12. If every even difference of a tensor w1 ∈ spanW1 is zero, then w1

is collinear to the clone of µ2,1, which is the tensor with ones at the positions

(e, e, ε), (e, ε, e), (ε, e, e)

and zeros everywhere else.

Proof. Using Observation 11.11 together with the assumption of the lemma, we
conclude that all slices of w1 with indexes in E are equal, and all slices of w1 with
indexes in E are equal. Therefore, the tensor w1 is a clone, and also w1 is symmetric
since the tensors in W are symmetric. Finally, we remark that the E ×E ×E and
E × E ×E blocks have to be zero by the argument in the proof of Lemma 11.8, and
the E ×E ×E block is zero because is contains a zero entry, for similar reasons, for
instance, at the position (e1, ε1, ε3). �

We need the following description of rank-one tensors in spanW1 and spanW2.

Lemma 11.13. For any vector u such that the tensor u ⊗ u ⊗ u belongs to the
linear span of either W1 or W2, the projection uE contains at least one zero entry.

Proof. Let w ∈ spanW1 be such a tensor. Using Definition 11.4, we can note that
the E × E × E block of w belongs to the linear span of

(11.9) (αi + αj)⊗ (αi + αj)⊗ (αi + αj)

with possibly equal i, j ∈ {1, 2, 3, 4, 5}. It is straightforward to note that this
E ×E ×E block should be collinear to a tensor in (11.9), and hence is has several
zeros on the diagonal. This means that the corresponding vector uE has zero entries
and completes the proof of the W1 case. The situation with W2 is similar, because
the E × E × E blocks of the tensors in spanW2 lie in the span of the tensors

αi ⊗ αi ⊗ αi
up to the cyclic permutation as in Definition 11.4. �

Lemma 11.14. If tensors w1 ∈ spanW1 and w2 ∈ spanW2 satisfy rk(w1+w2) = 1,
then either w1 = 0 or w2 = 0.
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Proof. We argue by contradiction and assume that w1 6= 0, w2 6= 0.
Further, we assume that every even difference of w1 + w2 is zero. In view of

Observation 11.11, this means that every even difference of w1 is zero, and hence
w1 is a tensor as in Lemma 11.12. Since w1 is non-zero, we can assume without
loss of generality that every entry in the E × E × E block of w1 is one. Using
Definitions 11.3 and 11.4, one can note that a tensor in spanW2 should have a
zero at the (ea, eb, εt) position whenever |a − b| > 2. An argument similar to
Lemmas 11.8 and 11.9 shows that the E × E × E block of w1 + w2 should contain
only ones, and hence w1 +w2 should be a symmetric rank-one clone. However, this
is impossible because the E × E × E and E × E × E blocks of w1 + w2 should be
zero by Lemma 11.8. Using this contradiction and the symmetry, we conclude that

(11.10) w1 + w2 admits both even and odd non-zero differences.

These differences and the slices of w1 + w2 should be collinear to one non-zero
matrix ω because rk(w1 + w2) = 1. If all entries of ω are equal, then all entries of
w1 + w2 are equal as well, which contradicts to (11.10). Otherwise, the matrix ω
contains two consecutive different rows, and their non-zero difference is either an
odd difference or an even difference. Using this conclusion together with (11.10),
we see that there is an odd difference of the 1-slices of w1 + w2 which in turn
admits a non-zero even difference of its 2-slices, and hence we get a contradiction
to Observation 11.11. �

Now we can confirm the assumption (6) and finalize the paper.

Lemma 11.15. The condition (6) in Definition 6.7 is valid.

Proof. Let uE be a vector as in (6). In view of Lemmas 11.13 and 11.14, this
vector contains a zero at some position i. In this case, every tensor in the left set
as in the assumption (6) has all zeros at the i-th 1-slice, but every tensor in the
corresponding right set has ones in every slice by the argument in Lemma 11.9. �
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