A method to smooth functions

Joseph Valles

ABSTRACT. This is a method to analytically smooth functions. It involves taking a multiple integral from $x - \delta$ to $x + \delta$. The smoothing amount is denoted by δ .

Keywords: up, to, six, keywords

1. Smoothing

Smoothing functions involves decreasing their jaggedness. Examples of jagged functions include |x| and the Heaviside function. Other functions like polynomials can be considered to not be smooth if they have a large second derivative at their extrema.

The method for smoothing involves taking an integral from $x - \delta$ to $x + \delta$. This can be repeated to increase the smoothing quality. The method is given in Equation 1.1.

$$\int_{x-\delta}^{x+\delta} \dots \int_{x-\delta}^{x+\delta} f(x)dx$$

This article is © 2020 by author(s) as listed above. The article is licensed under a Creative Commons Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode), except where otherwise indicated with respect to particular material included in the article. The article should be attributed to the author(s) identified above.

^{*}integralcurveinc@gmail.com

2. Results

These are the results of the operation when applied to some functions.

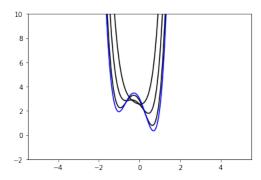
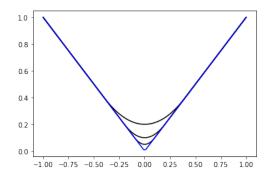



Figure 1. $y = 4.3x^4 + 3.5x^3 - 5.2x^2 - 3.33x + 3$ with 10 iterations. $\delta = 0, 0.1, 0.2, 0.3$

Figure 2. |x| with 2 iterations. $\delta = 0, 0.1, 0.2, 0.4$

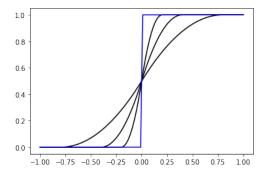


Figure 3. Heaviside(x) with 2 iterations. $\delta = 0, 0.1, 0.2, 0.4$

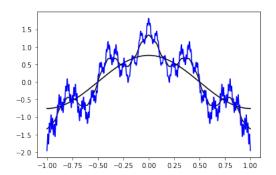


Figure 4. W(x), a=0.5, b=5 with 1 iteration. $\delta=0,\,0.1,\,0.4$

Disclosure Statement. The authors have no conflicts of interest to declare.